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ABSTRACT: Early screening and administration of DKD are beneficial for
renal outcomes of type 2 diabetic patients. However, the current early
diagnosis using the albuminuria/creatine ratio (ACR) contains limitations.
This study aimed to compare serum lipidome variation between type 2
diabetes and early DKD patients with increased albuminuria through an
untargeted lipidomics method to explore the potential lipid biomarkers for
DKD identification. 92 type 2 diabetic patients were enrolled and divided into
two groups: DM group (ACR < 3 mg/mmol, n = 49) and early DKD group (3
mg/mmol ≤ ACR < 30 mg/mmol, n = 43). Fasting serum was analyzed
through an ultraperformance liquid mass spectrometry tandem chromatog-
raphy system (LC-MS). Orthogonal partial least-squares discriminant analysis
(OPLS-DA) and univariate and multivariate analysis were performed to filter
differentially depressed lipids. Receiver operating characteristic (ROC) curves
were used to estimate the diagnostic capability of potential lipid biomarkers. We found that serum phospholipids including
phosphatidylserine (PS), sphingomyelin (SM), and phosphatidylcholine (PC) were significantly upregulated in the DKD group and
were highly correlated with the ACR. In addition, a panel of two phospholipids including PS(27:0)-H and PS(30:2e)-H showed
good performance to help clinical lipids in early DKD identification, which increased the area under the curve (AUC) from 0.568 to
0.954. The study exhibited the serum lipidome variation in early DKD patients, and the increased phospholipids might participate in
the development of albuminuria. The panel of PS(27:0)-H and PS(30:2e)-H could be a potential biomarker for DKD diagnosis.

1. INTRODUCTION
Diabetic kidney disease (DKD) is a major microvascular
complication of type 2 diabetes and the leading cause of death
from end-stage renal disease (ESRD).1 The prognosis of
diabetic kidney disease is irreversible, and its early identi-
fication is very important for diabetic patients.
The definition of DKD refers to diabetic patients with

chronic kidney disease (CKD), which was mainly present as
the increased albuminuria/creatine ratio (ACR) or declined
estimated glomerular filtration rate (eGFR) for more than 3
months according to the KDGIO guideline.2

The ACR is widely regarded as an early biomarker of DKD
but lacks specificity and sensitivity. Besides, proteinuria
assessment has not been standardized around the world,
which may hinder systematical screening in large cohorts at
multiple centers.1 Therefore, new methods were developed to
seek more biomarkers for early detection of DKD.
The rapid development of various omics technologies

facilitated the discovery of biological biomarkers. In proteomic
studies, the CKD273 panel reported by Good et al. has been
testified in multiple subsequent clinical studies to improve
DKD diagnosis.3−5 Metabolomic studies also reported that
metabolites in serum or urine could help diagnose or predict

DKD progression in type 2 diabetes mellitus.6 In our previous
study, a total of 11 serum metabolites were determined as
potential biomarkers for DKD identification.7 However, as a
major branch of metabolomics, lipidomics has not been widely
used in DKD research, although it was demonstrated that the
pathogenesis of DKD including albuminuria is tightly related
to dyslipidemia.8

Lipidomics represented a shift from individual lipid classes
to whole lipid metabolites to understand the roles of lipids in
the pathophysiological activities of diseases more comprehen-
sively. Previous lipidomic findings focusing on diabetes have
been reported.9−11 However, the results of the current DKD
lipidomic studies have not formed a unified conclusion, and
the expression patterns of different lipid classes in early DKD
are still not clear. More relevant studies are needed to
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determine and verify the potential lipid biomarkers of early
diabetic kidney disease.
In this study, we conducted a widely untargeted lipidomics

strategy in T2DM and DKD patients with a slightly increased
ACR to elucidate the serum lipidome variation and its
correlation with albuminuria. Moreover, we utilized regression
analysis to identify a panel of potential lipid biomarkers for the
auxiliary diagnosis of early DKD.

2. MATERIALS AND METHODS
2.1. Study Subjects. 92 T2DM patients were recruited

from the Diabetes Center and Department of Endocrinology,
Second Affiliated Hospital of Wenzhou Medical University.
The study strictly followed the tenets of the Declaration of
Helsinki and was approved by the institutional review boards
of the hospital. All the patients were between 18 and 80 years
old, consistent with the diagnosis of type 2 diabetes with eGFR
≥ 60 mL/(min·1.73 m−2). Patients were further divided into
two groups based on ACR levels: DM group with normal
albuminuria (ACR < 3 mg/mmol, n = 49) and early DKD
group with increased albuminuria for at least 3 months (3 mg/
mmol ≤ ACR < 30 mg/mmol, n = 43)2. Patients were
recruited into the DKD group for our study only if they had
ACR ≥ 3 mg/mmol in at least two tests. The following
exclusion conditions were as follows: (i) refractory hyper-
tension or serious cardiovascular diseases; (ii) physiological or
pathological conditions that may cause albuminuria include
strenuous exercise, infections, and active kidney stones; (iii)
recent use of nephrotoxic drugs; and (iv) definite diagnoses of
other kidney disease. All patients gave informed written
consent before participating with high compliance.
2.2. Sample Preparation and Lipid Extraction. 4 ml of

fasting morning blood was collected from patients and sent for
instant processing. After collection, blood samples were
centrifuged at 3000 × rpm for 10 min to separate the serum.
The supernatant was transferred and stored at −80 °C until
analysis.
For lipidomic analysis, lipids were extracted according to the

methyl tert-butyl ether (MTBE) method. Briefly, serum
samples were first homogenized with 200 μL of water, 240
μL of methanol, and 800 μL of MTBE, and the mixture was
subjected to ultrasound treatment for 20 min at 4 °C followed
by sitting still for 30 min at room temperature. The solution
was centrifuged at 14,000 g for 15 min at 10 °C, and the upper
organic solvent layer was obtained and dried under nitrogen
for liquid chromatography isolation and mass spectrometry
analysis. Equal amounts of samples were extracted and mixed
into eight quality control (QC) samples to determine the state
of the instrument before sample detection and equilibrate the
chromatography−mass spectrometry system during the entire
experiment.
2.3. LC-MS/MS Analysis and Raw Data Processing.

Reverse-phase chromatography was selected for liquid
chromatography separation using a CSH C18 column (1.7
μm, 2.1 mm × 100 mm, Waters). The lipid extracts were
redissolved in 200 μL of 90% isopropanol/acetonitrile and
centrifuged at 14,000 g for 15 min; finally, 3 μL of sample was
injected. Solvent A was acetonitrile/water (6:4, v/v) with 0.1%
formic acid and 0.1 mM ammonium formate, and solvent B
was acetonitrile/isopropanol (1:9, v/v) with 0.1% formic acid
and 0.1 mM ammonium formate. The initial mobile phase was
30% solvent B at a flow rate of 300 μL/min. It was held for 2

min and then linearly increased to 100% solvent B in 23 min,
followed by equilibrating at 30% solvent B for 10 min.
For mass spectrometry detection, mass spectra were

acquired using a Q-Exactive Plus instrument in positive and
negative modes. ESI parameters were optimized and preset for
all measurements as follows: source temperature: 300 °C;
capillary temperature: 350 °C; ion spray voltage: 3000 V; S-
Lens RF level: 50%; and scan range of the instruments: m/z
200−180. MS1 resolution at m/z 200:70,000 and MS2
resolution at m/z 200:17,500.
For lipid identification, raw data were searched using the

“Lipid Search” engine based on MS/MS math, which contains
more than 30 lipid classes and more than 1,500,000 fragment
ions in the database. Mass tolerance for both the precursor and
fragment was set at 5 ppm, and the product ion threshold was
set at 5%.
2.4. Statistical Analysis. Data analysis was concluded with

a data quality assessment, quantitative statistics, lipid
composition, and difference analysis. Tools of MetaboAnalyst
5.0 (https://www.metaboanal.ca/) and R (version 4.2.1) were
utilized. First, lipid abundance was log10-transformed for
normalization, and the missing values were replaced by zero for
subsequent analysis. Orthogonal partial least-squares discrim-
inant analysis (OPLS-DA) with a permutation test for 1000
times was carried out to estimate the lipid difference between
two groups. Differentially depressed lipids were filtered by
Student’s t-test (fold change of DKD/DM groups ≥1.2 or
≤0.8) with the false discovery rate (FDR) adjusted p-value and
variable importance in the project (VIP) acquired by OPLS-
DA analysis. For differential lipid filtration, the whole dataset
was randomly sampled into training and testing groups at a
ratio of 7:3 by R, and lasso regression analysis was performed
to determine the degree of discrimination between DM and
DKD groups. Binary logistic regression analysis and receiver
operating characteristic (ROC) analysis were utilized to
evaluate the diagnostic power of chosen lipids. p-value <
0.05 was regarded as significant.
2.5. Serum Phosphatidylserine Measurement. For

biomarker validation, other 26 serum samples from DM (n =
13) and early DKD (n = 13) patients were used to test the PS
levels using an ELISA kit (HM10702, Bioswamp). Briefly
speaking, 40 μL of serum samples and 10 μL of biotin-labeled
anti-PS antibody were added to each well of the plate. Then,
50 μL of enzyme labeling reagent was added to each well. After
incubation for 30 min at 37 °C, the plate was washed five times
and dried. The staining reagent was added for 10 min, and the
PS concentration was tested under 450 nm using a microplate
reader.

3. RESULTS
3.1. Demographic and Clinical Characteristics. Among

the 92 enrolled type 2 diabetic patients, 49 were DM patients
with normal albuminuria and the other 43 were early DKD
patients with slightly increased albuminuria for more than 3
months. Detailed demographic clinical features were shown
including age, gender, BMI, systolic blood pressure (SBP),
diastolic blood pressure (DBP), fasting blood glucose (FBG),
kidney functional indexes (urine acid, serum creatine, eGFR,
ACR), and blood lipid levels triglyceride (TG), total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-
C), low-density lipoprotein cholesterol (LDL-C) (Table 1).
There was no difference in age, gender, BMI, blood pressure,
and lipid levels between two groups. Among the kidney
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functional indexes, only the ACR was significantly increased in
the DKD group, indicating the early stages of patients. Specific
information on each sample is listed in the supplementary table
(Table S1).

3.2. Data Quality and Lipidome Profiling Analysis.
First, we comprehensively evaluated the instrument state
through quality control samples. The mass spectrum of 8 QC
samples in both positive and negative modes showed good
instrument stability (Figure S1A). The range of lipid
abundance also reflected the consistency of QC samples and
showed no batch effect during sample detection (Figure S1B).
In addition, lipid abundance was log10-transformed for
normalization and subsequent analysis, and each sample was
in normal distribution (Figure S1C). The entire workflow of
the study is shown in Figure 1A. A total of 973 lipids were
obtained; then, univariate and correlation analyses were
performed to explore differentially expressed lipids in DKD.
Multivariate and lasso regression analyses were made to filter
the potential lipids in distinguishing early DKD from DM
patients. Based on the results of lasso regression analysis and
clinical lipid indexes, binary logistic analysis was used to further
validate the auxiliary diagnostic capability of the selected lipids
toward DKD. In total, 27 lipid classes were detected, and the
top 10 classes were shown. Phosphatidylcholine (PC),
triglyceride (TG), and sphingomyelin (SM) constituted the
most serum lipid classes in diabetic patients (Figure 1B). The
result of the OPLS-DA model indicated a clear difference in
serum lipidome between DM and DKD groups, which passed
through the 1000 permutation tests (R2Y = 85.6%, Q2 =
37.7%, p < 0.001) (Figure 1C,D).
3.3. Univariate Analysis of Differentially Expressed

lipids. According to the FDR-adjusted p values and VIP scores
based on OPLSA analysis (p < 0.05, VIP > 1), 60 differentially
expressed lipids were obtained including 29 upregulated and

Table 1. Demographic and Clinical Characteristics of the
DM and DKD Groups

indexes DM (n = 49) DKD (n = 43) p

age (y) 59.78 ± 8.62 62 ± 9.95 0.254
male (%) 28, 57.1% 29, 67.4% 0.390
BMI (kg/m2) 23.83 ± 2.34 23.69 ± 3.13 0.808
SBP (mmHg) 130.71 ± 15.27 137.26 ± 17.6 0.061
DBP (mmHg) 71.55 ± 10.54 73.5 ± 12.48 0.421
FBG (mmol/L) 7.1 ± 1.79 6.98 ± 2.33 0.783
urine acid (μmol/L) 306.59 ± 89.81 309.83 ± 77.39 0.856
serum creatine (μmol/L) 56.75 ± 14.11 60.18 ± 15.54 0.278
eGFR
(mL/min·[1.73 m2])

103.68 ± 11.94 100.91 ± 13.26 0.300

ACR (mg/mmol) 1.53 ± 0.64 9.78 ± 7.03 <0.01
triglyceride (mmol/L) 2.06 ± 1.63 1.67 ± 1.18 0.196
total cholesterol
(mmol/L)

4.29 ± 1.11 4.27 ± 1.05 0.921

HDL-C (mmol/L) 1 ± 0.25 1.06 ± 0.34 0.374
LDL-C (mmol/L) 2.39 ± 0.91 2.5 ± 0.83 0.544

Abbreviations. SBP: systolic blood pressure; DBP: diastolic blood
pressure; FBG: fasting blood glucose; PBG: postprandial blood
glucose; eGFR: estimated glomerular filtration rate; ACR: albumin/
creatinine ratio; HDL-C: high-density lipoprotein cholesterol; and
LDL-C: low-density lipoprotein cholesterol.

Figure 1. Study design and lipidome profiling. (A) Workflow of the study. (B) Identified lipid classes in total. PC: phosphatidylcholine; TG:
triglyceride; SM: sphingomyelin; PE: phosphatidylethanolamine; Cer: ceramide; LPC: Lyso-PC; PS: phosphatidylserine; DG: diglyceride; LPE:
Lyso-PE; and PI: phosphatidylinositol. (C) Orthogonal partial least-squares discriminant analysis (OPLS-DA) analysis of all the samples. (D) 1000
permutation tests of OPLS-DA analysis.
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31 downregulated lipids, suggesting the metabolic state
variation of serum lipid associated with DKD (Table S2).
The three most significantly increased lipids were PS(32:1)-H,
PS(27:0)-H and PS(30:2e)-H, while TG(16:0/8:0/18:2) +
NH4 was the most significantly decreased lipid (Figure 2A).
The VIP scores of the top 20 important lipids were listed,
which were mostly PS, PC, and SM, and PS(30:2e)-H and
PS(27:0)-H also had the highest scores (Figure 2B). The
heatmap of unsupervised clustering showed that the differential
lipids in most samples of the same group could be clustered
together, and lipids in the same class were clustered closely and
expressed consistently from the DM to DKD group. The
upregulated lipid classes were mainly PS and PC, while the
downregulated lipid mainly belonged to TG, DG, LPC, and
LPI. SM was present in both trends, reflecting more flexible
functional changes in the development of proteinuria in DKD
(Figure 2C).
3.4. Class Difference and Correlation Analysis of

Differentially Expressed Lipids. To understand the lipid
class variation between the two groups, the relative content
percentage of 15 lipid classes consisting of 60 differential lipids
was computed. It was found that downregulated classes,
especially TG and DG, accounted for the largest proportion of
the differential lipids, while the main upregulated classes such
as PS and PC were less abundant (Figure S2). Since patients in
the DKD group in our study mainly presented increased
albuminuria, Spearman correlation among 60 differential lipids
and ACR was performed. The results showed that the
upregulated lipid class, especially PS, was highly positively
correlated with ACR, while some downregulated lipid classes

such as TG and DG were also statistically correlated with ACR,
but the correlation was not as obvious as the upregulated
lipids. PS(27:0)-H had the strongest correlations with ACR
(coefficient = 0.72) (Table S3). In addition, most of the
upregulated lipids were also more strongly correlated with each
other than the downregulated lipids, further suggesting that PS,
PC, and some SM lipids may play important synergistic roles
in the occurrence of albuminuria (Figure 3A). To further filter
the differential lipids for multivariate analysis, 12 lipids with an
absolute value of correlation coefficient >0.5 were selected,
which belonged to four lipid classes including PS, PC, SM, and
phSM (Figure 3B,C). All 12 lipids were upregulated, and 7 of
12 were PS (Table S4). The relative abundance distribution of
the 12 lipid classes was presented, further indicating that most
lipids from the four classes were upregulated in the DKD
group, and PS was the most significantly changed lipid class,
although the abundance was not high in the differential lipids
(Figures 3C and S2).
3.5. Multivariate and Lasso Regression Analysis for

Potential Lipid Biomarkers. Based on the results mentioned
above, 12 lipids showed a strong correlation with albuminuria,
suggesting their potential as lipid biomarkers for early diabetic
kidney disease. Therefore, we performed multivariate analysis
through lasso regression to find the most representative
differential lipids. The whole dataset was randomly divided
into a training set (n = 64) and a testing set (n = 28) at a ratio
of 7:3, and the corresponding sample is listed in Table S1. The
12 lipids were filtered in the training set with gradually
decreased deviance, and the optimal lasso model with minimal
deviance was finally obtained when two lipids were chosen

Figure 2. Filtration of differentially expressed lipids. (A) Volcano plot of the identified lipids. (B) VIP scores of the top 20 differentially expressed
lipids from OPLS-DA analysis. (C) Unsupervised clustering heatmap of the 60 differentially expressed lipids.
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(Figure 4A,B). The discrimination degree of the regression
model constructed by the three lipids for the DKD group in
the training dataset was 0.945 (Figure 4C). The model was
further validated in the testing dataset and found to be better at
distinguishing the DKD group with the area under the curve
(AUC) of 0.917, indicating that the two lipids screened by
lasso regression analysis performed good diagnostic ability
between DM and early DKD groups (Figure 4C). The two
lipids were PS(27:0)-H and PS(30:2e)-H with a significant
increase in DKD (Figure 4D).
3.6. Binary Logistic Regression Analysis of Potential

Lipid Biomarkers. The differential lipids obtained by lasso
regression showed a good diagnostic efficacy for DKD, which
could be used as potential lipid biomarkers. Considering that
blood lipid levels are frequently measured in diabetic patients
including TG, TC, HDL-C, and LDL-C in clinical settings, we
wondered whether the two differential lipids could help these
common lipids to distinguish DKD from DM patients.
Therefore, binary logistic regression analysis was performed
on the entire data based on a combined model of clinical lipids
including TG, TC, HDL-C, and LDL-C. The single AUC value
of clinical TG, TC, HDL-C, and LDL-C was 0.472 (0.350−
0.593), 0.474 (0.352−0.595), 0.537 (0.416−0.658), and 0.558
(0.436−0.679), respectively (Figure S3). The AUC of clinical
lipids combined was 0.568 (0.448−0.688) and increased to
0.954 (0.917−0.992) after adding the two potential lipid
biomarkers (Figure 5A). In addition, the AUC of the
combined model of two lipids was 0.933 (0.882−0.983), and
each of them performed better than single clinical lipids (>0.9)
(Figure 5B), underlining that the panel of PS(27:0)-H and
PS(30:2e)-H was a good diagnostic model to improve clinical

lipids to identify early DKD from DM. To validate our
lipidomic results, we further detected PS levels in other 26
serum samples from DM (n = 13) and early DKD (n = 13)
patients using the ELISA method. The clinical information on
patients for validation is shown in Table S5. Consistent with
the lipidome results, the serum PS level was significantly
increased in the DKD group and presented the same trend in
different genders (male: n = 8; female: n = 5), further
confirming that the serum phosphatidylserine was widely
elevated in patients with diabetic kidney disease (Figure 5C).

4. DISCUSSION
DKD is one of the major microvascular complications of
diabetes, causing irreversible kidney injury in patients. As the
earliest sign, microalbuminuria is affected easily by multiple
physiological and pathological factors. Moreover, its underlying
pathophysiological mechanism is still not fully understood,
which brings limitations to improving the specificity and
sensitivity of early DKD diagnosis or prediction.12 The fast
development of high-throughput omics technology has made
the discovery of disease biomarkers much easier. In this study,
we purposed using LC-MS-based lipidomics to elucidate serum
lipid variation between DM and DKD patients and to explore
potential lipid biomarkers helpful to diagnose DKD.
A total of 92 type 2 diabetic patients were enrolled, and 43

were early DKD patients with moderately increased
albuminuria for at least 3 months. Among the clinical indexes
of renal function, only the ACR level was statistically significant
between DM and DKD groups; thus, patients in the DKD
group could be regarded in the early stage. As a result, 973

Figure 3. Correlation and class difference among differentially expressed lipids. (A) Spearman correlation analysis between ACR and differential
lipids. (B) 12 differential lipids were chosen for lasso regression analysis. (C) Lipid class difference of 12 differential lipids between the two groups.
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serum lipids were identified, belonging to 27 lipid classes.
OPLS-DA analysis showed clear isolation of two groups with
permutation tests for 1000 times with p < 0.001.
60 differentially expressed lipids were acquired, and the

clustering heatmap showed that the upregulated lipids were
mainly classified into PS, PC, and SM, while TG and DG were
the major types of downregulated lipids. The correlation
among lipid molecules from the same class was strong, and the
ACR was tightly related with the upregulated lipids, especially
for PS, indicating that the increase of PS lipids may be linked
to the occurrence of albuminuria in early DKD. Twelve
differential lipids highly correlated with the ACR belonged to
SM, PS, phSM, and PC classes despite low intensities.
To further filter representative lipids for DKD, lasso

regression analysis was utilized in the 12 lipids chosen above
and an optional model was built by PS(27:0)-H and
PS(30:2e)-H. The panel performed well in both training and
testing datasets, with the AUC of 0.945 and 0.917, respectively.
In addition, it could also improve the discrimination of clinical
lipids including TG, TC, HDL-C and LDL-C for DKD,
suggesting its auxiliary diagnosis potential.

The lipids PS(27:0)-H and PS(30:2e)-H both belong to
phosphatidylserine (PS), which is the most abundant
negatively charged glycerophospholipid in eukaryotic mem-
branes. Physiologically, PS mostly exists in the interior of the
plasma membrane and in a small amount in the exterior; it
would be externalized to the extracellular surface during cell
apoptosis induction under pathological factors such as
infection, autoimmune attack, mitochondrial function, and so
on.13−15 It has been reported that PS is more exposed to red
blood cells in hypertensive and diabetic patients than in
healthy cohorts, which may be attributed to tubulin inhibition
of flipping enzyme activity due to the possible inhibition of
flippase activity by tubulin.16 Current studies reported that PS
also externalizes to microparticles (MPs) in DKD, causing
membrane remodeling. The most possible pathological
mechanism is MPs formed under high glucose levels,
inflammation, lipotoxicity, hypoxia, and uremic toxins. The
exposed PS on MPs creates a catalytic surface for blood-
clotting factors, facilitating coagulation activation. Bergen et al.
explored the elevated expression of PS and proinflammatory
high mobility group box-1 protein (HMGB1) in microvesicles
(MVs) from patients with type 1 diabetes compared to healthy

Figure 4. Lasso regression analysis for potential lipid biomarkers. (A) Diagram of 12 lipid selection. (B) Plot of model error variation during lipid
selection. (C) Discrimination degree of the panel of PS(27:0)-H and PS(30:2e)-H for DKD in the training and testing datasets. (D) Lipid
abundance of PS(27:0)-H and PS(30:2e)-H in DM and DKD groups.
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controls.17 In addition, similar study also observed markedly
increased PS exposure on human umbilical vein endothelial
cells cultured with serum from diabetic patients with
macroalbuminuria, contributing to the vascular endothelial
cell injury and the occurrence of DKD.18 Therefore, levels of
PS+ blood cells and MPs were positively correlated with
proteinuria, which could explain our results of the significantly
elevated serum PS levels in the DKD group.
Sphingomyelin (SM) is an important sphingolipid involved

in multiple biological activities including lipoprotein uptake,
cell survival, and apoptosis.19 It was reported that serum
sphingomyelin emerged as a significant covariate of albu-
minuria in human type 1 diabetes and the strongest lipid
regressor for kidney disease.20 Another study utilized NPLC−
TOF/MS to characterize human plasma phospholipids in
T2DM and DKD patients and found that the SM level was
upregulated in T2DM and DKD, possibly due to increased
glucocorticoids toward SM metabolism.9 Recently, the same
group further demonstrated that SM was associated with the
progression to ESRD in type 1 diabetes.21 The molecular
mechanism of the aberrant sphingomyelin metabolic pathway
was also elucidated in specific renal cell types such as
podocytes or mesangial cells and found to be linked with
early diabetic kidney disease.22−24 In addition, the conversion
between sphingomyelin and ceramide, another important

sphingolipid, was reported to independently associate only
with albuminuria but not with eGFR in T2DM.25

In our results, phosphatidylcholine (PC) was another lipid
class upregulated in the DKD group, which is the richest class
of phospholipids in whole mammalian cell types and
subcellular organelles, accounting for 40−50% of total cellular
phospholipids. In all nucleated mammalian cells including
renal cells, PC is synthesized primarily by the CDP-choline
pathway or methylated PE under three sequential methylation
reactions in the liver.26 An earlier study indicated that renal
hypertrophy in diabetes is linked to stimulated renal PC
biosynthesis presumably caused by enhanced uptake of choline
and stimulation of choline kinase.27

Above all, the role of phospholipids in DKD has been
investigated in multiple metabolomics studies.28−30 Our results
of a strong correlation between the ACR and upregulated lipid
classes including PS, SM, or PC demonstrated that the increase
of serum phospholipids may be a crucial metabolic variation in
the occurrence of albuminuria in early DKD, which could be
explained by that abnormal phospholipids activate the sorbitol
pathway, oxidative stress, and activation of protein kinase C to
induce renal cell injury. Moreover, the accumulated lipids
stimulated the expression of the vascular endothelial growth
factor and transforming growth factor-β to cause proteinu-
ria.31,32 Finally, we found a panel of two significantly regulated

Figure 5. Binary logistic regression analysis of potential lipid biomarkers and clinical lipids. (A) ROC curves of combined clinical lipids (TG, TC,
HDL-C, LDL-C), combined identified lipids (PS(27:0)-H, PS(30:2e)-H), and their total combined model. (B) ROC curves of single lipid
biomarkers and the combined panel of PS(27:0)-H and PS(30:2e)-H. (C) PS level validation in other DM and DKD serum samples.
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lipids including PS(27:0)-H and PS(30:2e)-H showing good
performance to distinguish early DKD from the DM group,
which could act as potential biomarkers for the auxiliary
diagnosis.
Our study has some limitations. The patients used for

lipidomics were all enrolled from a single center. In addition, it
would be better if the detected lipids could be testified in larger
prospective cohorts, and the specific roles of phospholipids,
especially for PS, in DKD need further exploration.

5. CONCLUSIONS
In summary, we applied an untargeted lipidomics strategy
based on LC-MS to compare lipid expression between T2DM
and early DKD patients; 60 differentially expressed lipids were
obtained and filtered using lasso regression analysis. We found
that the increased phospholipids were highly correlated with
the ACR, and the combined model of two phospholipids
including PS(27:0)-H and PS(30:2e)-H showed a good
performance in DKD identification. The results indicated
that phospholipid variation may participate in the development
of albuminuria in early DKD, and further research was needed
to deeply understand the molecular mechanisms of increased
phospholipids in DKD and validate the diagnostic capability of
the biomarker panel.
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FBG:fasting blood glucose
TG:triglyceride
TC:total cholesterol
HDL-C:high-density lipoprotein cholesterol
LDL-C:low-density lipoprotein cholesterol
BMI:body Mass Index
ACR:albuminuria/creatine ratio
eGFR:estimated glomerular filtration rate
VIP:variable importance in the project
LC-MS:liquid mass spectrometry tandem chromatography
system
NPLC-TOF/MS:normal-phase liquid chromatography
coupled with time-of-flight mass spectrometry
OPLS-DA:orthogonal partial least-squares discriminant
analysis
ROC:receiver operating characteristic
AUC:area under the curve
MTBE:methyl tert-butyl ether
QC:quality control
PS:phosphatidylserine
SM:sphingomyelin
PC:phosphatidylcholine
NEG:negative mode
POS:positive mode
FC:fold change
FDR:false discovery rate-adjusted p value
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