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Abstract

With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in
the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based
medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most
promising. Given user feedback information, RF algorithms interactively learn a user’s preferences to bridge the ‘‘semantic
gap’’ between low-level computerized visual features and high-level human semantic perception and thus improve retrieval
performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the
manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force
ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-
dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages.
First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the
isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint
is also added. Second, the average distance between positive and negative examples is maximized to separate them; this
margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity
propagation technique is utilized to provide negative examples with another force that will pull them back into the
negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based
medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for
content-based medical image retrieval in terms of accuracy and stability.
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Introduction

Medical image interpretation is a process which incorporates

subjective perception and objective reasoning. Typically, radiol-

ogists obtain superficial visual features from medical images and

render diagnostic conclusions based on personal knowledge and

experience. Due to differences of perception, training and fatigue,

different conclusions about the same medical image will be drawn

by different professionals or by the same professional under

different circumstances [1,2]. The goal of content-based medical

image retrieval (CBMIR) is to enable radiologists to make better

diagnosis about a given case by retrieving similar cases from a

variety of semantically annotated medical image archives.

It is well-known that ‘‘semantic gap’’ is one of the issues faced by

content-based image retrieval (CBIR). The fact that medical

images contain varied, rich and subtle visual features [3] is an

additional challenge to the use of CBIR in radiology. Unlike from

regular image understanding, medical image diagnosis is depen-

dent on case-specific interpretation. It is common for visually

similar medical images to convey different semantic meanings,

while semantically-alike images have different visual features. Let

us take medical images obtained from IRMA medical image

dataset [4] as an example. The IRMA medical image dataset is a

widely used test bed for performance evaluation of CBMIR [5–8].

The new version of IRMA dataset [4] contains 12,677 fully

annotated gray value radiographs in a training set. These images

are categorized into 193 classes according to a mono-hierarchical

multi-axial classification standard called the IRMA coding system

[9]. The system classifies a medical image from four orthogonal

axes: imaging modality, body orientation, body region examined

and biological system examined. Figure 1 and Figure 2 illustrate

the scenario of semantic gap. As shown in Figure 1, two chest

radiographs have a similar visual appearance, but their semantic

meanings are different. The IRMA code [9] of the left image is

‘‘1123-127-500-000’’, while the IRMA code of the right image is

‘‘1123-110-500-003’’. By contrast, though their visual appearance

is different, the two mammograms shown in Figure 2 have the

same IRMA code ‘‘1124-310-610-625’’.

Relevance feedback (RF) is a promising solution to fill the

semantic gap in CBIR [10]. Under the assumption that every

user’s need is different and time varying [11,12], RF provides a

user-in-the-loop mechanism to allow a user to interact with the
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retrieval system to refine the retrieval results. The basic process of

RF in CBIR is as follows: 1) the retrieval system returns the initial

retrieval results to the user; 2) the user labels query-relevant images

and query-irrelevant images as positive feedback and negative

feedback, respectively; 3) based on the labeled feedback, the

retrieval system learns to improve the retrieval performance and

returns new results; 4) if the user is satisfied with the new results,

the RF process ends; otherwise, go to 2).

Over the past decades, many representative RF approaches

have been proposed in the context of CBIR [13–23]. A

comprehensive survey of these methods can be found in [11,24].

In [25], RF methods are categorized into four groups: subspace

selection-based schemes, support vector machine (SVM)-based

schemes, random sampling-based schemes and feature reweight-

ing-based schemes. Performance evaluations of several RF

approaches are reported in [26,27].

Many RF methods have also appeared in CBMIR in recent

years. Rahman et al. [28] utilized positive feedback to update the

optimal query point for medical image retrieval. They proposed a

RF-based dynamic similarity fusion approach for biomedical

image retrieval [29] in which RF information is utilized to

reweight features at each iteration. Xu et al. [30,31] utilized RF to

update feature weights for X-ray image retrieval. To solve the

small sample size problem, Hoi et al. [32] proposed a method

called semi-supervised SVM batch mode active learning for both

medical and regular image retrieval. In addition, Ko et al. [33]

integrated the RF scheme into CBMIR to boost retrieval

performance. Though the approaches mentioned above achieve

promising results, there is room for performance enhancement

because most of these methods do not consider the manifold

structure of low-level image features.

In this paper, we formulate a new RF method termed dual-force

ISOMAP (DFISOMAP) for CBMIR. DFISOMAP is proposed in

the context of precisely exploring the manifold structure of low-

level image visual features [34–36]. DFISOMAP operates in the

following three stages: 1) the local geometry preservation stage, 2)

the margin maximization stage, and 3) the similarity propagation

stage. First, the local geometry of the positive examples in the

high-dimensional feature space is preserved according to the

isometric feature mapping (ISOMAP) criterion [37]. To precisely

model the geometric structure of positive examples in the low-

dimensional embedding, a reconstruction error constraint accord-

ing to locally linear embedding (LLE) [38] is also added. Second,

negative examples are pushed away from positive examples by a

force driven by the maximization of average pairwise distances

between the positive and negative examples. Finally, negative

examples are pulled into the negative sample set by another force

generated by similarity propagation. We conduct experiments to

demonstrate the effectiveness of DFISOMAP. Compared to

conventional RF methods, e.g., linear discriminant analysis

(LDA) [39], locality preserving projections (LPP) [40], biased

discriminant analysis (BDA) [21], constrained similarity measure

using support vector machine (CSVM) [18], ISOMAP and

exponential locality preserving projections (ELPP) [41], DFISO-

MAP differ in the following ways: 1) DFISOMAP precisely

preserves the geometric structure of positive feedback examples,

and 2) DFISOMAP does not suffer from the undersampling

problem.

Dual-Force ISOMAP

In this section, we detail the proposed DFISOMAP. To better

present the method, Table 1 lists important notations used in this

paper.

Consider a set of medical images I~½~xx1, � � � ,~xxN �[Rh|N in low-

level feature space, and a query image ~xxq[I: Following the query-

by-example paradigm of the CBIR system, there are top n
returned images for each query, from which we obtain nz images

which are from the same semantic class as ~xxq: We term them

positive examples: ~xxq1 , � � � ,~xxqnz : Putting these examples together, we

get a positive feedback set Xz~½~xxq1 , � � � ,~xxqnz �: Meanwhile, we obtain

n{ images, which are from different semantic classes with respect

to ~xxq: We term them negative examples: ~xxq1
, � � � ,~xxqn{

: Putting these

examples together, we get a negative feedback set

X{~½~xxq1
, � � � ,~xxqn{

�: The relevance feedback set X is constructed by

putting ~xxq1 , � � � ,~xxqnz and ~xxq1
, � � � ,~xxqn{

together as

X~½~xxq1 , � � � ,~xxqnz ,~xxq1
, � � � ,~xxqn{

�: where the first nz are positive

examples and the remaining n{ are negative examples,

nzzn{~n: For convenience, we use ~xxi(1ƒiƒn) to represent

all examples, and denote X~½~xx1, � � � ,~xxn�, Xz~½~xx1, � � � ,~xxnz
�, and

X{~½~xx1znz
, � � � ,~xxn{znz

�:
DFISOMAP assumes that medical images lie on a low-

dimensional manifold Rl and are artificially embedded in a

high-dimensional ambient space, i.e., the low-level feature space

Rh: The objective of DFISOMAP is to learn a mapping function F

from Rh to Rl , based on the relevance feedback set X : The

learned mapping F should effectively separate positive examples

from negative examples. For simplicity, we assume that F is linear.

The problem of DFISOMAP is then converted to find a projection

Figure 1. Visually similar medical images contain different
semantic meanings. The chest radiographs shown in this figure have
a similar visual appearance but belong to different semantic categories.
Images are taken from IRMA medical image dataset.
doi:10.1371/journal.pone.0084096.g001

Figure 2. Semantically-alike medical images have a different
visual appearance. The mammograms shown in this figure belong to
the same semantic category, though they have a different visual
appearance. Images are taken from IRMA medical image dataset.
doi:10.1371/journal.pone.0084096.g002
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matrix U[Rh|l that maps X[Rh to Y[Rl , i.e., Y~UT X , where

l%h: Here, each column of Y is~yyi~UT~xxi:
DFISOMAP operates in three stages which containing two

forces to separate negative examples from positive examples. In

the first stage, the local geometric structure of the positive

examples is preserved according to the ISOMAP criterion [37].

To make the local geometry preservation more precise, an error

reconstruction constraint is added. This stage is termed ‘‘local

geometry preservation’’. In the second stage, a margin maximization

function is defined to maximize the gap between positive examples

and negative examples. The margin maximization function acts as

a force to push negative examples away from positive examples,

and this stage is termed ‘‘margin maximization’’. In the final stage,

termed ‘‘similarity propagation’’, the similarity propagation technique

[42] is employed to build a similarity matrix which quantifies

similarities between the intraclass examples contained in the

relevance feedback set. Based on the similarity matrix, the distance

between the intraclass examples is minimized to shrink the

distance between image pairs from the same semantic class. The

procedure acts as another force to pull negative examples away

from positive examples.

2.1. Local Geometry Preservation
ISOMAP preserves the local geometry of positive examples by

the following objective function [37]

arg min
~yyi ,1ƒiƒnz

Xnz

i~1

Xnz

j~1

(dG(~xxi,~xxj){dE(~yyi,~yyj))
2, ð1Þ

where dG(~xxi,~xxj) is the geodesic distance between image ~xxi and~xxj

in high-dimensional space Rh: And dE(~yyi,~yyj) is the corresponding

Euclidean distance between image ~xxi and ~xxj in low-dimensional

embedding Rl ,~yyi~UT~xxi, ~yyj~UT~xxj :

Let us denote ½DG�ij~dG(~xxi,~xxj), ½DE �ij~dE(~yyi,~yyj): Where DG

and DE are nz|nz matrices. According to [37], DG and DE can be

converted to inner product matrix t(DG) and t(DE), respectively.

Operator t(D) is defined as

t(D)~{
1

2
H ~DDH, ð2Þ

H~Inz{
1

nz

~eenz
~eeT

nz
, ð3Þ

½~DD�i,j~½D�
2
i,j : ð4Þ

where Inz
is an nz|nz identity matrix, ~eenz

~(1, . . . ,1)T[Rnz :
Thus, equation (1) can be transformed to

arg min
~yyi ,1ƒiƒnz

Xnz

i~1

Xnz

j~1

(dG(~xxi,~xxj){dE(~yyi,~yyj))
2

~ arg min
~yyi ,1ƒiƒnz

t(DG){t(DE)k k2

~ arg min
Yz

t(DG){Y T
zYz

�� ��2

~ arg min
Yz

tr½t(DG)t(DG)T{2Yzt(DG)Y T
zzY T

zYY T
zY �,

ð5Þ

where tr½.� stands for the trace operator, Yz~UT Xz: Assuming

that Y T
zY is a constant matrix, equation (5) can be converted to

Table 1. Important notations used in this paper.

Notation Description Notation Description

I medical image dataset N� similarity matrix

Rh high-dimensional ambient space ~xxi the ith medical image contained in X

Rl low-dimensional embedding ~yyi the ith medical image contained in Y

X relevance feedback set in Rh dG(~xxi ,~xxj ) geodesic distance between ~xxiand~xxj

Xz positive relevance feedback set dE (~yyi,~yyj ) Euclidean distance between ~yyiand~yyj

X{ negative relevance feedback set nz size of Xz

Y relevance feedback set in Rl n{ size of X{

U projection matrix, Y~UT X ~ee identity vector

I identity matrix a trade-off parameter

W reconstruction coefficient matrix in LLE b trade-off parameter

t(D) linear product matrix of D c margin factor

doi:10.1371/journal.pone.0084096.t001
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arg min
~yyi ,1ƒiƒnz

Xnz

i~1

Xnz

j~1

(dG(~xxi,~xxj){dE(~yyi,~yyj))
2

~ arg min
Yz

tr½{2Yzt(DG)Y T
z�

~ arg max
U

tr½UT Xzt(DG)X T
zU �

~ arg max
U

tr½UT AU �,

ð6Þ

where A~Xzt(DG)X T
z:

To minimize reconstruction error of the local geometry

preservation presented above, we further assume each ~yyi[Yz

can be reconstructed by its neighbors. Thus, we have

arg min
~yyi ,1ƒiƒnz

Xnz

i~1

~yyi{
X

1ƒjƒnz ,j=i

Wi,j~yyj

������
������

2

~ arg min
Yz

tr½Yz(I{W T )(I{W T )T Y T
z�

~ arg min
U

tr½UT Xz(I{W T )(I{W T )T X T
zU �

~ arg min
U

tr½UT BU �,

ð7Þ

where B~Xz(I{W T )(I{W T )T X T
z, I is an nz|nz identity

matrix. Wi,j is obtained via locally linear embedding (LLE) [38]:

Figure 3. Relevance feedback-based medical image retrieval framework.
doi:10.1371/journal.pone.0084096.g003

Figure 4. Examples of images in IRMA medical image testbed.
doi:10.1371/journal.pone.0084096.g004

Figure 5. Examples of query image.
doi:10.1371/journal.pone.0084096.g005

Dual-Force ISOMAP for Medical Image Retrieval

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e84096



Figure 6. MAP values of DFISOMAP, LPP, BDA, ELPP, LLE, LDA, ISOMAP and CSVM. Subfigures (A), (B), (C), (D) and (E) detail MAP values in
the top 10, top 20, top 30, top 40 and top 50 results, respectively.
doi:10.1371/journal.pone.0084096.g006
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Figure 7. SD values of DFISOMAP, LPP, BDA, ELPP, LLE, LDA, ISOMAP and CSVM. Subfigures (A), (B), (C), (D) and (E) detail SD values in the
top 10, top 20, top 30, top 40 and top 50 results, respectively.
doi:10.1371/journal.pone.0084096.g007
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Figure 8. AP of DFISOMAP, LPP, BDA, ELPP, LLE, LDA, ISOMAP and CSVM. Subfigures (A), (B), (C), (D) and (E) detail AP in the top 10, 20, 30,
40, and 50 results, respectively.
doi:10.1371/journal.pone.0084096.g008
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Wi,j~
arg min

Wi,j

Pnz

i~1

~xxi{
P

1ƒjƒnz,j=i

Wi,j~xxj

�����
�����

2

,
P

j Wi,j~1,i=j

0,i~j

:

8><
>: ð8Þ

Putting equation (6) and (7) together, we obtain the objective

function for local geometry preservation

arg max
U

tr½UT (A{aB)U �, ð9Þ

where a§0 is the trade-off parameter.

2.2. Margin Maximization
In the low-dimensional embedding, we expect that the average

pairwise distances between negative and positive feedback

examples will be as large as possible, and the average pairwise

distances among positive feedback examples will be as small as

possible, i.e.,

arg max
~yyk ,1ƒkƒn

1

nz|n{

Xnz

i~1

Xn{znz

j~1znz

~yyi{~yyj

�� ��2
{

h

nz|nz

Xnz

i~1

Xnz

j~1

~yyi{~yyj

�� ��2
:

ð10Þ

Where h§1 is the gap factor. Considering~yyi~UT~xxi, equation

(10) reduces to:

arg max
~yyk ,1ƒkƒn

1

nz|n{

Xnz

i~1

Xn{znz

j~1znz

~yyi{~yyj

�� ��2
{

h

nz|nz

Xnz

i~1

Xnz

j~1

~yyi{~yyj

�� ��2

~ arg max
U

1

nz|n{

X
~xxi[Xz

X
~xxj[X{

UT (~xxi{~xxj)
�� ��2

{

h

nz|nz

X
~xxi[Xz

X
~xxj[Xz

UT (~xxi{~xxj)
�� ��2

:

ð11Þ

2.3. Similarity Propagation
Equation (11) only takes into account the distances between the

positive examples and coarsely treats negative examples. To

remedy this, we need the average pairwise distance among the

intraclass examples to be rendered as small as possible.

The straightforward way to shrink the pairwise distance

between interclass examples is to minimize the average weighted

square distance between all sample pairs (~yyi,~yyj),0ƒi,jƒn, in the

low-dimensional embedding:

arg min
Y

1

n|n

Xn

i~1

Xn

j~1

~yyi{~yyj

�� ��2
N�i,j

~ arg min
U

1

n|n

Xn

i~1

Xn

j~1

UT (~xxi{~xxj)
�� ��2

N�i,j

~ arg min
U

1

n|n

X
~xxi[X

X
~xxj[X

UT (~xxi{~xxj)
�� ��2

N�i,j ,

ð12Þ

where N�[Rn|nis termed similarity matrix.

In this paper, we defineN�as

Table 2. Average precision of top ranked results for different
methods after fifth feedback.

Methods top10 top20 top30 top40 top50

DFISOMAP 0.9571 0.8676 0.7931 0.7180 0.6530

LPP 0.9270 0.6818 0.5138 0.4107 0.3435

BDA 0.9459 0.6652 0.4785 0.3726 0.3067

ELPP 0.9112 0.6120 0.4332 0.3629 0.3054

LLE 0.8766 0.5757 0.4211 0.3341 0.2782

LDA 0.8586 0.5253 0.3742 0.2937 0.2420

ISOMAP 0.8491 0.5064 0.3548 0.2763 0.2285

CSVM 0.7396 0.4269 0.2951 0.2290 0.1926

doi:10.1371/journal.pone.0084096.t002

Table 3. Average precision of top ranked results for different
methods after ninth feedback.

Methods top10 top20 top30 top40 top50

DFISOMAP 0.9660 0.8901 0.8246 0.7587 0.6965

LPP 0.9543 0.7680 0.5984 0.4855 0.4073

BDA 0.9598 0.7534 0.5694 0.4479 0.3705

ELPP 0.9251 0.7021 0.5239 0.4118 0.3444

LLE 0.9199 0.6717 0.5078 0.4059 0.3393

LDA 0.9269 0.6454 0.4678 0.3689 0.3047

ISOMAP 0.9009 0.6093 0.4406 0.3449 0.2856

CSVM 0.7438 0.4649 0.3353 0.2643 0.2214

doi:10.1371/journal.pone.0084096.t003
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Figure 9. AR of DFISOMAP, LPP, BDA, ELPP, LLE, LDA, ISOMAP and CSVM. Subfigures (A), (B), (C), (D) and (E) detail AR in the top 10, 20, 30,
40, and 50 results, respectively.
doi:10.1371/journal.pone.0084096.g009
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N�~ exp ({
~xxi{~xxj

�� ��2

2t2
),if ~xxi,~xxj[Xzor~xxi,~xxj[X{

0,otherwise

:

8<
: ð13Þ

N�quantifies the similarity relationship among positive and

negative examples, respectively. In our implementation, we settas

0.5.

Putting equation (11) and (12) together, we have

arg max
U

1

nz|n{

X
~xxi[Xz

X
~xxj[X{

UT (~xxi{~xxj)
�� ��2

{

h

nz|nz

X
~xxi[Xz

X
~xxj[Xz

UT (~xxi{~xxj)
�� ��2

{

b

n|n

X
~xxi[X

X
~xxj[X

UT (~xxi{~xxj)
�� ��2

N�i,j ,

ð14Þ

where bw0 is the trade-off parameter. Let us denote

Mi,j~

{
b

n|n
N�i,j{

h

nz|nz

, if 1ƒiƒnz,1ƒjƒnz

{
b

n|n
N�i,jz

1

nz|n{

,if
1ƒiƒnz,1znzƒjƒn{znzor

1znzƒiƒn{znz,1ƒjƒ1znz

�

{
b

n|n
N�i,j ,others

8>>>>>>><
>>>>>>>:

:ð15Þ

Then equation (14) can be rewritten as

arg max
U

1

nz|n{

X
~xxi[Xz

X
~xxj[X{

UT (~xxi{~xxj)
�� ��2

{

h

nz|nz

X
~xxi[Xz

X
~xxj[Xz

UT (~xxi{~xxj)
�� ��2

{

b

n|n

X
~xxi[X

X
~xxj[X

UT (~xxi{~xxj)
�� ��2

N�i,j

~ arg max
U

Xn

i~1

Xn

j~1

UT (~xxi{~xxj)
�� ��2

Mi,j

~ arg max
U

2tr½UT X (L{M)X T U �

~ arg max 2
U

tr½UT CU �

~ arg max
U

tr½UT CU �,

ð16Þ

where C~X (L{M)X T ,Lis a diagonal matrix, Li,i~
Pn

j~1 Mi,j :

2.4. Objective Function
Combining equation (9) with (16), we obtain the objective

function of DFISOMAP

arg max
U

tr½UT (A{aB)U �zctr½UT CU �

~ arg max
U

tr½UT (A{aBzcC)U �

~ arg max
U

tr½UT EU �,

ð17Þ

where c§0 is the margin factor, E~A{aBzcC:
Because the real matrix E is symmetric (the proof is given in

Appendix S1), U can be solved by standard eigenvalue decom-

position on E: By imposing UUT~Il on (17), U is formed by the l

eigenvectors associated with the first l largest eigenvalues.

CBMIR Framework

We utilize the framework depicted in Figure 3 for CBMIR.

Any RF feedback algorithm can be integrated into this framework.

As shown in this figure, when a query image is provided, its low-

level visual features are extracted. All images contained in the

medical image database are then sorted in ascending order

according to their distance from the query image measured by

Euclidean metric. If the user is not satisfied with the result, s/he

labels some semantically relevant images as positive feedback

examples and some semantically irrelevant images as negative

feedback examples. Based on these feedback examples, a RF

model can be trained. All images, including the positive feedback,

the negative feedback and the remaining images contained in the

medical image database, are re-sorted based on the updated

similarity metric and the top-ranked images are returned. If the

user is not satisfied with the result, the RF process is repeated.

For DFISOMAP, we learn a projection matrix U according to

equation(17). Then we use U to project all the images to the low-

dimensional embedding. In the projected embedding, each image

is re-sorted in ascending order with respect to its Euclidean

distance from the query image and the top-ranked images are

returned to the user. The RF procedure stops when the user is

satisfied with the results.

We use LBP [43], SIFT [44] and pixel intensity descriptors

respectively to extract features from the medical image. For the

Table 4. Average recall of top ranked results for different
methods after fifth feedback.

Methods top10 top20 top30 top40 top50

DFISOMAP 0.0985 0.1758 0.2351 0.2746 0.3025

LPP 0.0949 0.1349 0.1470 0.1530 0.1575

BDA 0.0975 0.1332 0.1411 0.1458 0.1497

ELPP 0.0933 0.1211 0.1252 0.1307 0.1376

LLE 0.0890 0.1099 0.1159 0.1193 0.1220

LDA 0.0869 0.1001 0.1031 0.1059 0.1083

ISOMAP 0.0862 0.0975 0.1001 0.1029 0.1052

CSVM 0.0745 0.0818 0.0828 0.0849 0.0880

doi:10.1371/journal.pone.0084096.t004
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LBP descriptor, we divide each medical image into 363 equal

regions. On each region, a 59-bin LBP histogram is built. Then we

concatenate these 59-bin LBP histograms into a 531-D vector. For

the SIFT and intensity descriptors, we follow bag of features [45]

scheme to represent the image. In detail, we first densely sample

each image with SIFT and the intensity descriptor, respectively.

We set the sampling space as 8, and the patch size as 16616. Then

we use K-means clustering to learn two 500-word dictionaries, i.e.,

SIFT and intensity visual word dictionary. Finally, for each image,

we obtain a 500-bin SIFT and intensity histogram, respectively.

We represent each image by concatenating the 531-bin LBP

histogram, 500-bin SIFT histogram and 500-bin pixel intensity

histogram into a 1531-D long vector. To get rid of redundant

information contained in the concatenated vector and reduce the

computational complexity in the next section, we normalize the

concatenated 1531-D vector into a normal distribution with zero

mean and one standard deviation. Then we use principal

component analysis (PCA) to reduce the normalized vector to a

500-D feature vector.

Performance Evaluation

In this section, we report performance of the proposed

DFISOMAP for CBMIR comparing with that of other methods,

i.e., LDA, LPP, BDA, CSVM, ISOMAP, LLE and ELPP.

This section is organized as follows. In section 4.1, we introduce

the dataset used for evaluation. Section 4.2 presents experimental

setup. In section 4.3, we compare DFISOMAP with other RF

approaches using mean average precision (MAP) and standard

deviation (SD). Section 4.4 reports performance evaluation results

of RF methods in terms of precision and recall. Finally, we explore

effects of parameters on the performance of DFISOMAP in

section 4.5.

4.1. IRMA Medical Image Dataset
The IRMA medical image dataset is widely used for CBMIR

evaluation. In our experiment, we select the first 57 categories

from the new version of IRMA dataset as test bed. The selected

images contain a total of 10,902 images. Figure 4 shows example

images from the dataset. Figure 5 illustrates three query images.

4.2. Experimental Setting
We conduct 338 independent experiments to evaluate perfor-

mance of DFISOMAP and other RF methods. In detail, we

randomly select 338 images from the IRMA data set as query

examples. These images belong to different IRMA categories. In

general, five or six images are selected from each IRMA category.

In initial retrieval, for each query sample, there are five to eight

relevant images in top30 ranked results. For each selected image, a

‘‘leave one out’’ query is conducted: Rest images contained in the

data set are ranked according to their Euclidean distance to the

query sample.

Different RF algorithms are embedded into the framework

depicted in Figure 3. The RF process is automatically performed

by the computer. A computer-simulated query for each query

image is performed on all the other 10,901 images contained in the

dataset. The computer marks all query relevant images as positive

feedback in the top 30 images and the rest as negative feedback. In

general, we have between two and eight images as positive

feedback. The procedure is close to a real-world application

scenario, because typically the user does not want to label many

feedback examples in the iteration process. We set the number of

RF iterations as 10. For the first iteration, the returned images are

ranked according to their Euclidean distance from the query

image. Starting from the second iteration, different RF algorithms

learn different projection matrices U based on positive and

negative feedback, respectively. In the projected low-dimensional

embedding, other images in the dataset are re-ranked according to

their Euclidean distance from the query image.

We parameterize the settings of all baseline methods according

to the descriptions in corresponding papers. In the experiments,

the parameters of different methods are tuned to obtain the best

results. For CSVM, we choose the Gaussian kernel

K(~xxi,~xxj)~ exp ({s ~xxi{~xxj

�� ��2
) with s~0:5: LibSVM [9] is

utilized to achieve an optimal hyperplane to separate negative

and positive examples. For ELPP, we set parameters as what is

described in [41].

4.3. Performance Evaluation Using MAP and SD
In this section, we use MAP and SD to measure the

performance of DFISOMAP and other RF algorithms. MAP is

the mean of average precision values of the 338 independent

queries. MAP value measures the retrieval precision of RF

algorithms. SD value is computed from AP values of the 338

independent queries. SD value assesses the stability of RF

algorithms.

Figure 6 and Figure 7 illustrate performance of the proposed

DFISOMAP compared to LDA, LPP, BDA, CSVM, ISOMAP,

LLE and ELPP-based RF algorithms. In Figure 6, subfigures (A),

(B), (C), (D) and (E) show MAP values for the top 10, 20, 30, 40

and 50 results, respectively. The eight curves in each of these

subfigures illustrate performance of the RF algorithms. The x-

coordinate represents number of iterations, which varies from 0 to

9. Iteration 0 represents the initial retrieval measured by Euclidean

distance in the high-dimensional feature space without RF, while

iteration 1 refers to the first round RF based on feedback examples

labeled in the 0th iteration, and similarly other iterations (from

iteration 2 to 9). The y-coordinate indicates MAP values of

different RF algorithms after each iteration. In Figure 7,

subfigures (A), (B), (C), (D) and (E) detail SD values in the top

10, 20, 30, 40 and 50 results, respectively. SD indicates stability of

the RF algorithm: the smaller the SD value, the more stable the

algorithm.

From the figure we can see that, in all experiments, and after

any number of iterations, the proposed DFISOMAP consistently

outperforms other conventional RF algorithms in terms of MAP.

The DFISOMAP also shows good stability, as demonstrated by

the SD value and tendency of the SD curve. At each level (top 10

Table 5. Average recall of top ranked results for different
methods after ninth feedback.

Methods top10 top20 top30 top40 top50

DFISOMAP 0.0993 0.1810 0.2464 0.2931 0.3253

LPP 0.0977 0.1519 0.1706 0.1778 0.1818

BDA 0.0990 0.1528 0.1682 0.1732 0.1777

ELPP 0.0949 0.1402 0.1522 0.1563 0.1621

LLE 0.0938 0.1290 0.1395 0.1437 0.1464

LDA 0.0947 0.1240 0.1290 0.1324 0.1348

ISOMAP 0.0922 0.1184 0.1242 0.1265 0.1289

CSVM 0.0748 0.0885 0.0920 0.0936 0.0963

doi:10.1371/journal.pone.0084096.t005
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to 50), it can be seen that SD values of DFISOMAP for further

iterations decrease after one iteration, and are much lower than

those of other RF algorithms.

4.4. Performance Evaluation Using Precision and Recall
In this section, we utilize average precision (AP) and average

recall (AR) to evaluate performance of DFISOMAP and other

methods. In the context of CBMIR, precision refers to percentage

of relevant medical images in top retrieved results. AP is calculated

as the averaged precision values obtained via all queries. And

recall refers to percentage of relevant medical images in all

relevant examples contained in the test bed. AR is averaged recall

values of all queries.

Figure 8, Table 2 and Table 3 show AP of different methods.

In detail, Figure 8 (A), (B), (C), (D) and (E) present AP of different

methods in the top 10, 20, 30, 40, and 50 results, respectively. As

we can see from the figure, it is evident that DFISOMAP

subsequently outperforms other algorithms. Details of the AP

values of top ranked results for different approaches after the fifth

and ninth feedback are presented in Table 2 and Table 3,

respectively. From these two tables, we can draw the conclusion

that DFISOMAP achieves more promising results compared with

other methods.

Figure 9, Table 4 and Table 5 present AR of different

algorithms. Specifically, Figure 9 (A), (B), (C), (D) and (E)

demonstrate AR of different approaches obtained in the top 10,

20, 30, 40, and 50 results, respectively. We can conclude from the

figure that DFISOMAP is more effective than the other compared

methods. Moreover, AR values of top ranked results for different

methods after the fifth and ninth feedback are given in Table 4
and Table 5, respectively. According to these two tables, we can

see that DFISOMAP is more effective than other approaches.

4.5. Effects of Parameters
(1) Effects of a. As shown in equation (17), parame-

teracontrols the contribution of B toE: WhereBstands for utilizing

LLE to preserve local geometry of positive feedback examples.

With the same experimental setup detailed above, we conduct

experiments to evaluate effects of a:In our experiments, we

increaseafrom 0 to 100 with step 10, and setcas 1400. Table 6
and Table 7 show AP and AR of DFISOMAP in top50 results,

respectively. From which we can draw the following conclusions.

1) DFISOMAP achieves best performance whenais set as 10. 2)

With the increasing of a,performance of DFISOMAP degrades. 3)

Whenais set as 0, i.e.,Bhas no contribution toE, performance of

DFISOMAP is worst. The conclusion verifies the effectiveness of

Table 6. Average precision of DFISOMAP with differentain top50 results, andaincreases from 0 to 100, with step 10.

iteration 1 2 3 4 5 6 7 8 9

a~0 0.2866 0.4261 0.5004 0.5486 0.5796 0.6043 0.6207 0.6297 0.6369

a~10 0.3124 0.4770 0.5563 0.6164 0.6530 0.6720 0.6839 0.6923 0.6965

a~20 0.3105 0.4759 0.5607 0.6182 0.6488 0.6660 0.6800 0.6870 0.6952

a~30 0.3086 0.4734 0.5617 0.6181 0.6477 0.6660 0.6769 0.6842 0.6886

a~40 0.3072 0.4691 0.5628 0.6204 0.6527 0.6696 0.6796 0.6877 0.6931

a~50 0.3063 0.4670 0.5588 0.6123 0.6442 0.6620 0.6734 0.6821 0.6869

a~60 0.3056 0.4662 0.5557 0.6064 0.6374 0.6543 0.6649 0.6717 0.6766

a~70 0.3047 0.4661 0.5568 0.6091 0.6386 0.6554 0.6689 0.6779 0.6835

a~80 0.3042 0.4639 0.5549 0.6056 0.6358 0.6540 0.6678 0.6775 0.6827

a~90 0.3033 0.4634 0.5549 0.6057 0.6352 0.6521 0.6649 0.6730 0.6782

a~100 0.3026 0.4636 0.5535 0.6073 0.6359 0.6535 0.6658 0.6734 0.6789

doi:10.1371/journal.pone.0084096.t006

Table 7. Average recall of DFISOMAP with differentain top50 results, andaincreases from 0 to 100, with step 10.

iteration 1 2 3 4 5 6 7 8 9

a~0 0.1336 0.1911 0.2244 0.2465 0.2608 0.2727 0.2802 0.2844 0.2879

a~10 0.1467 0.2167 0.2558 0.2850 0.3025 0.3123 0.3186 0.3229 0.3253

a~20 0.1459 0.2161 0.2584 0.2865 0.3018 0.3105 0.3174 0.3212 0.3258

a~30 0.1452 0.2146 0.2585 0.2857 0.3005 0.3104 0.3163 0.3200 0.3222

a~40 0.1447 0.2127 0.2584 0.2870 0.3025 0.3112 0.3167 0.3212 0.3242

a~50 0.1443 0.2121 0.2569 0.2838 0.2992 0.3078 0.3141 0.3192 0.3217

a~60 0.1440 0.2116 0.2552 0.2803 0.2952 0.3033 0.3090 0.3129 0.3155

a~70 0.1437 0.2115 0.2555 0.2819 0.2965 0.3044 0.3112 0.3158 0.3188

a~80 0.1434 0.2108 0.2550 0.2811 0.2962 0.3046 0.3111 0.3162 0.3191

a~90 0.1431 0.2104 0.2551 0.2806 0.2954 0.3032 0.3091 0.3135 0.3163

a~100 0.1428 0.2104 0.2546 0.2810 0.2954 0.3035 0.3095 0.3134 0.3162

doi:10.1371/journal.pone.0084096.t007
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applying LLE to minimize reconstruction error within positive

feedback examples.

(2) Effects of c. Equation (17) demonstrates thatccontrols the

contribution of C toE:WhereCstands for similarity propagation in

positive and negative examples.

With the same experimental setup mentioned above, we

conduct experiments to explore effects of c:In our experiments,

we increasecfrom 0 to 2000 with step 200, and set as 10. Table 8
and Table 9 detail AP and AR of DFISOMAP in top50 results,

respectively. From the table we can draw the following conclu-

sions. 1) DFISOMAP achieves best performance whencis set as

1400. 2) Whencis set as 0, i.e., there is no similarity propagation,

performance of DFISOMAP is worst. The conclusion confirms

effectiveness of similarity propagation.

Conclusion

Starting from the assumption that medical images are artificially

embedded in a high-dimensional visual feature space, we propose

the dual-force ISOMAP (DFISOMAP) to map medical images

from high-dimensional feature space to low-dimensional embed-

ding. In the framework of CBMIR, DFISOMAP precisely

preserves the geometric structure of positive feedback examples

according to the ISOMAP criterion, and effectively separates

negative examples from positive examples by utilizing two forces.

The evaluation results on a subset of the IRMA medical image

dataset show that DFISOMAP outperforms popular dimension-

ality reduction-based RF algorithms, e.g., LDA, BDA, LPP,

ISOMAP, LLE, ELPP and support vector machine-based RF

algorithms, e.g., CSVM.
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Table 8. Average precision of DFISOMAP with differentcin top50 results, andcincreases from 0 to 2000, with step 200.

iteration 1 2 3 4 5 6 7 8 9

c~0 0.2166 0.2867 0.3137 0.3414 0.3562 0.3704 0.3800 0.3862 0.3895

c~200 0.3053 0.4671 0.5520 0.6041 0.6354 0.6556 0.6681 0.6755 0.6800

c~400 0.3080 0.4694 0.5561 0.6117 0.6444 0.6631 0.6733 0.6804 0.6853

c~600 0.3096 0.4720 0.5569 0.6120 0.6470 0.6633 0.6754 0.6834 0.6879

c~800 0.3111 0.4741 0.5578 0.6118 0.6466 0.6645 0.6778 0.6855 0.6920

c~1000 0.3114 0.4781 0.5563 0.6156 0.6508 0.6683 0.6818 0.6897 0.6953

c~1200 0.3118 0.4779 0.5566 0.6128 0.6470 0.6652 0.6785 0.6865 0.6923

c~1400 0.3124 0.4770 0.5563 0.6164 0.6530 0.6720 0.6839 0.6923 0.6965

c~1600 0.3130 0.4779 0.5548 0.6123 0.6482 0.6665 0.6778 0.6859 0.6914

c~1800 0.3132 0.4775 0.5538 0.6120 0.6476 0.6672 0.6790 0.6876 0.6932

c~2000 0.3137 0.4776 0.5546 0.6083 0.6428 0.6618 0.6749 0.6810 0.6859

doi:10.1371/journal.pone.0084096.t008

Table 9. Average recall of DFISOMAP with differentcin top50 results, andcincreases from 0 to 2000, with step 200.

iteration 1 2 3 4 5 6 7 8 9

c~0 0.1060 0.1337 0.1448 0.1557 0.1618 0.1673 0.1705 0.1728 0.1741

c~200 0.1439 0.2122 0.2530 0.2787 0.2941 0.3036 0.3098 0.3139 0.3166

c~400 0.1449 0.2136 0.2549 0.2822 0.2979 0.3075 0.3130 0.3171 0.3199

c~600 0.1456 0.2144 0.2563 0.2836 0.3008 0.3091 0.3153 0.3196 0.3220

c~800 0.1461 0.2153 0.2565 0.2831 0.2994 0.3085 0.3157 0.3201 0.3237

c~1000 0.1463 0.2168 0.2555 0.2848 0.3015 0.3102 0.3173 0.3217 0.3248

c~1200 0.1464 0.2169 0.2560 0.2835 0.3005 0.3098 0.3169 0.3209 0.3242

c~1400 0.1467 0.2167 0.2558 0.2850 0.3025 0.3123 0.3186 0.3229 0.3253

c~1600 0.1469 0.2172 0.2556 0.2837 0.3011 0.3100 0.3156 0.3196 0.3227

c~1800 0.1470 0.2170 0.2551 0.2834 0.3008 0.3106 0.3167 0.3214 0.3247

c~2000 0.1472 0.2171 0.2554 0.2818 0.2988 0.3084 0.3152 0.3186 0.3213

doi:10.1371/journal.pone.0084096.t009
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