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DNA–protein cross‑link repair: what do we 
know now?
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Abstract 

When a protein is covalently and irreversibly bound to DNA (i.e., a DNA–protein cross-link [DPC]), it may obstruct any 
DNA-based transaction, such as transcription and replication. DPC formation is very common in cells, as it can arise 
from endogenous factors, such as aldehyde produced during cell metabolism, or exogenous sources like ionizing 
radiation, ultraviolet light, and chemotherapeutic agents. DPCs are composed of DNA, protein, and their cross-linked 
bonds, each of which can be targeted by different repair pathways. Many studies have demonstrated that nucleotide 
excision repair and homologous recombination can act on DNA molecules and execute nuclease-dependent DPC 
repair. Enzymes that have evolved to deal specifically with DPC, such as tyrosyl-DNA phosphodiesterases 1 and 2, 
can directly reverse cross-linked bonds and release DPC from DNA. The newly identified proteolysis pathway, which 
employs the proteases Wss1 and SprT-like domain at the N-terminus (SPRTN), can directly hydrolyze the proteins in 
DPCs, thus offering a new venue for DPC repair in cells. A deep understanding of the mechanisms of each pathway 
and the interplay among them may provide new guidance for targeting DPC repair as a therapeutic strategy for 
cancer. Here, we summarize the progress in DPC repair field and describe how cells may employ these different repair 
pathways for efficient repair of DPCs.
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Background
DNA in eukaryotic cells is coated with proteins and 
forms a highly compact and dynamic chromatin struc-
ture. Interactions between DNA and proteins are impor-
tant for numerous cellular processes, such as cell division, 
transcription, and replication. These interactions are 
mostly transient and dynamic, guaranteeing that these 
remarkable complex reactions occur in a time- and space-
regulated manner. However, proteins can be accidently 
covalently linked with DNA molecules, which can block 
not only interactions between other proteins and DNA 
but also DNA transactions that must slide-through DNA 
molecules. We call this covalent, irreversible binding of 

protein to DNA a DNA–protein cross-link (DPC), which 
is considered a type of DNA damage.

The first report of DPCs in living cells was in 1962, 
when researchers found that the extractability of bacte-
rial DNA from these cells after ultraviolet irradiation 
decreased in a dose-dependent manner [1]. It was real-
ized later that DPCs can be induced by a lot exogenous 
and endogenous agents, such as ionizing radiation, ultra-
violet light, metals and metalloids, aldehyde, and chemo-
therapeutic drugs [2–5]. These agents induce DPCs via 
distinct chemical mechanisms, resulting in various types 
of DPCs [2]. These covalently DNA-bound proteins pose 
a physical challenge to all types of DNA transactions and 
are therefore harmful to cells. Thus, knowing how DPCs 
form in different situations, the consequences of DPCs, 
how cells deal with DPCs, and how we can use the under-
lying knowledge for cancer therapy is important.

Open Access

Cell & Bioscience

*Correspondence:  jchen8@mdanderson.org
Department of Experimental Radiation Oncology, The University of Texas 
MD Anderson Cancer Center, Houston, TX, USA

http://orcid.org/0000-0002-1493-2189
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-019-0366-z&domain=pdf


Page 2 of 10Zhang et al. Cell Biosci            (2020) 10:3 

Depending on the properties of DPCs, which are 
diverse, cells employ different repair pathways to deal 
with them. Investigators have shown that nucleotide 
excision repair (NER) and homologous recombination 
(HR) target the damaged DNA and remove DPCs with 
different size limits for proteins [6–11]. Direct rever-
sal of specific DPCs by hydrolysis, chelation, and tar-
geted enzymes like tyrosyl-DNA phosphodiesterase 1 
(TDP1) and TDP2 were also reported [12]. However, 
repair mechanisms that target covalently bound pro-
teins were not clear until the discovery of the proteases 
Wss1 in yeast and SprT-like domain at the N-terminus 
(SPRTN) in humans [13–18]. Wss1 and SPRTN, which 
is also known as C1orf124, SPARTAN, or DVC1 (DNA 
damage-targeting VCP p97 adaptor C1orf124), can 
directly degrade proteins that are covalently bound to 
DNA and allow other repair factors to access the dam-
age sites. Studies have also implicated involvement 
of proteasomes in the degradation of the covalently 
bound proteins [19, 20], but the detailed mechanism of 
how it functions remains unclear. Herein we summa-
rize the progress in the DPC repair field and describe 
how cells may employ these different repair pathways 
for efficient repair of DPCs.

Types of DPCs
Unlike other types of DNA lesions, DPCs can be pro-
duced by any nuclear proteins that are located in the 
vicinity of DNA and therefore could be cross-linked with 
DNA [21, 22]. Based on the properties of cross-linked 
proteins, DPCs can be classified as enzymatic or nonen-
zymatic (Fig. 1) [23, 24].

Enzymatic DPCs
Many DNA-related enzymatic reactions produce inter-
mediates in which transient covalent linking of DNA 
with an enzyme occurs. Typically, the enzymes involved 
in such reactions are DNA topoisomerases (TOPs), DNA 
polymerases, DNA methyltransferases, DNA glycosy-
lases, or apurinic or apyrimidinic lyases (Fig. 1) [25–27]. 
Generally, these intermediates are not stable, and the 
covalent linking can be reversed very quickly. However, 
under certain circumstances, such transient intermedi-
ates can be trapped, thereby forming stable DPCs. The 
most well-known enzymatic DPCs are the covalent links 
between DNA and TOPs. Specifically, TOP1 relieves 
the torsional stress of DNA supercoiling by cleaving on 
a single strand of DNA. The 3′ end of the resulting sin-
gle-strand break is covalently bound to TOP1, whereas 
the 5′-OH end is free and can rotate around the intact 
DNA strand to release the torsional stress. Afterward, 
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Fig. 1  DPCs can be categorized as nonenzymatic or enzymatic based on the properties of the cross-linked proteins. Any proteins located in the 
vicinity of DNA can result in nonspecific DPCs triggered by various agents, including reactive compounds like aldehydes, metal ions, and several 
types of radiation. These are defined as nonenzymatic DPCs. Also, many DNA-related enzymatic reactions produce intermediates in which transient 
covalent linking between DNA and the enzyme occurs. Enzymes, such as DNA TOPs, DNA polymerases, and DNA methyltransferases, can be 
trapped and therefore form stable DPCs under certain circumstances. These are defined as enzymatic DPCs
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TOP1 catalyzes annealing of the single-strand break and 
is then released from DNA. However, TOP1-dependent 
annealing of single-strand breaks can be easily inhib-
ited because successful ligation of the breaks can only 
be achieved if the two DNA ends or strands are properly 
aligned. This means that any distortion of the DNA struc-
ture that disturbs the alignment of DNA strands will lead 
to permanent trapping of TOP1 and therefore formation 
of a stable DPC at the site of the single-strand break. Typ-
ically, such distortion of DNA strands can be caused by 
nearby DNA lesions like abasic sites. Alternatively, small 
molecules like camptothecin and its derivatives used in 
chemotherapy may prevent ligation of these strands [28]. 
Similarly, TOP2 can be trapped in DNA and contribute 
to the formation of DPCs [29]. Because TOP2 induces 
double-strand breaks (DSBs), the TOP2-associated DPCs 
are generally located at the terminal ends of DSBs. There-
fore, enzymatic DPCs are normally accompanied by DNA 
lesions, such as single-strand DNA breaks for TOP1 and 
DSBs for TOP2.

Nonenzymatic DPCs
Besides particular enzymes surrounding DNA strands, 
other proteins located in the vicinity of DNA can result 
in nonspecific DPCs under certain circumstance (Fig. 1). 
Cross-linking of proteins with DNA to form these non-
enzymatic DPCs can be triggered by various agents, 
including reactive compounds like aldehydes, metal ions, 
and several types of radiation [3, 30–33]. Regarding alde-
hydes, formaldehyde (FA) is generated from histone dem-
ethylation [30], and acetaldehyde is a metabolic product 
of ethanol oxidation [34]. FA produces DPCs by forming 
methylene bridges between DNA bases and nucleophilic 
amino acid residues [30, 35, 36]. The mechanisms under-
lying ionizing radiation-induced DPC formation are 
unclear, but researchers have suggested that this kind of 
DPC formation has important clinical potential [37–39]. 
As far as we know, ionizing radiation leads to radiolysis 
of water molecules, which results in high levels of free 
radicals and reactive oxygen species in a locally restricted 
environment. These highly reactive species trigger multi-
ple types of DNA lesions, including DPCs. Nonenzymatic 
DPCs normally involve proteins attached to undisrupted 
DNA strands and are therefore very different from enzy-
matic DPCs, especially TOP-associated DPCs.

Mechanisms of DPC repair
As stated above, DPCs are composed of DNA, protein, 
and cross-linked bonds of them [40] and can arise via 
different mechanisms, which results in diversity of any 
of the three DPC components. Cells likely cannot detect 
DPCs using highly specific sensors. Several repair path-
ways are reported to be involved in the repair of DPCs 

[12, 23, 24, 33, 40, 41]. Below we summarize these repair 
pathways, placing them in three categories based on the 
DPC components they target (Fig. 2).

Nuclease‑dependent repair mechanisms targeting DNA 
molecules: NER, HR, and others
The first insight into the involvement of NER and HR 
in DPC repair came in early genetic studies of Escheri-
chia coli. By characterizing the survival and mutagenic 
effects of DPC-inducing agents like FA and 5-aza-2′-
deoxycytidine, researchers found that uvrA and recA 
mutants, which are defective in NER and HR, respec-
tively, were sensitive to FA-based treatment [42, 43]. 
However, the recA but not the uvrA mutants were sen-
sitive to treatment with 5-aza-2′-deoxycytidine [44, 45]. 
Later, several lines of biochemical and genetic evidence 
further demonstrated that the NER and HR pathways 
cooperate closely but commit differentially to DPC repair 
[9, 10]. NER repairs DPCs with cross-linked proteins 
smaller than 12–14  kDa, whereas HR mainly repairs 
oversized DPCs. The limitation of NER in repairing over-
sized proteins is determined by the loading efficiency of 
UvrB, which influences the incision efficiency of DNA 
by UvrABC complex during NER [10]. Similarly, genetic 
studies with yeast demonstrated the involvement of 
the NER and HR pathways in the repair of FA-induced 
DPCs, with NER having a dominant role in repair follow-
ing treatment with acute high doses of FA and HR aiding 
repair following treatment with chronic low doses of FA 
[6]. NER also seems to eliminate particular types of DPCs 
in mammalian cells [11, 46]. However, because the size 
of the cross-linked protein in NER based DPC removal 
is limited to 8–10  kDa, employment of NER alone in 
repairing DPCs in  vivo is limited [47]; preprocessing of 
the cross-linked protein by a proteasome or protease may 
be required.

The involvement of HR in DPC repair seems to be 
conserved in mammalian cells [48, 49]. Mammalian 
cells treated with FA accumulate DSBs and RAD51 
foci and also have increased rates of sister chromatin 
exchange events, all of which indicate an activated HR 
pathway [50]. Unlike with the direct digestion of DNA 
around DPCs by NER, evidence of the function of HR 
regarding intact DPCs is lacking. The involvement of 
HR in repair of intact DPCs likely depends on the for-
mation of DSBs near DPCs. One example for this is 
the MRE11, RAD50, and NBS1 (MRN) complex [51], 
which is an important nuclease complex in the initia-
tion of resection of the HR pathway. Use of the MRN 
complex in resolving DNA ends correlates with its 
evolutionally conserved role in DPC repair [7, 52–54]. 
In particular, repair of antitumor agent-induced TOP-
DNA cross-links in T4 bacteriophages was dependent 
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on the MR complex (i.e., gp46/47) [52, 53]. Also, the E. 
coli SbcCD (MR) complex was able to nucleolytically 
process protein-bound DNA ends [54]. Similarly, in 
yeast, Mre11-deficient strains were highly sensitive to 
treatment with TOP inhibitors [55]. In addition, DSBs 
with proteins covalently bound to the 5′ termini ends 
generated by Spo11 during meiotic recombination were 
endonucleolytically cleaved by the Mre11/Rad50/Xrs2 
(homologs of MRN) complex, resulting in the release 
of Spo11 attached to an oligonucleotide [7, 56–58]. As 
a note, the yeast meiotic specific protein Spo11 shares 
sequence homology with archaeal topoisomerase VI 
and reacts just like topoisomerase to generate Spo11-
DNA intermediate. Similarly, biochemical analysis of 
Xenopus egg extracts demonstrated the cooperation 
of the MRN complex, CtIP, and BRCA1 in removal of 
Top2-DNA covalent adducts and subsequent resection 
of DSB ends [59]. Consistent with these observations, 
the MRN complex also facilitates removal of TOP2-
DNA covalent adducts from mammalian cells [60, 61]. 
However, deletion of MRE11 in mammalian cells by 

small interfering RNA did not increase the total num-
ber of DPCs formed in vivo under unperturbed condi-
tions [16], demonstrating that multiple pathways may 
be involved in the processing and repair of these DPCs.

The nuclease-dependent DPC repair mechanisms tar-
geting DNA molecules are restricted by the accessibility 
of nucleases to substrates. Large proteins (> 8–10 kDa) 
can block loading of the NER repair machinery and 
reduce the incision efficiency of NER nucleases. Pre-
processing pathways that can reduce the protein size 
or relax the structure of bound proteins may be needed 
before the NER pathway can access and repair these 
DPCs. Additionally, DPCs without any DNA ends can-
not be recognized by an MRN-directed HR pathway. 
Prenucleolytic cleavage of DNA by other pathways, 
such as NER, may produce a substrate that can be 
subsequently repaired by the HR pathway. Therefore, 
evaluating the participation of NER and/or HR in DPC 
repair is critical, as their involvement in this repair may 
vary according to the type of DPC.

DPC

• Proteolysis-dependent DPC repair

• Direct cross-link hydrolysis

• Nuclease-dependent DPC repair
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Fig. 2  DPCs are composed of DNA, protein, and their cross-linked bonds, which can be targeted by different repair pathways. NER and HR 
are nuclease-dependent pathways that can directly cleave DNA molecules. The chemical bond between TOP1/TOP2 and DNA can be directly 
hydrolyzed by TDP1 and TDP2/ZNF451. Also, proteasomes, SPRTN/Wss1, and ACRC/GCNA-1 are related to proteolysis-dependent removal of 
covalently bound proteins
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Hydrolysis of the chemical bond between proteins 
and DNA by TDP1 and TDP2/ZNF451
As mentioned above, the chemical bonds between pro-
teins and DNA in DPCs are quite diverse, which makes 
involvement of a specific enzyme in reversing each type 
of covalent bonds impossible. However, some types of 
enzymatic DPCs occur frequently, and cells have evolved 
specific enzymes to induce direct hydrolysis of these 
chemical bonds. For example, TDP1 and TDP2 are two 
enzymes that can specifically reverse covalent bonds of 
DNA with TOP1 and TOP2, respectively [12].

Researchers first identified TDP1 in yeast based on 
its activity in hydrolyzing phosphotyrosyl bonds at the 
3′ ends of DNA [62, 63]. Also, studies demonstrated 
that TDP1 repairs covalent TOP1-DPCs in  vivo [63, 
64]. TDP1 is conserved in eukaryotic cells, and defi-
ciency of TDP1 confers sensitivity to TOP1 inhibitors 
in cells and in organisms ranging from yeast to humans 
[64–71]. TDP1 not only can hydrolyze 3′-tyrosine but 
also is active against a wide range of other 3′ DNA end-
blocking adducts, such as those produced by oxidative 
DNA damage [12]. TDP1 functions as a monomer and 
processes its substrates via formation of transient cova-
lent intermediates [72, 73]. After hydrolysis by TDP1, the 
DNA has a 3′-phosphate end, which must be further pro-
cessed by polynucleotide kinase phosphatase to generate 
a 3′-hydroxyl end that can be extended by polymerases. 
Mutations in the TDP1 catalytic domain result in accu-
mulation of TDP1-DNA intermediates and lead to the 
rare autosomal recessive neurodegenerative disease spi-
nocerebellar ataxia with axonal neuropathy [69, 74].

Researchers discovered the function of TDP2 in 
repairing DPCs in a genetic screen designed to identify 
suppressors of camptothecin sensitivity in tdp1- and 
rad1-deficient yeast cells with expression of human 
cDNAs [75]. TDP2 exhibited prominent activity toward 
5′-tyrosyl DNA ends [75, 76], and cells deficient in TDP2 
were hypersensitive to treatment with TOP2 inhibitors 
[75–78]. Although investigators have broadly identified 
homologs of TDP2 in eukaryotic cells, yeast homologs 
have yet to be discovered. Unlike for TDP1, two diva-
lent metals are required for TDP2′s catalytic activity, 
and TDP2 does not form covalent-linked intermediates 
[75, 79, 80]. TDP2 generates 5′-phosphate DNA ends, 
which can be directly processed by ligases. Homozy-
gous mutations of the TDP2 gene were associated with 
spinocerebellar ataxia autosomal recessive 23, a disease 
characterized by intellectual disability, seizures, and 
ataxia [77].

Similar to the nuclease-dependent DPC repair path-
ways, TDP1 and TDP2 are restricted by the accessibility 
to substrates, which are easily buried by covalently bound 
proteins. Both TDP1 and TDP2 were unable to remove 

full-length TOP1 or TOP2 and needed prehydrolysis of 
these proteins by a proteasome [77, 81–84]. However, 
a recent study demonstrated that the small ubiquitin-
related modifier (SUMO) ligase ZATT (ZNF451) can 
mediate direct resolution of the TOP2-DNA covalent 
complex (TOP2-cc) by TDP2 [85]. Researchers showed 
that ZNF451 can directly bind to and SUMOylate TOP2-
cc, which enhances the hydrolase activity of TDP2 and 
promotes its efficient recruitment to damage sites [85]. 
Further studies are needed to identify any other mecha-
nisms of promoting the direct hydrolytic activity of TDP1 
and TDP2 toward TOP1-cc and TOP2-cc, respectively.

Proteolysis‑dependent repair mechanisms targeting 
cross‑linked proteins: proteasomes, SPRTN/Wss1, 
and acidic repeat‑containing protein/germ cell nuclear 
antigen‑1
Proteolysis of covalently bound proteins during DPC 
repair has been observed for quite some time [19, 81, 84, 
86, 87] and originally attributed to the function of protea-
somes. The 26S proteasome is the principle proteolytic 
machine for regulated protein degradation in eukaryotic 
cells [88, 89]. Normally, proteins are marked by polyubiq-
uitin chains before they are recognized and degraded by 
proteasomes [88, 89]. Indeed, researchers observed ubiq-
uitination of TOP1 after treating cells with TOP1 inhibi-
tors [81, 87, 90]. Also, blockage of proteasome activity 
by inhibitors like MG132 and lactacystin hindered the 
proteolysis of TOP1-cc [81, 87, 90]. Furthermore, degra-
dation of TOP1 was blocked when the E1 ubiquitin-acti-
vating enzyme was inactivated in ts85 cell lines [81, 87, 
90]. Investigators also observed proteasome-dependent 
degradation for of TOP2-cc [84] and FA-induced DPCs 
[19]. However, deficiency of cytosolic ATP-dependent 
proteases in bacteria, which are the counterparts of 
eukaryotic proteasomes, did not affect cell survival fol-
lowing treatment with FA or 5-aza-2′-deoxycytidine [10]. 
A study using Xenopus egg extract demonstrated that 
inhibition of proteasome activity had no obvious effect 
on DPC repair in  vitro, but that adding ubiquitin-vinyl 
sulfone, a deubiquitylation enzyme inhibitor, blocked the 
degradation of proteins in DPCs [91]. Moreover, adding 
free ubiquitin back to the reaction restored the destruc-
tion of proteins in DPCs [91]. Therefore, the authors 
concluded that the presence of free ubiquitin but not 
the activity of deubiquitylation enzymes or proteasomes 
is required for the repair of DPCs. These contradictory 
conclusions may be due to the use of proteasome inhibi-
tors for the experiments, which not only inhibit protea-
some activity but also deplete the free ubiquitin pool 
that may affect other ubiquitin-dependent functions. 
More recently, a study using an in vitro DPC repair sys-
tem identified the accumulation of proteasome proteins 
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on replicating DPC plasmids and found that proteas-
ome-mediated degradation of polyubiquitinated DPCs 
requires the action of the E3 ligase TRAIP [92]. Further 
studies are needed to define the exact roles of proteas-
omes in DPC repair in vivo.

In recent years, investigators identified a more specific 
proteolytic pathway with the finding of Wss1 in yeast 
cells and SPRTN in mammalian cells. Wss1, a weak sup-
pressor of smt3-331, is a metalloprotease that was first 
linked with the SUMO pathway in yeast [93, 94]. The dis-
covery of Wss1 functions in DPC repair came in a syn-
thetic interaction screening of a tdp1-knockout yeast 
strain [13]. Researchers found that co-deletion of wss1 
and tdp1 led to extremely slow growth of yeast cells and 
hypersensitivity to camptothecin treatment, which could 
be relieved by deletion of Top1 [13]. Further in vitro bio-
chemical studies showed that Wss1 can cleave the DNA-
binding protein Top1, histone H1, high mobility group 
protein 1, and itself in a DNA-dependent manner. Cells 
lacking wss1 were hypersensitive to FA-based treatment. 
Additionally, interaction studies demonstrated that Wss1 
works with Cdc48 in processing genotoxic SUMO conju-
gates [13, 95]. Recent report also indicated the involve-
ment of Wss1 in DNA replication stress response [96]. 
They found that deletion of wss1 in yeast sensitized cells 
to hydroxyurea-based treatment and that further dele-
tion of another protease, ddi1, made the cells even more 
sensitive to this treatment, suggesting a strong genetic 
interaction between wss1 and ddi1 [96, 97]. However, 
whether the proteolytic activity of Wss1 is required for its 
involvement in replication stress response has yet to be 
addressed.

In a bioinformatic analysis based on sequence simi-
larity and domain organization, researchers specu-
lated that SPRTN is a functional homolog of Wss1 [24]. 
Both SPRTN and Wss1 contain a protease domain with 
a conserved HEXXH active site and harbor the motif 
responsible for interaction of the protein with the segre-
gase Cdc48 (p97 in higher eukaryotes). Moreover, both 
Wss1 and SPRTN contain modification-directed bind-
ing domains, a SUMO-interacting motif, or the ubiquitin 
interaction domain UBZ, respectively. SPRTN also har-
bors a proliferating cell nuclear antigen (PCNA)-interact-
ing motif (PIP box), which directs its binding to PCNA. 
Indeed, more recent studies revealed a similar function of 
SPRTN in proteolysis of proteins on DPCs [14–18].

However, before discovery of its function in DPC 
repair, SPRTN was first characterized as a PCNA inter-
acting protein involved in translesion synthesis [98–104]. 
SPRTN can be recruited to DNA damage sites via a 
PIP box and UBZ domain [98–104]. Conflicting results 
showed the dependence of damage-induced SPRTN 
localization on RAD18 and PCNA ubiquitin [100–102, 

104] and the independence of this localization on them 
[98, 99]. Knockdown of SPRTN sensitized cells to treat-
ment with ultraviolet radiation and increased mutagen-
esis during replication of ultraviolet radiation-damaged 
DNA [98–104]. SPRTN also interacts with VCP/p97 via 
the SHP domain [98–104]. Whether SPRTN promotes 
the recruitment of Polη to damage sites (TLS polymer-
ase) [101, 102] or its release from damage sites [98, 99] is 
under debate.

Notably, biallelic germline mutations in SPRTN have 
caused Ruijs–Aalfs syndrome, a human autosomal reces-
sive disorder characterized by genomic instability and 
early-onset hepatocellular carcinoma [105]. Also, SPRTN 
insufficiency in mice recapitulated some of the character-
istics of human patients with Ruijs–Aalfs syndrome, such 
as chromosomal instability, premature aging, and early-
onset age-related phenotypes [17, 106]. In  vivo studies 
revealed that SPRTN-deficient cells are hypersensitive 
to treatment with DPC-inducing agents, are defective in 
removing DPCs, and accumulate nonspecific and TOP-
involved DPCs in vivo due to defective protease activity 
[14–18]. In vitro biochemical assays further proved that 
SPRTN is a protease that can degrade histones, TOP, and 
itself in a DNA-dependent manner [14–18]. Studies also 
suggested that SPRTN travels with the replication fork 
and removes DPCs depending on the presence of DNA 
replication [16, 91]. Furthermore, the protease activity 
of SPRTN is tightly regulated with a switch that depends 
on its DNA binding, ubiquitination, and autocleavage 
[14–18]. Both single- and double-stranded DNA can acti-
vate the protease activity of SPRTN, with single-stranded 
DNA being more effective [14–16, 107]. SPRTN can be 
monoubiquitinated, but only unmodified SPRTN binds 
to chromatin [15]. Therefore, investigators proposed that 
DPCs somehow cause SPRTN deubiquitination, which 
promotes the binding of SPRTN to DNA and its activa-
tion [15]. Researchers have also observed autocleavage of 
SPRTN, which they proposed to be a mechanism of its 
tight regulation and prevention of unnecessary degrada-
tion of proteins other than DPCs on chromatin [14–16, 
107]. Whether some or all of these mechanisms are 
involved in the regulation of SPRTN function remains to 
be determined.

Structure analysis showed that the catalytic centers of 
Wss1 and SPRTN are highly solvent-exposed and lack 
a substrate-binding cleft, which can explain the lack of 
specificity of their activity [15, 107, 108]. A recent study 
reported that SPRTN can degrade nonubiquitylated 
DPCs [92]. Thus, how SPRTN acts with VCP/p97 segre-
gase and/or proteasomes must be investigated further.

A more recent study proposed that acidic repeat-con-
taining (ACRC) protein is an SPRTN-related protease 
[41]. It contains a conserved catalytic domain just as 
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those in Wss1 and SPRTN and is in proximity to SPRTN 
based on phylogenetic analysis results [41]. In a compre-
hensive proteomic profiling study aimed at characterizing 
SUMOylation response to DPC induction in human cells, 
researchers showed that ACRC protein interacted with a 
polySUMO chain and could be recruited to FA-induced 
foci, which was dependent on SUMOylation [109]. In 
addition, in Caenorhabditis elegans, the ACRC protein 
ortholog germ cell nuclear antigen (GCNA)-1 promoted 
survival after DPC induction [109]. Determining whether 
ACRC protein and GCNA-1 function as proteases in 
proteolysis of DPCs in vivo and how they may interplay 
with Wss1 and SPRTN requires further experimentation.

Even after proteolysis by a proteasome or Wss1/
SPRTN, DPCs are not fully removed from DNA strands 
[91]. Small peptides are left covalently bound to the 
DNA, which can be further processed by NER, HR, or 
TDP1/TDP2. In addition, bypass of peptide-DNA conju-
gates may rely on the translesion synthesis pathway [91].

Conclusions
The finding of specific proteases such as Wss1 and 
SPRTN in direct proteolysis covalently bound proteins 
inspires the current working hypothesis that a specific 
DPC repair pathway exists in vivo. Insightful mechanis-
tic studies of Wss1 and SPRTN may help uncover their 
“co-workers” in DPC repair and provide a comprehen-
sive understanding of this specific DNA repair pathway. 
Questions remain about how cells choose different repair 
pathways, including NER, HR, TDP1/TDP2, proteas-
omes, and Wss1/SPRTN, for DPC repair and how these 
pathways may interplay with each other. Given the criti-
cal roles of DPC repair in the physiological setting as well 
as following treatment with many antitumor modalities, 
DPC repair is likely a meaningful target for cancer treat-
ment, especially in combination with inhibition of other 
repair and/or checkpoint pathways.
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