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Inflammatory Bowel Diseases (IBDs) are characterized by chronic intestinal inflammation and fibrosis, the latter being the
predominant denominator for long-term complications. Epithelial and mesenchymal 2D cultures are highly utilized in vitro
models for the preclinical evaluation of anti-inflammatory and antifibrotic therapies. More recently, human intestinal organoids
(HIOs), a new 3D in vitro model derived from pluripotent stem cells, have the advantage to closely resemble the architecture of the
intestinal mucosa. However, the appropriate timing for the study of inflammatory and fibrotic responses, during HIO
development, has not been adequately investigated. We developed HIOs from the human embryonic stem cell line, H1, and
examined the expression of mesenchymal markers during their maturation process. We also investigated the effect of inflammatory
stimuli on the expression of fibrotic and immunological mediators. Serial evaluation of the expression of mesenchymal and
extracellular matrix (ECM) markers revealed that HIOs have an adequately developed mesenchymal component, which gradually
declines through culture passages. Specifically, CD90, collagen type I, collagen type III, and fibronectin were highly expressed in
early passages but gradually diminished in late passages. The proinflammatory cytokines IL-la and TNF-« induced the mRNA
expression of fibronectin, collagen types I and III, tissue factor (TF), and alpha-smooth muscle actin (a-SMA) primarily in early
passages. Similarly, HIOs elicited strong mRNA and protein mesenchymal (CXCL10) and epithelial (CXCL1, CCL2, CXCL8, and
CCL20) chemokine responses in early but not late passages. In contrast, the epithelial tight junction components, CLDN1 and
JAMA, responded to inflammatory stimulation independently of the culture passage. Our findings indicate that this HIO model
contains a functional mesenchymal component, during early passages, and underline the significance of the mesenchymal cells’
fitness in inflammatory and fibrotic responses. Therefore, we propose that this model is suitable for the study of epithelial-
mesenchymal interactions in early passages when the mesenchymal component is active.

1. Introduction [1]. Mucosal and systemic immunology has been the main-

stream of IBD research for many decades resulting in the suc-
Inflammatory Bowel Diseases (IBDs), a group of diseases that ~ cessful development of many biologics for the treatment of
includes Crohn’s disease and ulcerative colitis, are character-  this debilitating group of diseases. However, epithelial and
ized by chronic intestinal inflammation of unknown etiology ~ stromal biology has been largely overlooked. Recent studies
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have indicated that the study of the intestinal epithelium and
mesenchyme may provide keys in deciphering the heteroge-
neity that characterizes patient phenotypes and their
responses to biologics [2-4]. Furthermore, due to the fibrotic
complications that eventually develop in more difficult to
treat patients and the lack of therapeutic approaches to
reverse postinflammatory fibrosis, the biology of the mucosal
stroma has recently been brought into focus [4-6].

Significant progress has recently been achieved in under-
standing intestinal stromal cell biology by using 2D culture
systems of primary mesenchymal cells isolated from human
diseased and normal guts and intestinal organoids. During
embryonic development and homeostasis, stromal cells have
been shown to control epithelial proliferation and restitution
through the production of activators and inhibitors of the
Wnt signaling pathway [7]. During IBD-related chronic
inflammation, we among others have shown that the intesti-
nal stroma is not an innocent bystander, as previously
thought [8-10]. Mesenchymal cells exhibit a variety of cyto-
kine receptors and orchestrate extracellular matrix (ECM)
production, accumulation, and eventually fibrosis in
response to various inflammatory stimuli [8-10].

The development of human intestinal organoids
(HIOs) in 2011 has revolutionized mucosal research as
a novel in vitro system that enabled to study epithelial
and mesenchymal cells as an interacting unit [11]. HIOs
are 3D formations developed by pluripotent stem cells,
through a process that simulates organogenesis. They
have a similar architecture with the intestinal tissue,
where the lumen is surrounded by epithelial cells forming
villi and crypts, which are further supported by an outer
layer of mesenchymal cells. Therefore, HIOs are able to
approach intestinal inflammation and fibrosis in a more
spherical way than classic 2D in vitro models, as they
consist of many different interacting epithelial and mes-
enchymal cell types. HIOs still lack vascular, neurological,
or immune structures, in comparison to animal models of
IBD, but do provide a more analytical tool to separately
study mesenchymal and epithelial biology from immune
responses [12].

Despite their growing use for the study of monogenic
diseases, intestinal organoids have rarely been used to
model polygenic multifactorial diseases such as IBD.
Recent studies have shown that as organoids are formed
and later cultured, they continue to mature and change
throughout their culture, mimicking the process of embry-
onic to fetal and adult development [13-15]. Therefore,
knowing the appropriate time during their culture period
to study inflammatory and fibrotic responses that mimic
closely the IBD cascade is vital for these to be used as
an effective in vitro disease model.

In this study, we successfully developed and character-
ized HIOs from the human embryonic stem cell line, H1.
We examined the expression of fibrotic and mesenchymal
factors during their maturation process, as well as the
effect of the proinflammatory cytokines, IL-1a and TNF-
a, on the expression of fibrotic and inflammatory media-
tors in HIOs during different stages of their maturation
period.
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2. Materials and Methods

2.1. HI Cells. H1 cells are human pluripotent embryonic stem
cells, originally derived and isolated from a male human blas-
tocyst in 1998 [16]. They were purchased from WiCell (Mad-
ison, Wisconsin, USA) and set to culture according to WiCell
Feeder Independent Pluripotent Stem Cell Protocols. Briefly,
H1 cells were seeded onto Matrigel-coated 6-well plates
(Matrigel™; Corning, New York, USA), which contained
the mTeSR™1 medium (StemCell Technologies, Vancouver,
Canada), and cultured in 5% CO, at 37°C. H1 were fed daily
and passaged every 5 days in a ratio of 1:6 using Dispase
(MilliporeSigma, Burlington, Massachusetts, USA). Before
passaging, H1 cells were first observed for any signs of differ-
entiation, which can be visible when observed under a micro-
scope, as differentiated cells significantly differ in
morphology from undifferentiated embryonic stem cell colo-
nies. According to the manufacturer’s instructions, when the
differentiation rate was above 5%, we removed the differenti-
ated cells with a micropipette tip. H1 cells were maintained in
culture and were regularly screened for the expression of plu-
ripotent embryonic markers using immunofluorescence.

2.2. Development and Culture of HIOs. HIOs were developed
from H1 embryonic stem cells using the STEMdift™ Intesti-
nal Organoid Kit (StemCell Technologies, Vancouver, Can-
ada), according to the manufacturer’s instructions. Briefly,
H1 cells were seeded onto Matrigel-coated 24-well plates
and cultured in the mTeSR™1 medium (StemCell Technolo-
gies, Vancouver, Canada) until they reached the appropriate
confluency. H1 cells were then cultured in the Endoderm
Basal medium containing Activin A and fed daily until
day 3, when the Definitive Endoderm (DE) was created.
DE was subsequently cultured in the Endoderm Basal
medium containing Wnt3A and fibroblast growth factor 4
(FGF4) for another 5-6 days, until Mid-/Hindgut (MH)
spheroids were released into the supernatant. MH spher-
oids were then collected, counted, seeded into domes made
of Matrigel (Corning, New York, USA), and cultured in the
Intestinal Organoid Basal (IOB) medium containing epider-
mal growth factor (EGF) and Noggin, until HIOs were
finally formed. HIOs were continuously cultured in the
EGF- and Noggin-supplemented IOB medium, fed every
3-4 days, and passaged every 10 days at a ratio of 1:3.
HIOs and their intermediate developmental stages were
characterized using immunofluorescence.

HIOs were cultured up to passage 13, and their intestinal
structure proved stable until that passage (Supplementary
Figure 1A). In addition, we semiquantitatively calculated
the percentage of the organoid growth rate by measuring
the diameter of three random organoids on day 0 and day
10 for each passage, which provides a semiquantitative
estimate of their growth rate. As shown in Supplementary
Figure 1B, the diameter increases by 50.8 + 14.7% from day
0 to day 10 in passage 1, by 76.8 + 11.4% in passage 6, and
by 106 + 5.8% in passage 13, suggesting that HIOs continue
to mature their luminal structures even in late passages. In
addition, we also performed double staining for the
expression of Ki67, a well-known proliferation marker, and
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EpCam, an epithelial marker, in late-passage organoids and
we found Ki67-positive expression in epithelial cells. This
finding suggests that even in late passages, organoids
continue to grow, and this growth is mainly attributed to the
active proliferation state of epithelial cells. Supplementary
Figure 1C is showing a late-passage organoid expressing
Ki67 in its epithelial cells.

HIOs were cultured, and prior to cytokine stimulation,
they were left with no growth factors for 15h. Next, HIOs
were stimulated with 5ng/ml IL-1a and 50 ng/ml TNF-a
for 12 h, and at the end of this incubation period, HIOs were
collected for RNA extraction and mRNA expression analyses
through qRT-PCR. In addition, we semiquantitatively calcu-
lated the percentage of organoid growth change by measur-
ing the diameter of three random organoids in each time
period and for each condition (control and 2C), in passages
2,6, and 12.

2.3. Characterization of H1 Cells and HIO Development Using
Immunofluorescence. H1 cells and HIO development were
characterized using immunofluorescence, as previously
described [9]. Briefly, samples were first fixed in 4% ice-
cold paraformaldehyde (PFA; Sigma-Aldrich, St. Louis,
Missouri, USA) for 40 minutes, then washed in phosphate-
buffered saline (PBS; Sigma-Aldrich, St. Louis, Missouri,
USA), and treated with 0.1% Triton X-100 (Sigma-Aldrich,
St. Louis, Missouri, USA) for 15 minutes, in order to achieve
membrane permeability. Samples were then treated with the
blocking solution containing 5% bovine serum albumin
(BSA; Sigma-Aldrich, St. Louis, Missouri, USA) for 1 hour
and later incubated overnight at 4°C with primary antibodies
in 0.5% BSA (Sigma-Aldrich, St. Louis, Missouri, USA). The
next day, samples were washed and incubated with second-
ary fluorochrome-conjugated antibodies in 0.5% BSA
(Sigma-Aldrich, St. Louis, Missouri, USA) for 2 hours.
Finally, nuclei were stained either with DAPI (Sigma-
Aldrich, St. Louis, Missouri, USA) and observed under a fluo-
rescent microscope (Leica DM2000; Leica Microsystems
GmbH, Germany) or with DRAQ5 (Novus Biologicals,
Abingdon, UK) and observed in 3 dimensions under a light
sheet fluorescent microscope (UltraMicroscope II; LaVision
BioTec, Bielefeld, Germany).

In addition, we semiquantitatively calculated the percent-
age of vimentin-positive areas in passages 1, 5, and 10. In
each passage, we measured the vimentin-positive area and
compared it with the total organoid area, providing us with
a semiquantitative estimate of the vimentin-positive area.

2.4. Light Sheet Microscope Setup and Imaging. The UltraMi-
croscope II (Bioimaging Facility, Department of Molecular
Biology and Genetics, Democritus University of Thrace) is
equipped with an Andor Neo 5.5 sCMOS camera (Andor
Technology, Belfast, UK), with a pixel pitch of 6.5um, a
Nikon 16x (0.8 NA) water immersion objective, and a zoom
body of 1.8x magnification, for a total of 28.8x magnification.
The illumination is achieved by three intersecting light sheets
coming from the right side, achieving a uniform illumination
across the sample and reducing shadows and stripe artifacts.
The detection axis is perpendicular and above the illumina-

tion path. The illumination NA was set to 0.156 creating a
light sheet with a thickness of 2w, =4.53 ym (as reported
from the software; InSpector Pro). Excitation and detection
were performed using a 488 nm, 561 nm, or 640 nm laser
and 525/50 nm, 620/60 nm, and 680/30 nm filters, respec-
tively. z-stacks were acquired with a 1 or 2 ym step.

Fixed and stained HIOs were enclosed in the top surface
of 1% low-melting agarose (in PBS) cubes and were
immersed inside the imaging cuvette filled with distilled
water. This technique ensures that the HIO structure remains
undamaged and unpressurized, and therefore, the images
taken depict their actual form. Image analysis, 3D rendering,
and slice selection were performed in ImageJ (National Insti-
tutes of Health, USA).

2.5. Total RNA Extraction and Purification. Total RNA from
HIOs was extracted and purified from genomic traces
using the NucleoSpin RNA Plus XS kit (MACHEREY-
NAGEL, Diiren, Germany) according to the manufac-
turer’s instructions. Briefly, HIOs were first lysed and
homogenized, and DNA was removed by passing the
lysate through the DNA removal columns. The purified
lysate was then loaded onto the RNA extraction columns
and washed 3 times, and finally, total RNA was eluted
using RNase-free H,0O. The concentration and purity of
total RNA were measured using a Q5000 UV-Vis spectro-
photometer (Quawell, San Jose, California, USA).

2.6. cDNA Synthesis and Quantitative Real-Time PCR. cDNA
synthesis was performed using the PrimeScript RT Reagent
Kit (Perfect Real Time) (TaKaRa, Kusatsu, Shiga, Japan)
according to the manufacturer’s instructions. In brief,
250ng of total RNA was mixed with the 5X PrimeScript
Buffer, reverse transcriptase, oligo dT primers, random hex-
amers, and RNase-free H,O and incubated at 37°C for 15
minutes. Reverse transcriptase was then inactivated by heat
treatment. The gene-specific mRNA expression was quanti-
fied by quantitative real-time- (QRT-) PCR using the KAPA
SYBR FAST gqPCR Kit (Kapa Biosystems Ltd., Boston, MA,
USA), as previously described [9]. Briefly, 25ng of cDNA
was mixed with the gene-specific primers, described in
Table 1, and the KAPA SYBR FAST qPCR Master Mix, and
a two-step amplification protocol was performed for almost
all studied genes, except for tissue factor (TF), for which the
annealing temperature was set at 52°C, and a three-step pro-
tocol was performed. All amplification reactions took place at
a SaCycler-96 Real Time PCR system (Sacace Biotechnol-
ogies, Como, Italy), and the gene expression of each studied
gene was normalized against GAPDH gene expression in
the same sample using the 27*““" method. Regarding the
results of the mesenchymal marker and ECM component
expression through serial passages, passage 1 expression
levels were set as a reference point and expression levels in
later passages were compared to that.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). Human
DuoSet® ELISAs (R&D Systems, Minneapolis, Minnesota,
USA) were used to estimate the protein concentrations of
CCL2, CXCL10, CXCL1, CXCL8, CXCL10, and CXCLI1
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TAaBLE 1: Gene-specific primers used in real-time PCR.

Gene Forward Reverse Reference

GAPDH GACATCAAGAAGGTGGTGAA TGTCATACCAGGAAATGAGC

Collagen type I CCCTGGAAAGAATGGAGATGAT ACTGAAACCTCTGTGTCCCTTCA

Collagen type III GCTCTGCTTCATCCCACTATTA TGCGAGTCCTCCTACTGCTAC ]

Fibronectin CCAGTCCACAGCTATTCCTG ACAACCACGGATGAGCTG

a-SMA AATGCAGAAGGAGATCACGG TCCTGTTTGCTGATCCACATC

TF TTCAGTGTTCAAGCAGTGATTCC ATGATGACCACAAATACCACAGC

CD90 CGCTCTCCTGCTAACAGTCTT CAGGCTGAACTCGTACTGGA [41]

CCL2 AGGAAGATCTCAGTGCAGAGG AGTCTTCGGAGTTTGGGTTTG [42]

CCL20 GCTGCTTTGATGTCAGTGC GCAGTCAAAGTTGCTTGCTTC [43]

CXCL1 GCCCAAACCGAAGTCATAGCC ATCCGCCAGCCTCTATCACA [44]

CXCLS8 TGGGTGCAGAGGGTTGTG CAGACTAGGGTTGCCAGATTTA (42]

CXCL10 CCTGCTTCAAATATTTCCCT CCTTCCTGTATGTGTTTGGA

CXCL11 GACGCTGTCTTTGCATAGGC GGATTTAGGCATCGTTGTCCTTT [45]

CLDN1 CGATGCTTTCTGTGGCTAA AGTGGCTGACTTTCCTTGT

OCLN CCTATAAATCCACGCCGGTTC TCAAAGTTACCACCGCTGCTG [46]

Z01 AACAGCCCTACCCATCTCG CGTGGAAAGTACCCTCGTT

JAMA CGAGAGGAAACTGTTGTGCC AACGAGTCTGGTGGTGTCTC [47]

chemokines in HIO supernatants, according to the manufac-
turer’s instructions. Briefly, flat 96-well plates were coated
overnight with a capture antibody for each chemokine, and
the following day, plates were incubated with the recom-
mended blocking buffer for 2h. Next, duplicates of each
supernatant and known concentrations of chemokine sam-
ples were added in wells and incubated for 2h, and then, a
biotinylated detection antibody for each chemokine was
added for another 2h. Streptavidin-horseradish peroxidase
was then added for 20 min, and the following addition of tet-
ramethylbenzidine with H,O, produced different optical
densities (OD) of color which were measured at 450 nm on
a microplate reader (DIAReader ELX800; DIALAB, Wr.
Neudorf, Austria). The chemokine concentration was calcu-
lated using a linear standard curve according to the manufac-
turer’s instructions.

2.8. Statistics. Results are presented as means with the stan-
dard error of the mean (SEM). Comparison of values among
sample groups was performed with ordinary one-way
ANOVA. Statistical significance was set at p < 0.05.

3. Results

3.1. Development and Characterization of HIOs. HIOs were
developed from the embryonic stem cell line H1, as described
in Materials and Methods. Prior to protocol initiation, the H1
pluripotent stem cell line was screened for embryonic stem
cell marker expression, and it was found positive for Nanog,
SOX2, and OCT4 (Supplementary Figure 1A). All major
developmental stages of HIOs were assessed by relevant
markers. The Definitive Endoderm (DE) was found positive
for SOX17 and FOXA2, two transcription factors required
for the development of the definitive gut endoderm and
the intestinal tissue [17], respectively (Supplementary

Figure 1B). Mid-/Hindgut (MH) spheroids were expressing
CDX2, an intestinal epithelial marker [18], and vimentin
and E-cadherin, mesenchymal and epithelial markers [6, 19],
respectively (Supplementary Figure 1C), suggesting that the
HIO formation were almost complete.

After 9 days, HIOs were formed (Figure 1(a)) and
were morphologically studied by immunofluorescence in
order to confirm the presence of intestinal-specific cellular
components. Developed organoids, as seen in Figures 1(b)
and 1(c), included both the mesenchymal and epithelial
cells, as indicated by positive immunoreactivity to Desmin
and E-cadherin, respectively. The epithelium of HIOs
consisted of intestinal CDX2-expressing epithelial cells
(Figure 1(d)), forming a compact epithelial barrier, as they
intensively expressed the cell adhesion molecules E-
cadherin and EpCam (Figures 1(c) and 1(d)), which was
further supported by abundant cytokeratin expression
(Figure 1(d)). In addition, HIOs contained various types
of epithelial cells, such as goblet (stained positive for
MUC2, Figure 1(e)) and enteroendocrine cells (stained
positive for Chromogranin A, Figure 1(e)), and formed
villi as shown by their positivity for Villin (Figure 1(e)).
Finally, SOX9 and KLF5 apparent staining revealed the
concomitant presence of intestinal epithelial stem cell
niches, possibly supporting the renewal of specialized epi-
thelial cell subtypes.

3.2. The Mesenchymal Component Is Gradually Reduced
upon Continuous Passaging. Previous studies have shown
that organoids continue to mature and change throughout
their culture. Since the presence of mesenchymal lineage cells
is an essential difference in the cell components of embryonic
stem cell-derived and adult stem cell-derived organoids, we
decided to evaluate the persistence and functional fitness of
mesenchymal cells during continuous passaging.



Stem Cells International

hESCs

(e)

100 |

(b)
(d)
. mmam

..
.-
()

F1GURrk 1: Development and characterization of HIOs. (a) Developmental stages of HIO formation. (b, ¢) HIOs stained against Desmin and E-
cadherin, indicating fibroblast and epithelial cell populations, respectively. (d) HIOs stained positive for EpCam, cytokeratin, and CDX2,
indicating intestinal epithelial cells. (e) MUC2-positive goblet cells and Chromogranin A-positive endocrine epithelial cells found in HIOs,
surrounded by Villin-expressing epithelial cells. (f) HIOs stained positive for either KLF5 or SOX9, indicating the existence of intestinal
epithelial stem cell niches that support the already-differentiated E-cadherin- and Villin-expressing epithelial cells. Representative 40x
snapshots are shown in (a) and 28.8x immunofluorescence images in (b-f). (b-f) Images were obtained using a light sheet
microscope. (c-f) Images are selected z-slices from the HIO total volume. (b) A 3D volume of an organoid.

We therefore studied changes in the expression of vimen-
tin and E-cadherin, two characteristic markers for mesenchy-
mal and epithelial cells, respectively. Once fully developed,
HIOs were maintained in culture and passaged every 10 days.
At the end of each passage and prior to subculturing, a por-
tion of HIOs was collected and stained using immunofluores-
cence. As seen in Figure 2, vimentin expression was affluent

during the early passages but was later decreased. Indeed,
semiquantitative calculation of the vimentin staining area
in each passage revealed 68 + 5.8% positivity in passage 1,
36.6+7.9% in passage 5, and 14.6 £3.2% in passage 10
(Figure 2(b)), suggesting that the mesenchymal component
was gradually reduced towards late passages. We further
examined the mRNA expression of various fibrotic and
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FI1GURE 2: Mesenchymal evolution along HIO passaging. HIOs stained for the epithelial marker, E-cadherin, and the mesenchymal marker,
vimentin, in three different passages (a). Vimentin-positive staining area is shown to be reduced through subsequent passages, suggesting that
the mesenchymal component is gradually decreased (b). Representative 40x immunofluorescence snapshots are shown.

mesenchymal factors, as organoids progressed through the
passages. The mRNA levels of CD90, fibronectin, and colla-
gen types I and IIT were gradually reduced after passage 2
(CD90: 0.08-fold, +0.01, and p<0.0001; fibronectin:
0.029-fold, +0.003, and p < 0.0001; collagen type I: 0.0082-
fold, £0.0009, and p < 0.0001; and collagen type III: 0.0042-fold,
+0.0002, and p < 0.0001, Figures 3(a)-3(d)), with the exception
of a-SMA, which showed more stable expression pattern during
passages (Figure 3(e)).

3.3. The Effect of Proinflammatory Cytokines on the
Expression of Fibrotic Mediators. We proceeded to study
mesenchymal responses of HIOs to inflammatory stimuli in
order to evaluate their suitability for modeling postinflam-
matory intestinal fibrosis. The effect of IL-1w and TNF-« on
the expression of mesenchymal activation markers, ECM
components, and profibrotic mediators was evaluated in pas-
sages 2, 4, 6, 8, 10, and 12. Prior to the experiments with IL-
la and TNF-a, we examined the expression of their recep-
tors, IL1R1, IL1R2, and TNFRSF1A, and found that HIOs
had a basal expression of all the receptors in all passages (data
not shown). In order to exclude the possibility that IL-1a and
TNF-« stimulation could affect the HIO structure and
growth rate, we semiquantitatively calculated the percentage
of organoid growth in passages 2, 6, and 12. Supplementary
Figure 3 depicts the controls or 2C-treated HIOs before and
after all incubation periods, along with the percentage of
diameter changes during these incubations, in three
representative passages (2, 6, and 12). As shown in
Supplementary Figure 3B, D, and E, the percentages of
diameter changes are negligible among the passages and
conditions. In passage 2, the diameter changes in controls
are 2.2+ 1.4% at 12h, 5.5+ 0.4% at 24h, and 8.2+ 1.7% at
48h and in 2C 1.8+ 0.8% at 12h, 1.8 £0.5% at 24h, and
8.1+1.7% at 48h. In passage 6, the diameter changes in

controls are 4.8+1.1% at 12h, 3.1+1.1% at 24h, and
4.5+0.6% at 48h and in 2C 1.7+ 0.8% at 12h, 6.4 £1.3%
at 24h, and 3.3+ 0.6% at 48h. In passage 12, the diameter
changes in controls are 4.2+1.9% at 12h, 2.5+ 1.3% at
24h, and 5+0.9% at 48h and in 2C 3.3+0.7% at 12h,
3.6+0.6% at 24h, and 6.3+ 1.1% at 48h.

We observed a differential response of HIOs to the
inflammatory stimuli depending on the passage. Specifically,
IL-1a and TNF-« induced a statistically significant upregula-
tion of ECM components such as collagen types I and III and
fibronectin in early passages with maximum responses
observed in passage 4 (fibronectin: 2.69-fold, +0.87, and
P <0.0001; collagen type I: 1.52-fold, +0.17, and p < 0.001;
and collagen type III: 3.39-fold, +0.32, and p <0.0001,
Figures 4(a)-4(c)). Likewise, maximum responses of the pro-
fibrotic mediator TF and the mesenchymal activation marker
a-SMA also occurred in early passages and specifically in
passage 4 (TF: 5.04-fold, £0.59, and p <0.0001; a-SMA:
1.95-fold, +0.12, and p <0.0001, Figures 4(d) and 4(e)).
Interestingly, fibrotic mesenchymal responses to proinflam-
matory cytokines were gradually reduced in later passages
and eventually diminished in passage 12 (Figure 4).

3.4. The Effect of Proinflammatory Cytokines on the
Expression of Mesenchymal and Epithelial Inflammatory
Responses. We next proceeded in investigating the effect of
the proinflammatory cytokines, IL-1o and TNF-«, on the
mesenchymal and epithelial inflammatory responses of
HIOs.

Similar to fibrotic mesenchymal responses, the chemo-
kine responses of the HIO mesenchyme to inflammatory
stimuli were strong during early passages but diminished in
later passages. Specifically, IL-1a and TNF-a stimulation
induced a statistically significant upregulation of CXCL10
and CXCL11 mRNA levels in passage 2 (CXCL10: 235.3-fold,
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F1GURE 3: Expression of mesenchymal markers and ECM components during passaging. The mRNA levels of CD90, collagen types I and III,
and fibronectin were gradually reduced after passage 2 (a-d), with the exception of a-SMA, which showed a tendency to increase during
passages 4-6, but later decreased to basal levels (e). ND: nondetectable. All experiments were performed in triplicate. The gene expression

of each studied gene was normalized against GAPDH gene expression in the same sample using the 2°

A4Ct method. Passage 1 expression

levels were set as a reference point, and expression levels in later passages were compared to that. Data are presented as the mean +

standard error of the mean (SEM).

+20.73, and p <0.0001; CXCLI11: 14.53-fold, +1.28, and
p <0.0001) but had no effect later on (Figures 5(a) and 5(b)).

As for the epithelial inflammatory responses of HIOs, we
chose to study the effect of IL-1a and TNF-« on the expres-
sion of chemokines that are mainly produced by epithelial
cells and on tight junctions, which characterize the epithelial
component. Again, the effect of IL-1ae and TNF-« was differ-
ent depending on the passage.

Regarding the chemokine expression, in passage 2, IL-1«
and TNF-« stimulation led to a statistically significant upreg-
ulation of all studied chemokines (CXCL1: 22.30-fold, +1.30,
and p<0.0001; CXCL8: 13.30-fold, +1.76, and p < 0.001;
CCL2: 52.29-fold, +2.59, and p < 0.0001; and CCL20: 23.85-
fold, +2.43, and p < 0.0001, Figures 5(c)-5(f)). In passage 4,
the effect of IL-1a and TNF-a was even more intense for
CXCLS, as it was even greater upregulated (51.98-fold,
+3.40, and p < 0.0001, Figure 5(d)), remained the same for
CCL2 (48.91-fold, +5.28, and p < 0.0001, Figure 5(e)), and
was weaker for CXCL1 and CCL20, as their mRNA
expression, although upregulated when compared to unstimu-
lated organoids, was lower than passage 2 (CXCL1: 3.89-fold,
+0.22, and p <0.0001; CCL20: 8.12-fold, +0.87, and p <
0.0001, Figures 5(c) and 5(e)). In passage 6, only CXCL8

remained upregulated in response to proinflammatory cyto-
kines, although its expression was significantly lower than that
of passage 4 (5.76-fold, +0.33, and p < 0.05, Figure 5(d)). As
for passages 8, 10, and 12, none of the studied chemokines
was increased in response to IL-1ae and TNF-a.

The same pattern was observed in the protein level for
chemokines CXCL10, CXCL1, CXCL8, CCL2, and CCL20
(Figure 6). Specifically, in passage 2, stimulation with IL-1a
and TNF-«a for 24 and 48 hours greatly upregulated CXCL10
(24h: 1779 £ 234 pg/ml; 48h: 3134 + 305.3 pg/ml; and p <
0.0001; Figure 6(a)), CXCL1 (24 h: 5214 + 113.9 pg/ml; 48 h:
10618 +296.2 pg/ml; and p <0.0001; Figure 6(b)), CXCL8
(24h: 312.5+10.89 pg/ml; 48 h: 571.7 + 33.9 pg/ml; and p <
0.0001; Figure 6(c)), CCL2 (24 h: 3458 + 237.2 pg/ml; 48 h:
3965+ 15.54pg/ml; and p<0.0001; Figure 6(d)), and
CCL20 (24h: 1870 + 107.7 pg/ml; 48 h: 6669 + 361.7 pg/ml;
and p < 0.0001; Figure 6(e)). In passage 4, IL-1a and TNF-«
stimulation also upregulated, but in a less extent, the chemo-
kines CXCL1 (24 h: 356.3 + 26.1 pg/ml; 48h: 686.9 + 30.21
pg/ml; and p < 0.0001; Figure 6(b)), CXCL8 (24h: 103.4 +
2.1pg/ml; 48h: 125+11.3pg/ml; and p<0.0001;
Figure 6(c)), CCL2 (24h: 1848 + 135.9 pg/ml; 48h: 2396 +
261.4pg/ml; and p < 0.0001; Figure 6(d)), and CCL20 (24 h:
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1331 + 129 pg/ml; 48 h: 2501 + 317.3 pg/ml; and p < 0.0001;
Figure 6(e)), while CXCL10 was unaffected. In passage 6,
only CCL20 was upregulated (368.7 + 33.59 pg/ml, p < 0.05;
Figure 6(e)), after the 48h IL-1ow and TNF-« stimulation,
while all the other chemokines were undetectable. In higher
passages, none of the studied chemokines were traceable for
both the stimulated and unstimulated organoids, while
CXCL11 protein expression was absent in all passages and
conditions.

In contrast, a different pattern was observed in the
expression of tight junction molecules in response to inflam-
matory stimuli. CLDN1 and JAMA were upregulated in pas-
sage 2 in response to IL-1a and TNF-a (CLDN1: 2.03-fold,
+0.17, and p < 0.05; JAMA: 2.10-fold, +0.23, and p < 0.0001
, Figures 7(b) and 7(d)), but their expression was later
returned to basal levels in passages 4 and 6. In passage 4, only
OCLN and ZO1 showed a statistically significant mRNA
upregulation that was abolished in later passages (OCLN:
1.28-fold, £0.087, and p < 0.01; ZO1: 2.11-fold, +0.13, and p
< 0.0001, Figures 7(a) and 7(c)). In passage 8, only CLDN1
and JAMA were statistically significantly upregulated in

response to IL-la and TNF-a (CLDNI1: 4.27-fold, +0.55,
and p<0.0001; JAMA: 1.91-fold, +0.04, and p <0.0001,
Figures 7(b) and 7(d)), while in passage 10, only JAMA
remained upregulated in response to the two proinflam-
matory cytokines (1.63-fold, +0.09, and p <0.0001,
Figure 7(d)), suggesting that structural molecules of the epi-
thelium retain responsiveness to inflammatory stimuli in late
passages despite the loss of mesenchymal responses. Finally,
in passage 12, no effect in any studied tight junction molecule
was observed, after the IL-1a and TNF-« stimulation.

4. Discussion

In this study, we show that HIOs mature and change through
sequential passages, and their mesenchymal component
gradually reduces with time. We have also observed that
HIOs respond differently to the proinflammatory cytokines,
IL-1a and TNF-a, depending on the passage, suggesting that
the gradual loss of the stromal component reflects on the
functionality of HIOs. Specifically, we showed that IL-1«
and TNF-« stimulation upregulated the mRNA of various
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fibrotic and inflammatory factors in early, but not late, pas-
sages and this pattern was also observed at the protein level
for the inflammatory chemokines CXCL10, CXCL1, CXCLS,
CCL2, and CCL20. IL-1a and TNF-a stimulation had no
effect on the HIO structure and growth rate in either the
incubation period or the culture passage. In addition, we have
also shown that HIOs maintain their structure through serial
culture passages, and although their growth rate continues, it
is probably attributed to the active proliferation state of their
epithelial cells.

Organoids have been described as a more favorable
in vitro tool for disease modeling for several reasons. Firstly,
they can more accurately mimic the tissue architecture of the
respective organ. As shown in our study, HIOs resemble the
human intestinal tissue as they develop the villi, different
types of epithelial cells including goblet and endocrine cells,
and supporting stroma. Furthermore, they exhibit both the
inflammatory and fibrotic responses to inflammatory stimuli
similar to the intestinal tissue. Apart from HIOs, other types
of organoids have been developed to accurately simulate dif-
ferent organs, such as lung organoids that are structured into
alveolars, airways, and lung buds [20], liver organoids that

consisted of hepatocytes and cholangiocytes that form a
functional bile canalicular network [21], renal organoids that
formed in most cases glomeruli and renal tubules [22], and
many others [23]. Secondly, organoids can reduce the need
for 2D cultures of primary cells; in most cases, they are diffi-
cult to isolate, characterize, and maintain in culture for pro-
longed periods of time [24]. Thirdly, HIOs contain healthy
epithelial cells, which are easily studied and expanded, in
contrast to primary epithelial cells which initiate apoptotic
processes following isolation [25], and offer a more relevant
human physiology model than using cultures of epithelial
immortalized cell lines [26]. Fourthly, HIOs enable
researchers to carry out high-throughput screening experi-
ments without the need for large numbers of experimental
animals (according to the Reduce-Replace-Refine principle).
And finally, HIOs provide a more analytical approach by
being able to separately study epithelial and mesenchymal
responses from immune responses of the intestinal mucosa.

Apart from HIOs, which are pluripotent stem cell-
derived organoids, there are also adult stem cell-derived 3D
structures, called enteroids. Enteroids can be developed from
isolated adult Lgr5* stem cells or intestinal crypts containing
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FiGure 6: HIOs exhibit mesenchymal and epithelial chemokine protein responses to inflammatory cytokines. IL-1oe and TNF-« (2C) 24 h and
48 h stimulation induced the protein expression of CXCL1 (b), CXCL8 (c), CCL2 (d), and CCL20 (e) in passages 2 and 4, while CXCL10 was
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TNF-a 50 ng/ml. All experiments were performed in triplicate. Data are presented as the mean + standard error of the mean (SEM).
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these cells [27], using a more simplified and easier method
than HIO development [28], and since they are developed
from a less potent stem cell population, they are easier to
maintain and culture [27]. Nonetheless, the main disadvan-
tage of enteroids is that they only consist of epithelial cells,
lacking the mesenchymal component [29], making HIOs
the model of choice in studies investigating epithelial and
mesenchymal interactions.

We showed that the mesenchymal component of HIOs,
although gradually decreased over culture time, plays a sig-
nificant role in both the inflammatory and fibrotic responses
to proinflammatory stimuli, suggesting the importance of
mesenchymal cells in organoid functional studies. Indeed,
previous works from our group and others have highlighted
the importance of mesenchymal cells in chronic intestinal
inflammation and fibrosis. We have shown that intestinal
subepithelial myofibroblasts (SEMFs) express various inter-
leukin receptors, and stimulation with different Th-related
cytokines leads to different fibrotic responses from SEMFs
[9]. In this study, we concluded that the reduced responsive-
ness to IL-1a and TNF-« is possibly due to the mesenchymal
component reduction and the consequent decrease of
epithelial-mesenchymal crosstalk. We have previously shown
that SEMFs interact with epithelial cells, as supernatants
from previously stimulated HT-29 epithelial cells induce

the expression of both the fibrotic and proinflammatory mol-
ecules, such as collagen and TLI1A, respectively [30, 31].
Others have previously shown that high Oncostatin M
(OSM) expression in patients with IBD is associated with
failure to anti-TNF therapy and that high expression of its
receptor is found in intestinal stromal cells, suggesting that
mesenchymal cells have a significant role in IBD patient het-
erogeny to respond to anti-TNF agents [2]. SEMF-dependent
IBD patient heterogeny is also highlighted in the research by
Beswick et al. They showed that SEMFs isolated from
inflamed intestinal regions of UC patients have a stronger
capacity to suppress Thl cell activity than CD or healthy
SEMFs, as they overexpress programmed cell death protein
1 (PD-1), a molecule implicated in the regulation of Th
immune responses [32]. In a recent study, Toll-like receptor
4 (TLR4) depletion in CCD-18Co cells, an intestinal
fibroblast cell line, resulted in increased matrix
metalloproteinase-1 (MMP-1) and decreased tissue inhibitor
of metalloproteinase (TIMP) and collagen al expression
[33], suggesting that innate immune responses directly regu-
late the fibrotic phenotype of SEMFs. More recent studies
have also shown that the fibrotic phenotype of SEMFs
depends on the tissue stiffness, as ileum isolated CD SEMFs
have upregulated levels of the collagen crosslinking enzyme
lysyl oxidase and lead to high ECM contraction [34], and this
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may be regulated through endoplasmic reticulum stress-
related gene overexpression [35].

In this study, we showed that early-passage HIOs overex-
press fibrotic factors in response to inflammatory stimuli. In
the same notion, Rodansky et al. were the first to show that
HIOs are a promising fibrotic model, as HIOs overexpress
several fibrotic factors in response to a dose-dependent
TGF- stimulation [36]. In a more recent study by the same
research group, Steiner et al. utilized HIOs as a fibrotic model
to prove that the inhibition of AXL, a receptor tyrosine
kinase, could impede the TGF-f1-induced fibrotic overex-
pression [37]. Apart from the fibrotic responses, we have also
shown that several chemokines are greatly overexpressed, at
the mRNA and protein levels, when early-passage HIOs are
stimulated with IL-la and TNF-a. Other studies using
induced pluripotent stem cell- (iPSC-) derived intestinal
organoids as an in vitro inflammation model have reported
similar results. Karve et al. observed that iPSC-derived intes-
tinal organoids infected with a pathogenic strain of Escheri-
chia coli produced elevated levels of IL-8 (CXCL8) and IL-
18 [38]. Workman et al. showed that iPSC-derived intestinal
organoids overexpressed the chemokines CXCL9, CXCL10,
and CXCL11 in response to IFN-y stimulation [39]. Finally,
Onozato et al. reported that TNF-« induces the upregulation
of TNF-« and IL-1f and abolishes the expression of Chro-
mogranin A in iPSC-derived intestinal organoids. When
TNF-a was combined with TGF-p, iPSC-derived intestinal
organoids produced high levels of the profibrotic molecules,
a-SMA, vimentin, collagen type I, and fibronectin, and the
proinflammatory factors, TNF-« and IL-1f [40], suggesting
that this is a promising model for studying inflammatory
and fibrotic responses.

Overall, the novelty of our study lies in the fact that we
show that there is a gradual downregulation of several
fibrotic and mesenchymal markers, as HIOs progress from
passage to passage, and there are different responses to proin-
flammatory cytokines depending on the passage. Other
recent studies have also shown that organoids continue to
mature and change throughout their culture, mimicking the
process of embryonic to fetal and adult development [13-
15]. Our results are in agreement with these studies and fur-
ther verify the phenomenon of organoid maturation at late
passages.

5. Conclusions

In conclusion, we show that embryonic stem cell-derived
HIOs are supported by a mesenchymal component, which
is gradually reduced over sequential passages. This mesen-
chymal component plays a significant role in both the epithe-
lial and mesenchymal cell inflammatory and fibrotic
responses, and its reduction leads to loss of functionality, as
well as unresponsiveness to proinflammatory stimuli. There-
fore, inflammatory and fibrotic studies employing HIOs
should be focused on early passages. Further studies are
needed to elucidate the mechanisms of HIO transformation
and to identify the molecular pathways that are implicated
in HIO maturation.
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Supplementary Materials

Supplementary Figure 1: HIO growth rate in each passage and
Ki67 proliferation marker staining. (A) Representative snap-
shots at culture days 0 and 10 in each passage, showing that
the HIO intestinal structure remained stable. Magnification
was set at 4x. (B) Semiquantitative calculation of the percent-
age of the organoid growth rate that shows an increase in
diameter from day 0 to day 10, suggesting that HIOs continue
to mature their luminal structures even in late passages. (C)
Double staining for the expression of Ki67, a well-known pro-
liferation marker, and EpCam, an epithelial marker, in a late-
passage organoid. Ki67-positive expression is found in HIO
epithelial cells. Representative 40x immunofluorescence
snapshots are shown in (C). Supplementary Figure 2: charac-
terization of the main developmental stages prior to HIO for-
mation. (A) H1 pluripotent stem cell line stained against the
embryonic stem cell markers, Nanog, SOX2, and OCT4. (B)
Definitive Endoderm stained against SOX17 and FOXA2,
two transcription factors required for the development of
the definitive gut endoderm and the intestinal tissue, respec-
tively. (C) Mid-/Hindgut spheroids stained against CDX2,
an intestinal epithelial marker, and vimentin and E-cadherin,
mesenchymal and epithelial markers, respectively. Represen-
tative 40x immunofluorescence snapshots are shown in (A-
C). Supplementary Figure 3: IL-1a and TNF-a stimulation
does not affect the HIO structure and growth rate. Represen-
tative snapshots of unstimulated (Ctrl) and IL-1a and TNF-«
(2C)-stimulated HIOs in passages 2 (A and B), 6 (C and D),
and 12 (E and F), showing no changes in the growth rate
and structure. Magnification was set at 4x. (Supplementary
Materials)
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