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Image data Resource: a bioimage data integration 
and publication platform
Eleanor Williams1–3,10, Josh Moore1,2,10, Simon W Li1,2,10, Gabriella Rustici1,2, Aleksandra Tarkowska1,2,  
Anatole Chessel4–7  , Simone Leo1,2,8, Bálint Antal4–6, Richard K Ferguson1,2, Ugis Sarkans3  , Alvis Brazma3,  
Rafael E Carazo Salas4–6,9 & Jason R Swedlow1,2  

access to primary research data is vital for the advancement 
of science. to extend the data types supported by community 
repositories, we built a prototype Image data Resource (IdR). 
IdR links data from several imaging modalities, including 
high-content screening, multi-dimensional microscopy and 
digital pathology, with public genetic or chemical databases 
and cell and tissue phenotypes expressed using controlled 
ontologies. Using this integration, IdR facilitates the analysis 
of gene networks and reveals functional interactions that are 
inaccessible to individual studies. to enable reanalysis, we 
also established a computational resource based on Jupyter 
notebooks that allows remote access to the entire IdR. IdR is 
also an open-source platform for publishing imaging data. thus 
IdR provides an online resource and a software infrastructure 
that promotes and extends publication and reanalysis of 
scientific image data.

Much of the published research in the life sciences is based on 
image data sets that sample 3D space, time and the spectral char-
acteristics of detected signal to provide quantitative measures of 
cell, tissue and organismal processes and structures. The sheer 
size of biological image data sets makes data submission, handling 
and publication challenging. An image-based genome-wide ‘high-
content’ screen (HCS) may contain more than 1 million images, 
and new ‘virtual slide’ and ‘light sheet’ tissue imaging technolo-
gies generate individual images that contain gigapixels of data 
showing tissues or whole organisms at subcellular resolutions. At 
the same time, published versions of image data are often mere 
illustrations: they are presented in processed, compressed formats 
that cannot convey the measurements and multiple dimensions 
contained in the original image data and cannot easily be reana-
lyzed. Furthermore, conventional publications do not include the 
metadata that define imaging protocols, biological systems and 
perturbations or the processing and analytic outputs that convert 
the image data into quantitative measurements.

Several public image databases have appeared over the past few 
years. These provide online access to image data, enable brows-
ing and visualization and, in some cases, include experimental 
metadata. The Allen Brain Atlas, the Human Protein Atlas and 
the Edinburgh Mouse Atlas all synthesize measurements of gene 
expression, protein localization and/or other analytic metadata 
with coordinate systems that place biomolecular localization and 
concentration into a spatial and biological context1–3. There are 
many other examples of dedicated databases for specific imaging 
projects, each tailored for specific aims and target communities4–8. 
A number of public resources serve as scientific, structured reposi-
tories for image data—i.e., they collect, store and provide persist-
ent identifiers for long-term access to submitted data sets and 
provide rich functionalities for browsing, search and query. One 
archetype is the EMDataBank, the definitive community reposi-
tory for molecular reconstructions recorded by electron micros-
copy9. The Journal of Cell Biology has built the JCB DataViewer, 
which publishes image data sets associated with its online publica-
tions. The CELL Image Library includes several thousand commu-
nity-submitted images, some of which are linked to publications10. 
Figshare stores 2D pictures derived from image data sets and can 
provide links to download image data. The EMDataBank recently 
released a prototype repository for 3D tomograms, the EMPIAR 
resource11. Finally, the BioStudies and Dryad archives include 
support for browsing and downloading image data files linked 
to studies or publications12. Some of these provide a resource 
for a specific imaging domain (for example, EMDataBank) or 
experiment (MitoCheck), whereas others archive data sets and 
provide links to related publications at external journal websites 
(BioStudies). However, no existing resource links independent 
biological imaging data sets to provide an ‘added-value’ platform 
similar to Expression Atlas, for gene expression data13, or UniProt, 
for protein sequence and function data14.

Inspired by these added-value resources, we built IDR, an added-
value platform that combines data from multiple independent  
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imaging experiments and imaging modalities and integrates 
them into a single resource for reanalysis in a convenient, scalable 
form. IDR provides a prototyped resource that supports browsing, 
search, visualization and computational processing within and 
across data sets acquired from a wide variety of imaging domains. 
For each study, image data are stored along with metadata related 
to the experimental design, data acquisition and analysis and 
made available for search and query through a web interface and 
a single application program interface (API). Where possible, we 
have mapped the phenotypes determined by data set authors to a 
common ontology. For several studies, we have calculated com-
prehensive sets of image features that can be used by others for 
reanalysis and the development of phenotypic classifiers. By har-
monizing data from multiple imaging studies into a single system, 
IDR enables users to query across studies and identify phenotypic 
links between different experiments and perturbations.

RESULtS
Current IdR
IDR is currently populated with 24 imaging studies, compris-
ing 35 screens or biological imaging experiments, most of which 

are linked to published works (Table 1). IDR holds ~42 TB of 
image data in ~36 million image planes and ~1 million individ-
ual experiments and includes all associated experimental anno-
tations (such as genes, RNAi, chemistry, geographic location), 
analytic annotations (submitter-calculated image regions and 
features) and functional annotations. Data sets from studies in 
human, mouse, fly, plant and fungal cells are included. The imag-
ing modalities and experimental approaches supported include 
super-resolution 3DSIM and dSTORM, high-content chemical 
and siRNA screening, whole-slide histopathology imaging and 
live imaging of human and fungal cells and intact mice. Imaging 
data from Tara Oceans, a global survey of plankton and other 
marine organisms, are also included. The current collection sam-
ples biomedically relevant features such as cell shape, division and 
adhesion, from nanometer-scale localization of cellular proteins 
to millimeter-scale structures of animal tissues (Table 2).

Genetic, chemical and functional annotation in IdR
To enable querying across data sets in IDR, we have included 
annotations describing experimental perturbations (such as 
genetic mutants, siRNA targets and reagents, expressed proteins,  

table 1 | Data sets in IDR

Study identifier Species type
Screens or 

experiments
5d  

images
Size  
(tB)

Pheno-  
typesa targetsb Experimentsc Reference

idr0001-graml-sysgro S. pombe Gene deletion screen 1 109,728 10.06 19 3,005 18,432 5
idr0002-heriche-condensation Human RNAi screen 1 1,152 2.10 2 102 1,152 26
idr0003-breker-plasticity Saccharomyces  

 cerevisiae
Protein screen 1 97,920 0.20 14 6,234 32,640 41

idr0004-thorpe-rad52 S. cerevisiae Gene deletion screen 1 3,765 0.17 1 4,195 4,512 42
idr0005-toret-adhesion Drosophila  

 melanogaster
RNAi screen 2 45,792 0.14 1 13,035 15,264 43

idr0006-fong-nuclearbodies Human Protein localization  
 screen

1 240,848 1.40 8 12,743 16,224 44

idr0007-srikumar-sumo S. cerevisiae Protein localization  
 screen

1 3,456 0.02 23 377 1,152 45

idr0008-rohn-actinome D. melanogaster, 
human

RNAi screen 2 55,944 0.12 46 12,826 26,496 40

idr0009-simpson-secretion Human RNAi screen 2 397,056 3.25 3 17,960 397,056 27
idr0010-doil-dnadamage Human RNAi screen 1 56,832 0.08 2 18,675 56,832 46
idr0011-ledesmafernandez-dad4 S. cerevisiae Gene deletion screen 5 8,957 0.4 1 5,209 8,736 NA
idr0012-fuchs-cellmorph Human RNAi screen 1 45,692 0.38 18 16,701 26,112 39
idr0013-neumann-mitocheck Human RNAi screen 2 200,995 14.54 18 18,393 206,592 4
idr0015-UNKNOWN-taraoceans Multi-species Geographic screen 1 32,776 2.49 0 84 84 47
idr0016-wawer- 
  bioactivecompoundprofiling

Human Small molecule screen 1 869,820 3.19 2 29,542 144,000 48

idr0017-breinig-drugscreen Human Small molecule screen 1 147,456 2.48 0 1,281 36,864 49
idr0018-neff-histopathology Mus musculus Histopathology of  

 gene knockouts
1 899 0.27 48 9 248 NA

idr0019-sero-nfkappab Human HCS image analysis 1 25,872 0.03 0 198 2,156 50
idr0020-barr-chtog Human RNAi screen 1 36,960 0.03 2 241 1,232 51
idr0021-lawo-  
 pericentriolarmaterial

Human Protein localization  
 using 3D-SIM

1 414 0.0003 1 9 414 52

idr0023-szymborska-  
 nuclearpore

Human Protein localization  
 using dSTORM

1 524 0.0005 1 7 359 53

idr0027-dickerson- chromatin S. cerevisiae 3D-tracking of tagged  
 chromatin loci

1 229 0.03 0 8 112 54

idr0028-pascualvargas-rhogtpases Human RNAi screen 4 155,332 0.18 9 170 5,544 55
idr0032-yang-meristem Arabidopsis  

 thaliana
In situ hybridization 1 458 0.003 5 115 115 56

Sum 35 2,538,777 42 224 161,119 1,002,328
Average 105,782 1.73 9 6,713 41,764
aThe number of submitted phenotypes. bThe number of genes, compounds or proteins identified as targets for analysis. cThe number of individual wells (in HCS studies) or imaging experiments 
(in nonscreen data sets). NA, not applicable (unpublished data).
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cell lines and drugs) and phenotypes declared by study authors 
either from quantitative analysis or visual inspection of image 
data. Where possible, experimental metadata in IDR link  
to authoritative external resources (such as Ensembl, NCBI  
or PubChem).

Many of the studies in IDR perturb gene function by mutation 
or siRNA depletion. To calculate the sampling of gene orthologs, 
we used Ensembl’s BioMart resource15 to access a normalized list 
of gene orthologs. Overall, 19,601 gene orthologs are sampled; 
of these, 84.1% are sampled more than 20 times and 90.3% are 
sampled in three or more studies. Even in this early incarnation, 
the phenotypes of perturbations in the majority of known genes 
are sampled in several assays and organisms.

We normalized the phenotypes included in studies submitted 
to IDR. Functional annotations were converted to defined terms 
in the Cellular Microscopy Phenotype Ontology (CMPO)16 or  
other ontologies, in collaboration with the data submitters. 
Overall, 88% of the functional annotations have links to defined, 
published controlled vocabularies. IDR includes 158 ontology-
normalized phenotypes (for example, ‘increased number of actin 
filaments’ and ‘mitosis arrested’), and 136 are reported in only 
one study. Nonetheless, these phenotypes were well sampled, 
with an average of 698 samples per phenotype across HCSs and 
other imaging data sets, and a median of 144. This skewing occurs 
because some phenotypes are very common or over-represented  
in specific assays, for example, ‘protein localized in cytosol  
phenotype’ (CMPO_0000393). Nonetheless, several pheno-
types were observed in multiple orthogonal assays (e.g., ‘round 
cell’ (CMPO_0000118) and ‘increased nuclear size’ (CMPO_
0000140)). Figure 1 summarizes the sampling of phenotypes 
across the current IDR data sets. Several classes of phenotypes 
are included, and many cases are sampled in thousands of experi-
ments. In total, IDR includes >1 million individual experiments 
(Table 1), ~9% of which are annotated with experimentally 
observed phenotypes.

data visualization in IdR
IDR integrates image data and metadata from several studies. The  
current IDR web user interface (WUI) is based on OMERO.web,  
an open-source application17, and is supplemented with a plugin 
allowing data sets to be viewed by study, genes, phenotypes, siRNAs, 
antibodies, compounds and organisms (Supplementary Note). 
This architecture makes the integrated data resource available for 
access and reuse in several ways (Supplementary Note). Image 
data are viewable as thumbnails for each study, and multidimen-
sional images can be viewed and browsed. Tiled whole-slide images 
used in histopathology are also supported. Any regions of interest 
(ROIs) submitted with the image data are included and linked 
and, where possible, made available through the IDR WUI. IDR 
images, thumbnails and metadata are accessible through the IDR 
WUI and web-based API in JSON format (Supplementary Note).  
They also can be embedded into other pages (e.g., Euro-BioImaging,  
(https://www.eurobioimaging-interim.eu/image-data-resource.
html) using the OMERO.web gateway.

Standardized interfaces for imaging metadata
IDR integrates imaging data from many studies. These data were 
acquired by various imaging modalities, in the absence of over-
arching standards for experimental, imaging or analytic metadata. 
While efforts such as MIACA (http://miaca.sourceforge.net/), 
NeuroVault18, MULTIMOT19 have proposed data standards in 
specific imaging subdomains, there is not yet a metadata stand-
ard that crosses all the imaging domains potentially served by 
IDR. We therefore sought to adopt lightweight methods from 
other communities that have had broad acceptance20 and con-
verted metadata submitted in custom formats—spreadsheets, 
PDFs, MySQL databases and Microsoft Word documents—into 
a consistent tabular format, inspired by the MAGE-TAB and ISA-
TAB specifications21,22, that could then be used for importing 
semistructured metadata such as gene and ontology identifiers 
into OMERO23. We also used the Bio-Formats software library 

table 2 | Example URLs and views of IDR data sets

Study identifier IdR URL

idr0001-graml-sysgro  https://idr.openmicroscopy.org/webclient/?show=well-590686
idr0002-heriche-condensation  https://idr.openmicroscopy.org/webclient/?show=well-119093
idr0003-breker-plasticity  https://idr.openmicroscopy.org/webclient/?show=well-4852
idr0004-thorpe-rad52  https://idr.openmicroscopy.org/webclient/?show=well-469267
idr0005-toret-adhesion  https://idr.openmicroscopy.org/webclient/?show=well-547609
idr0006-fong-nuclearbodies  https://idr.openmicroscopy.org/webclient/?show=image-820684
idr0007-srikumar-sumo  https://idr.openmicroscopy.org/webclient/?show=well-37472
idr0008-rohn-actinome  https://idr.openmicroscopy.org/webclient/?show=well-45407
idr0009-simpson-secretion  https://idr.openmicroscopy.org/webclient/?show=image-648950
idr0010-doil-dnadamage  https://idr.openmicroscopy.org/webclient/?show=image-3063667
idr0011-ledesmafernandez-dad4  https://idr.openmicroscopy.org/webclient/?show=image-2849866
idr0012-fuchs-cellmorph  https://idr.openmicroscopy.org/webclient/?show=image-1821818
idr0013-neumann-mitocheck  https://idr.openmicroscopy.org/webclient/?show=image-1636543
idr0015-UNKNOWN-taraoceans  https://idr.openmicroscopy.org/webclient/?show=well-1056578
idr0016-wawer-bioactivecompoundprofiling  https://idr.openmicroscopy.org/webclient/?show=well-1029401
idr0017-breinig-drugscreen  https://idr.openmicroscopy.org/webclient/?show=well-1046336
idr0018-neff-histopathology  https://idr.openmicroscopy.org/webclient/?show=dataset-369
idr0019-sero-nfkappab  https://idr.openmicroscopy.org/webclient/?show=well-1024671
idr0020-barr-chtog  https://idr.openmicroscopy.org/webclient/?show=well-1030579
idr0021-lawo-pericentriolarmaterial  https://idr.openmicroscopy.org/webclient/?show=dataset-51
idr0023-szymborska-nuclearpore  https://idr.openmicroscopy.org/webclient/?show=dataset-61
idr0027-dickerson-chromatin  https://idr.openmicroscopy.org/webclient/?show=image-2858266
idr0028-pascualvargas-rhogtpases  https://idr.openmicroscopy.org/webclient/?show=image-2895051
idr0032-yang-meristem  https://idr.openmicroscopy.org/webclient/?show=image-3125776  

https://idr.openmicroscopy.org/mapr/phenotype/?value=CMPO_0000393
https://idr.openmicroscopy.org/mapr/phenotype/?value=CMPO_0000118
https://idr.openmicroscopy.org/mapr/phenotype/?value=C MPO_0000140
https://idr.openmicroscopy.org/mapr/phenotype/?value=C MPO_0000140
https://www.eurobioimaging-interim.eu/image-data-resource.html
https://www.eurobioimaging-interim.eu/image-data-resource.html
http://miaca.sourceforge.net/
https://idr.openmicroscopy.org/webclient/?show=well-590686
https://idr.openmicroscopy.org/webclient/?show=well-119093
https://idr.openmicroscopy.org/webclient/?show=well-4852
https://idr.openmicroscopy.org/webclient/?show=well-469267
https://idr.openmicroscopy.org/webclient/?show=well-547609
https://idr.openmicroscopy.org/webclient/?show=image-820684
https://idr.openmicroscopy.org/webclient/?show=well-37472
https://idr.openmicroscopy.org/webclient/?show=well-45407
https://idr.openmicroscopy.org/webclient/?show=image-648950
https://idr.openmicroscopy.org/webclient/?show=image-3063667
https://idr.openmicroscopy.org/webclient/?show=image-2849866
https://idr.openmicroscopy.org/webclient/?show=image-1821818
https://idr.openmicroscopy.org/webclient/?show=image-1636543
https://idr.openmicroscopy.org/webclient/?show=well-1056578
https://idr.openmicroscopy.org/webclient/?show=well-1029401
https://idr.openmicroscopy.org/webclient/?show=well-1046336
https://idr.openmicroscopy.org/webclient/?show=dataset-369
https://idr.openmicroscopy.org/webclient/?show=well-1024671
https://idr.openmicroscopy.org/webclient/?show=well-1030579
https://idr.openmicroscopy.org/webclient/?show=dataset-51
https://idr.openmicroscopy.org/webclient/?show=dataset-61
https://idr.openmicroscopy.org/webclient/?show=image-2858266
https://idr.openmicroscopy.org/webclient/?show=image-2895051
https://idr.openmicroscopy.org/webclient/?show=image-3125776
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to identify and convert well-defined, semantically typed elements 
that describe imaging metadata (for example, image pixel size) as 
specified in the OME Data Model24,25, and we used the resulting 
translation scripts to integrate data sets into a single resource. 
The scripts are publicly available (Online Methods) and thus 
comprise a framework for recognizing and reading a range of 
metadata types across several imaging domains into a common, 
open specification.

added value of IdR
Because IDR links gene names and phenotypes, query results that 
combine genes and phenotypes across multiple studies are possible 
through simple text-based search. Searching for the gene SGOL1 
(https://idr.openmicroscopy.org/mapr/gene/?value=SGOL1) 
returns a range of phenotypes from four studies associated with 
mitotic defects (for example, CMPO_0000118, CMPO_0000305, 
CMPO_0000212 and CMPO_0000344)4,26 but also an accelerated 
secretion phenotype (CMPO_0000246) in a screen for defects in 
protein secretion27. A second example is provided in a histopa-
thology study of tissue phenotypes in a series of mouse mutants. 
Knockout of Car4, which encodes carbonic anhydrase 4 in mouse, 
results in a range of defects in homeostasis in the brain, rib growth 
and male fertility28–30. Data in IDR show abnormal nuclear pheno-
types in several tissues from Car4−/− mice, including gastrointesti-
nal (https://idr.openmicroscopy.org/webclient/?show=dataset-153), 
liver (https://idr.openmicroscopy.org/webclient/?show=image-
1918940) and male reproductive tract (https://idr.openmicroscopy.
org/webclient/?show=image-1918953). The human ortholog, CA4, 
is involved in certain forms of retinitis pigmentosa31,32. Data in 

IDR from the MitoCheck study show that siRNA-mediated deple-
tion of CA4 in HeLa cells4 also results in abnormally shaped nuclei 
(https://idr.openmicroscopy.org/webclient/?show=well-828419), 
consistent with a defect in some aspect of the cell division cycle.

Phenotypes across distinct studies can also be used to build 
novel representations of gene networks. Figure 2a shows the 
gene network created when knockouts or knockdowns that 
caused an elongated cell phenotype (CMPO_0000077) in 
Schizosaccharomyces pombe and human cells are linked by que-
ries to String DB33 and visualized in Cytoscape34 (Supplementary 
Note and Supplementary Table 1). The genes discovered in the 
three studies form nonoverlapping, complementary networks that 
connect specific macromolecular complexes to the elongated cell 
phenotype. For example, HELZ2, MED30, MED18 and MED20 
are all part of the mediator complex but were identified as ‘elon-
gated cell’ hits in separate studies using different biological mod-
els (idr0001-A, idr0008-B and idr0012-A) (Fig. 2b). POLR2G 
(idr0012-A), PAF1 (idr0001-A) and SUPT16H (idr0008-B) were 
scored as elongated cell hits in these studies and are all part of 
the elongation complex in the RNA polymerase II transcription 
pathway. Finally, ASH2L (elongated cell phenotype in idr0012-A), 
associates with SETD1A and SETD1B (elongated cell phenotype 
in idr0001-A) to form the Set1 histone methyltransferase (HMT). 
These examples show that the individual hits are probably not 
due to off-target effects or characteristics of individual biological 
models but arise through conserved, specific functions of large 
macromolecular complexes.

The integration of experimental, imaging and analytic meta-
data also provides an opportunity to include new functionalities 
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Figure 1 | Sampling of phenotypes in the IDR. Each sample represents a well from a microwell plate in a screen or an image from a data set. Wells 
annotated as controls were not included. User-submitted phenotype terms were mapped to the CMPO terms shown here. Colors represent higher-level 
groupings of phenotype terms. Point size represents the number of studies each phenotype is linked to (1, 2, 3 or 4 studies).
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for data visualization and analysis, adding further value to the 
original studies and data sets. We have added the data analyt-
ics tool Mineotaur35 to one of IDR’s data sets (https://idr.open-
microscopy.org/mineotaur/). This allows visual querying and 
analysis of quantitative feature data. For instance, having shown 
that components of the Set1 HMT function in controlling cell 
morphology in S. pombe and human cells, we noticed that genes 
such as ASH2L were in the ‘elongated cell’ network based on 
human cell data (idr0012-A) but not S. pombe data. We noted 

that ash2 has a microtubule cytoskeleton phenotype (https://idr. 
openmicroscopy.org/webclient/?show=well-592371), then we 
queried the criteria used for cell shape hits in the Sysgro screen 
(idr0001-A) and found that ash2 fell just below the cutoff origi-
nally used in this study to define phenotypic hits for cell shape 
(Supplementary Note). When combined with results on ASH2L 
from HeLa cells (Fig. 2b) these results suggest that the Set1 HMT 
has a strongly conserved role in controlling cell shape and the 
cytoskeleton in unicellular and multicellular organisms.

data integration and access
Like most modern online resources, IDR makes data avail-
able through a web user interface as well as a web-based JSON 
API. This encourages third parties to make use of IDR on 
their own sites. For example, image data in IDR have been 
linked to study data in BioStudies (for example, BioStudies 
S-EPMC4704494) and to PhenoImageShare36, an online phe-
notypic repository (http://www.phenoimageshare.org/search/
?term=&hostName=Image+Data+Repository+(IDR)).

To further extend the possibilities for reuse of IDR data, we are 
calculating comprehensive sets of feature vectors of IDR image 
data using the open-source tool WND-CHARM37. To date, full 
WND-CHARM features have been calculated for images in 
idr0002-A, idr0005-A, idr0008-B, idr0009-A, idr0009-B and 
idr0012-A and for parts of idr0013-A and idr0013-B. Features 
are stored in IDR using OMERO’s HDF5-based data store and 
available through the OMERO API (Supplementary Note).

The integration of image-based phenotypes and calculated 
features makes IDR an attractive candidate for computational 
reanalysis. To ease the access to IDR’s TB-scale data sets, we 
have connected IDR to a Jupyter notebook-based computational 
resource (https://idr.openmicroscopy.org/jupyter) that exposes 
IDR data sets via an API (https://idr.openmicroscopy.org/about/
api.html). We include example notebooks that provide visualiza-
tion of image features using PCA, access to images annotated with 
CMPO phenotypes, calculations of gene networks and WND-
CHARM features for individual images and recreation of Figures 
1 and 2 from IDR data. Users can also run their own analyses 
using notebooks stored in GitHub (https://github.com/IDR/idr-
notebooks). To allow reuse of IDR metadata locally, we have made 
all IDR databases, metadata and thumbnails available for down-
load and have built Ansible scripts that automate deployment of 
the IDR software stack (original image data are not included; see 
Supplementary Note).

dISCUSSIOn
Making data public and available is a critical part of the scientific 
enterprise38. To help facilitate the reuse and meta-analysis of image 
data sets, we have built IDR, a next-generation data technology 
that integrates and publishes image data and metadata from a wide 
range of imaging modalities and scales in a consistent format. IDR 
integrates experimental, imaging, phenotypic and analytic meta-
data from several independent studies into a single resource, allow-
ing new modes of biological Big Data querying and analysis. As 
more data sets are added to IDR, they will potentiate and catalyze 
the generation of new biological hypotheses and discoveries.

In IDR, we have linked image metadata from several independ-
ent studies. Experimental, imaging phenotypic and analytic meta-
data are recorded in a consistent format. Rather than attempting 

b

a

Figure 2 | Network analysis of genes linked to the elongated cell 
phenotype in the IDR. (a) Protein–protein interaction network based on 
the genes linked to the elongated cell phenotype (CMPO_0000077) in 
three IDR studies. Genes from S. pombe (green, idr0001-A)5, HeLa cell 
morphology (blue, idr0012-A)39 and HeLa Actinome (red, idr0008-B)40 are 
displayed with linkages (gray) from StringDB33. To enable comparisons in 
Cytoscape, the human orthologs of S. pombe genes are used for the genes 
identified in idr0001-A (Supplementary note). (b) Close-up view of 
network in a. Genes are listed in Supplementary note.

https://idr.openmicroscopy.org/mineotaur/
https://idr.openmicroscopy.org/mineotaur/
https://idr.openmicroscopy.org/webclient/?show=well-592371
https://idr.openmicroscopy.org/webclient/?show=well-592371
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http://www.phenoimageshare.org/search/?term=&hostName=Image+Data+Repository+(IDR)
http://www.phenoimageshare.org/search/?term=&hostName=Image+Data+Repository+(IDR)
https://idr.openmicroscopy.org/jupyter
https://idr.openmicroscopy.org/about/api.html
https://idr.openmicroscopy.org/about/api.html
https://github.com/IDR/idr-notebooks
https://github.com/IDR/idr-notebooks


©
 2

01
8 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

780  |  VOL.14  NO.8  |  AUGUST 2017  |  natURE mEthOdS

RESOURCE

to enforce a strict imaging data standard, IDR provides tools for 
supporting community formats and releases these as a frame-
work that facilitates data reuse. We hope that the availability of 
this framework will provide incentives for others to structure 
metadata in shareable formats that can be read into IDR or other 
applications. In the future, we can imagine that these and other 
capabilities could be extended in IDR—or similar repositories 
that link to IDR—to enable systematic integration, visualization 
and analytics across imaging studies, thereby helping to harness 
and capitalize on the increasing amounts of bioimaging data that 
the community generates.

As of this writing, IDR has published 35 reference image data 
sets grouped into 24 studies (Table 1) and, using EMBL-EBI’s 
Embassy Cloud, has the capacity to receive and publish many 
more. Authors can submit image data sets for publication in 
IDR using the metadata specifications and formats we have built 
(details about the submission process are available at https://idr.
openmicroscopy.org/about/submission.html). Once published, 
the data sets can be browsed and viewed through IDR’s WUI or 
queried and reanalyzed using the IDR computational resource.

IDR software and technology is open source, so it can be 
accessed and built into other systems for image data publication. 
This supports the building of technology and installations that 
integrate and publish bioimaging data for the scientific commu-
nity. IDR therefore functions both as a resource for image data 
publication and as a technology platform that supports online 
scientific image databases and services. In the future, those data-
bases and services may amalgamate to form resources analogous 
to the genomic resources that are the foundation of much of 
modern biology.

mEthOdS
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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OnLInE mEthOdS
Architecture and population of IDR. IDR (https://idr.openmi-
croscopy.org) was built using open-source OMERO17 and Bio-
Formats24 as a foundation. Deployments are managed by Ansible 
playbooks along with re-usable roles on an OpenStack-based 
cloud contained within the EMBL-EBI Embassy resource. Data 
sets (Table 1) were collected by shipped USB drive or transferred 
by Aspera. Included data sets were selected according to the crite-
ria defined by the Euro-BioImaging/Elixir Data Strategy concept 
of reference images (http://www.eurobioimaging.eu/content-
news/euro-bioimaging-elixir-image-data-strategy), which states 
that image data sets for publication should be related to published 
studies, linked as much as possible to other resources and candi-
dates for reuse, reanalysis and/or integration with other studies.

Experimental and analytic metadata were submitted in spread-
sheets (CSV, XLS), PDF or HDF5 format or a MySQL database, 
each using its own custom format. We converted these custom 
formats to a consistent tabular format inspired by the MAGE and 
ISA-TAB specifications21,22 and combined them into a single CSV 
file using a custom script and imported into OMERO. Imaging 

metadata and binary data were imported into OMERO using 
Bio-Formats. Experimental and analytic metadata were stored 
using OMERO.tables, an HDF5-backed tabular data store used 
by OMERO. For each data set, metadata that were valuable for 
querying and search were copied to OMERO’s key-value-based 
Map Annotation facility23. This means that different metadata 
types and elements can be accessed using different parts of the 
OMERO API, depending on the search and querying capabili-
ties they require. For more information on the construction of 
queries, see Supplementary Note.

Code availability.  All software for building and running  
the IDR and reading metadata of the IDR data sets is open  
source and available at https://github.com/IDR and https://github.
com/openmicroscopy. The custom scripts used to combine meta-
data into a single CSV files are available at https://github.com/
IDR/idr-metadata.

Data availability. All data sets described in this paper are  
available at https://idr.openmicroscopy.org.

https://idr.openmicroscopy.org
https://idr.openmicroscopy.org
http://www.eurobioimaging.eu/content-news/euro-bioimaging-elixir-image-data-strategy
http://www.eurobioimaging.eu/content-news/euro-bioimaging-elixir-image-data-strategy
https://github.com/IDR
https://github.com/openmicroscopy
https://github.com/openmicroscopy
https://github.com/IDR/idr-metadata
https://github.com/IDR/idr-metadata
https://idr.openmicroscopy.org


AmenDments
https://doi.org/10.1038/s41592-018-0169-x

Publisher Correction: Image Data Resource: a bioimage data integration and publication 
platform
Eleanor Williams, Josh Moore, Simon W Li, Gabriella Rustici, Aleksandra Tarkowska, Anatole Chessel   , Simone Leo, 
Bálint Antal, Richard K Ferguson, Ugis Sarkans   , Alvis Brazma, Rafael E Carazo Salas and Jason R Swedlow   

Correction to: Nature Methods https://doi.org/10.1038/nmeth.4326, published online 19 June 2017

This paper was originally published under standard Nature America Inc. copyright. As of the date of this correction, the Resource is 
available online as an open-access paper with a CC-BY license. No other part of the paper has been changed.

Published: xx xx xxxx 
https://doi.org/10.1038/s41592-018-0169-x

Nature Methods | www.nature.com/naturemethods

http://orcid.org/0000-0002-1326-6305
http://orcid.org/0000-0001-9227-8488
http://orcid.org/0000-0002-2198-1958
mailto: 
https://doi.org/10.1038/nmeth.4326
https://doi.org/10.1038/s41592-018-0169-x
http://www.nature.com/naturemethods

	41592_2018_169.pdf
	Publisher Correction: Image Data Resource: a bioimage data integration and publication platform




