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COVID-19 is associated with a large number of cardiovascular sequelae, including

dysrhythmias, myocardial injury, myocarditis and thrombosis. The Notch pathway is one

likely culprit leading to these complications due to its direct role in viral entry, inflammation

and coagulation processes, all shown to be key parts of COVID-19 pathogenesis. This

review highlights links between the pathophysiology of SARS-CoV2 and the Notch

signaling pathway that serve as primary drivers of the cardiovascular complications seen

in COVID-19 patients.
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INTRODUCTION

Beginning in December 2019, the world faced a challenging nemesis presented by a member of
the coronaviruses family, SARS-CoV2, later known as Coronavirus Disease 2019 or COVID-19
(1–3). First feared for its aggressive attack on the respiratory system (4, 5), it is now recognized
for its severe cardiovascular complications (6–8). These range from hemodynamic instabilities,
dysrhythmias, and thromboembolic events, to myocarditis, acute heart failure and cardiac arrest
(9, 10). Analyzing patient data from several countries, cardiovascular disease appears in two
contexts associated with COVID-19. First, studies have shown that pre-existing cardiovascular
disease increases the risk of COVID-19 infection and is indeed present in a high number of cases
(11–13). Second, COVID-19 patients develop cardiovascular complications during the course of
the disease (14, 15). Despite a clear connection with COVID-19 and the cardiovascular system, we
understand little about this relationship.

Notch signaling is a master regulator of cardiovascular function in both health and disease,
and has been linked to several biological processes mediating viral infections (16, 17). A recent
study by Rosa et al., characterized transcriptional signatures induced in a rhesus macaque model of
SARS-CoV2 and showed an increase in Notch signaling in the lungs of the macaques (18). Another
group studying human protein interactions with SARS-CoV2 using computational models, showed
that proteins interacting with the 5’-region of SARS-CoV2 RNA were associated with Notch2
receptor signaling (19). The Notch pathway is also implicated in the hypoxic response and in
coagulopathic processes, both of which are present in COVID-19 patients. These known roles
of the Notch pathway make this signaling pathway a likely player in the COVID-19-driven
cardiovascular complications.
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THE BEGINNING (VIRAL ENTRY)

The angiotensin converting enzyme 2 (ACE2) has been
established to play a significant role in SARS-CoV viruses
infectivity, including COVID-19, by binding to the viral spike
protein and facilitating entry into the host cell (20, 21). ACE2
has distinct roles in the body, ranging from amino acid
transportation and catalytic activities, to serving as functional
receptors for viruses like the coronaviruses. In the heart, it
is localized to cardiomyocytes, cardiac fibroblasts, epicardial
adipose tissue, and the coronary vascular endothelium. In the
lungs, it is expressed on the cell surface of the inner respiratory
tract, protecting against lung injury. This protective effect stems
from its negative regulation of the renin-angiotensin system
which leads to the inhibition of the vasoconstrictive, pro-
inflammatory angiotensin II (ANGII)—ANGII type 1 receptor
(AT1) axis (22–24). Its unique location in both organs combined
with its function make it a pivotal player in the pulmonary
pathogenicity of the virus and its associated cardiovascular
complications. Thus, ACE2 on one hand offers protection
against injury, while on the other hand facilitates viral entry.
Furthermore, upon binding of ACE2 to the viral particle,
the receptor itself becomes endocytosed by the cells causing
depletion of cell surface ACE2 and its mediated tissue protection
(25, 26). This dilemma and the realization of the importance of
ACE2 in maintaining cardiovascular homeostasis drove attempts
to manipulate the ACE2/ANGII axis to mitigate virus-induced
injury, while minimizing the negative effects on the protective
functions of ACE2 (20, 23). One solution for this problem and
an attractive target for vaccine development are the viral S-
proteins, which when targeted make the enzyme unable to bind,
preventing viral entry (21, 27).

Notch signaling has been known to interact with many viral
particles facilitating their infectivity (Table 1). Given that Notch
regulates various proliferative and differentiation events in cells,
it is no surprise that the pathway is an attractive target for viruses,
which are dependent on the cell cycle machinery of the cell.
Those viruses tap into the Notch pathway to ensure their own
survival (60–62). The first evidence that demonstrated Notch
pathway-viral interactions was reported for the Epstein-Barr
virus, which targets RBPJ (mouse)/CBF1 (human), the nuclear
effector of Notch (28, 63). Other examples include the human
papilloma virus (HPV), hepatitis B virus (HBV), and hepatitis
C virus (HCV). In the case of HCV, the Notch1 receptor has
been shown to facilitate nuclear localization of p65 in response
to tumor necrosis factor-alpha (TNF-α) in human hepatocytes,
leading to increased pathogenicity of the virus (64). Additionally,
the influenza virus has been shown to block the Notch ligand
Delta-like 1 (DLL1) causing a heightened inflammatory response
and decreased interferon-c levels, which leads to compromised
immunity against the virus. In contrast, macrophages were found
to enhance their DLL1 production during the course of infection
to protect against the same virus (32, 33, 65). In the case of
COVID-19, an interesting enzyme that could be linking Notch
and COVID-19 activation is FURIN. FURIN is a member of
the protein convertases family and is both an activator and a
direct target of Notch activity (66, 67). Its enzymatic activity has

been proven to be exploited by a variety of bacteria and viruses,
including measles, yellow fever, ebola, and avian influenza,
thereby facilitating their virulence and spread (68, 69). To discern
the potential role of FURIN in COVID-19, understanding the
structure of the viral S-glycoprotein is important. The S-protein
has two functional domains: one for receptor binding and the
other for mediating fusion of the viral particle with the cell
membrane. The S-protein must be cleaved by the protease to
expose these fusion sequences and allow cell entry. FURIN takes
on this role in coronaviruses including COVID-19 (70–72). Since
Notch1 has been shown to transcriptionally induce FURIN,
Notch signaling may indirectly lead to enhanced viral entry via
enhanced FURIN expression (73, 74).

In addition to having effects on viral infectivity, interestingly
both the Notch receptors and ACE2 receptor share a common
mechanism of activation through cleavage by the A disintegrin
and metalloproteinase (ADAM) family of enzymes, specifically
ADAM17 (75, 76). ADAM17 mediates ectodomain shedding
of ACE2 which can facilitate viral entry (77, 78). ADAM17
also activates the Notch signaling pathway via receptor
cleavage leading to increased viral infectivity through regulation
of FURIN. Therefore, Notch activity is indirectly involved
in COVID-19 infectivity through FURIN induction and
shared activation axis of ACE2, both of which aid in
viral entry.

THE CYTOKINE STORM

A balanced innate and adaptive host immunity is key for
an effective antiviral response, including activation of T cells,
macrophages, and production of various pro-inflammatory
cytokines. However, in case of COVID-19, this response becomes
heightened, causing a hyperinflammatory reaction known as
“The Cytokine Storm Syndrome” (14, 27). The cytokine storm
is one of the key factors causing cardiovascular complications
in COVID-19 patients. This is attributed to the resulting
inflammation-induced vascular injury, myocarditis, arrhythmia,
and destabilization of coronary artery plaques leading to
myocardial infarcts (79, 80). The common profile of a COVID-
19 patient with cytokine storm syndrome includes elevated
interleukin-6 (IL-6), IL-2 receptor, TNF-α, granulocyte-colony
stimulating factor, among others. IL-6 is secreted by activated
leukocytes, promotes differentiation of B lymphocytes and
production of acute phase proteins, and is important for
thermoregulation (14, 81).

The role of the Notch pathway in inflammation is well-
documented, where it has been shown to promote the pro-
inflammatory microenvironment (82–84). It is implicated in
macrophage polarization and contributes to amplification of
the inflammatory loop by promoting the M1 phenotype of
macrophages over the M2 phenotype (17, 85). Furthermore,
in macrophages, Notch1 directly binds the IL-6 promoter and
activates IL-6 transcription in response to interferon-γ (81, 86).
Additionally, IL-6 in turn increases the expression of the Notch
ligand DLL1, amplifying the Notch signal. This works as a
positive feedback loop that further drives the production of
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TABLE 1 | Reported link of the Notch signaling pathway to common viral infections.

Viral infection Link to notch References

Epstein-barr virus The Epstein-Barr virus nuclear antigen 2 (EBNA2) is tethered to promoters by targeting RBPJ, the nuclear effector of Notch.

Since EBNA2 has been proven to be partly interchangeable with Notch intracellular domain in activation of target genes

modulating differentiation processes, it is seen as a biological equivalent of an activated Notch receptor.

The Epstein-Barr virus-encoded latent membrane protein 2A (LMP2A) promotes cellular migration mediated by Notch

signaling by altering mitochondrial dynamics.

(28–31)

Influenza virus Macrophages are reported to enhance their Notch ligand DLL1 production in response to the viral infection to protect

against the virus.

Blocking DLL1 caused heightened inflammatory response and decreased interferon-c levels, leading to a compromised

immunity against the virus.

(32–34)

Respiratory syncytial

virus (RSV)

Notch signaling has been reported to contribute to the production of inflammatory cytokines induced by the virus in alveolar

macrophages.

Notch signaling communicates with the Toll-like receptor (TLR) pathway to fine-tune the innate inflammatory responses. In

studies where TLR pathway was activated, while Notch signaling was inhibited, RSV-enhanced respiratory disease (ERD)

was prevented.

(35, 36)

Human papilloma virus

(HPV)

Notch inhibition impairs epithelial differentiation, which is suggested to contribute to HPV replication and viral oncogenesis.

HPV8E6 protein inhibits Notch transcriptional activator complexes involving RBPJ and MAML at the Notch target genes,

decreasing Notch activity during keratinocyte differentiation.

HPV16E6 protein increases Notch levels in keratinocytes.

HPV16E6 potentiates Notch activation and differentiation without activating cellular arrest, entirely uncoupling cellular arrest

from increased differentiation.

(37–42)

Human T-cell leukemia

virus type 1 (HTLV-I)

Notch signaling promotes proliferation and tumor formation of HTLV-I-associated adult T-cell leukemia. (43, 44)

Hepatitis C virus (HCV) Notch signaling regulates T Helper 22 Cells in chronic HCV patients.

Notch1 receptor has been shown to facilitate nuclear localization of p65 in human hepatocytes in response to TNF-α,

leading to increased pathogenicity of the virus.

HCV NS3 protein leads to Notch activation by binding to SRCAP transcription factor.

HCV causes Notch-dependent modulation in miRNA-449a levels, leading to differential expression of the inflammatory

biomarker YKL40.

(45–48)

Hepatitis B virus (HBV) HBV increases Notch1 and TGF-β levels on intrahepatic T cells in cirrhosis, promoting fibrogenesis and disease

progression.

HBV X protein activates Notch signaling by increasing DLL4 and Notch1, promoting the growth of hepatocellular

carcinoma, in addition to increasing CREB-mediated activation of miR-3188.

HBV X protein causes Notch-dependent decrease in nuclear factor-kappa B (NF-κB) signaling.

Notch signaling contributes to hepatic inflammation in HBV infection by regulating IL-22-producing cells.

Notch signaling aids in transcription of HBV covalently closed circular DNA by a mechanism involving cAMP response

element-binding protein and E3 ubiquitin ligase-modulation.

In acute hepatitis B (AVH-B) infection, a complementary association between Notch1 and Hes1 in CD8+T cells was

reported.

In chronic hepatitis B (CHB) infection, repression of the Notch receptors mediates the immune response regulation in

patients who progress to cirrhosis and hepatocellular carcinoma.

(49–55)

Human

immunodeficiency virus

(HIV)

Notch signaling is activated in HIV-associated nephropathy, where Notch ligands (Jagged-1, Jagged-2, DLL1, and DLL4)

are all up in kidney tubules, while glomeruli show minimal ligand expression. Notch1 and 4 receptors are up in glomeruli,

and only Notch4 is expressed in tubules.

Notch inhibition results in improvement of kidney injury scores and renal functions, and blocks podocyte proliferation

induced by HIV proteins Nef and Tat.

(56–59)

more IL-6 (87, 88). Nitric Oxide Synthase (iNOS) expression is
linked to manifestation of the cytokine storm (89, 90). Direct
interaction between the Notch Intracellular Domain (NICD)
and TNF-α on the iNOS promoter has also been documented,
indicating multiple avenues by which Notch signaling drives
hyper-inflammation (91). Further, TNF-α itself has been shown
to induce expression of Notch1 and Notch4, in addition to
regulating NICD nuclear translocation, which leads to the
activation of Notch downstream mediators (92, 93).

This interplay between Notch and pro-inflammatory
processes makes the Notch pathway an attractive target

for reversing inflammatory events. Indeed, genetic and
pharmacological inhibition of Notch signaling was reported to
ameliorate disease progression in many inflammatory disease
models. These include rheumatoid arthritis, autoimmune
encephalomyelitis, and several models of infectious disease
(94, 95). In the case of COVID-19, the recommendation
to use corticosteroids was discouraged due to controversial
efficacy and reports showing exacerbation of patient symptoms.
Potentially targeting the Notch pathway to specifically block the
inflammatory loop re-enforced by IL-6 and TNF-α may present
a viable therapy for these cases (96–98).
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THE HYPOXIC RESPONSE

The hypoxic events in COVID-19 patients have been a mystery
to medical caretakers and physicians. This is due to the fact that
the patients display minimal visible distress, although clinical
oxygen levels are remarkably low (99). Its presentation defies
its pathophysiology, which initially led to its description of
“Happy Hypoxia” (100). Hypoxia is also linked to the thrombotic
events seen in these patients, which spirals quickly into more
severe cardiovascular complications such as myocarditis and
myocardial infarction (101–103).

The Notch pathway plays a significant role in hypoxic events
(104). Notch3 is induced under hypoxic conditions in the lungs
and vasculature. Notch3 deletion has been shown to protect
against the development of pulmonary arterial hypertension in
response to hypoxic stimulation (105, 106). Further, Notch3
was found to cooperate with the hypoxia-inducible factor-1
alpha (HIF-1α) (105, 107), a transcription factor upregulated
in hypoxia and inflammatory microenvironments and a master
regulator of oxygen homeostasis (108). HIF-1α also induces
the expression of two of the Notch ligands, DLL4 and
Jagged-1 (109–111). Another link between Notch signaling
and HIF-1α is through Notch1 receptor. As mentioned
previously, Notch1 receptor has been shown to promote
M1 macrophage polarization and switching of macrophage
metabolism to glycolysis. This is followed by induction of M1
gene transcription, coupled with an increase in mitochondrial
oxidative phosphorylation and generation of reactive oxygen
species (112). This in turn activates HIF-1α to induce M1
macrophage activation, in a type of positive feedback loop (111).

Additionally, enhanced Notch signaling has been linked
to structural changes in air sacs in the lungs that include
decreased septation of terminal alveoli, emphysematous patterns
and progressive fibrotic changes (113). Furthermore, Notch3
plays a critical role in regulating alveolar epithelium and
increased levels of Notch3 are associated with disruption of
differentiation processes and altered lung morphology (114).
Interestingly in COVID-19-associated hypoxia, the air sacs
do not fill up with fluid like in pneumonia, but also show
structural changes in the sacs that lead them to collapse (115,
116). Hence, Notch activation in COVID-19 patients is likely
directly exacerbating the hypoxic events by cooperating with
HIF-1α in addition to promoting structural defects in the
air sacs.

THE COAGULOPATHIC RESPONSE

The realization that COVID-19 causes hypercoagulopathy poses
more questions than answers, with studies showing severe
thrombotic manifestations, while others show postmortem lung
sections with extensive bleeding (117, 118). In a recent study by
Boonyawa et al. a 28% incidence of venous thromboembolism
was reported in COVID-19 patients in the intensive care
unit (119). Another study by Klok et al. found a 31%
incidence of combined deep vein thrombosis, pulmonary
embolism, and arterial thrombosis in critically ill patients
(120). Thus, there is an urgent need to understand the rate

of bleeding and thrombotic events associated with COVID-
19 coagulopathy.

Hypercoagulopathy is an important hallmark of
inflammation. In fact, pro-inflammatory cytokines are directly
involved in accelerating platelet hyperactivation and driving
thrombotic events, while impairing crucial physiological
anticoagulation pathways including antithrombin III, tissue
factor pathway, and the protein C system (121, 122). The
mechanisms involved in COVID-19 coagulopathy have
not been fully elucidated yet, but crosstalk between the
coagulation and the inflammatory systems is evident, with
at least four factors seeming to contribute to this condition
(123). First, the pro-inflammatory mediators such as IL-6
and IL-1β produced during the cytokine storm stimulate the
production of tissue factor on immune cells. This in turn
initiates the activation of the extrinsic coagulation cascade
(81, 124). Secondly, those pro-inflammatory mediators directly
activate the platelets themselves (125). Thirdly, a decrease in
plasminogen activator coupled with an increase in plasminogen
activator inhibitor suppresses the fibrinolytic system (126, 127).
Lastly, the damage caused to the endothelial cells by the
inflammatory reaction results in vascular homeostatic
imbalances, causing accelerated local thrombotic events in
addition to systemic coagulation defects. Of note is that this
damaged endothelium also binds platelets more readily due to
enhanced platelet-vessel wall interaction caused by the large von
Willebrand factor multimers released by damaged endothelial
cells (128).

Despite efforts by the scientific community to understand
COVID-19-associated coagulopathy, there is still a lot to
clarify regarding mechanisms involved and how to reverse
the resulting homeostatic imbalances. Previous studies by
Duarte et al. and Gough beautifully demonstrated a link
between the Notch pathway and the coagulation pathway
through fibroblast growth factor 1 (FGF1) (129, 130). These
studies utilized a soluble form of the Notch ligand Jagged-
1 to show the effect of Notch inhibition on FGF1 and the
coagulation cascade. This link between Notch signaling and
coagulation is supported by several previous findings. First, the
activation of the coagulation cascade by damaged tissue generates
thrombin, which activates the protease-activated receptor 1
(PAR1) and PAR1-dependent FGF1 expression and release.
Released FGF1 subsequently promotes angiogenesis and induces
Jagged-1 expression in the damaged tissue (131). Second,
Alagille syndrome patients, who primarily have mutations in
Jagged-1, show bleeding disorders (132). Consistent with this,
Jagged-1 null mice show hemorrhage during their embryonic
development (133, 134). Lastly, Jagged-1 was found to be
the FGF1 response gene responsible for FGF1-dependent
endothelial cell differentiation on fibrin matrices (131, 135).
Taken together, these studies indicate that there is a Notch-
dependent mechanism by which thrombin can regulate FGF1
secretion, which in turn contributes to thrombin’s activity, the
key protease of the coagulation cascade. Thus, through its
established role in both inflammation and coagulation, Notch
signaling seems likely responsible for exacerbating COVID-19-
associated coagulopathy.
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FIGURE 1 | Notch signaling and COVID-19 shared pathogenic events and resulted cardiovascular complications.

ENDOTHELIAL CELL INVOLVEMENT

The endothelium is a single layer of cells lining blood vessels,
constituting a barrier between the circulation and the rest of
the blood vessel wall. In addition, it is the source for several
vasoreactive substances responsible for blood vessel contraction
and relaxation such as endothelin and nitric oxide (136). Thus,
it is a key regulator of vascular homeostasis, and damage to this
layer can lead to loss of the homeostatic state and exacerbation
of disease conditions. Indeed, endothelial dysfunction shifts the
vascular equilibrium toward an inflammatory, pro-coagulant
state (137, 138). Coordination of leukocyte trafficking in
particular is critical for the inflammatory response. Under
physiological conditions, the endothelial cells prevent binding
and extravasation of leukocytes from the blood. However, under
disease conditions such as the case in COVID-19 patients,
the endothelial junctions are weakened and leaky, resulting in
facilitated exit of the leukocytes from the circulation into the
tissues (82, 93, 139). Interestingly, immunostaining studies have
shown the confinement of Notch4 receptors on endothelial cells
at the apical membrane. This localization makes Notch4 ideal
for receptor/ligand communication between the endothelial and
the inflammatory cells in the blood stream (140). In addition,
the Notch ligand DLL4 on the endothelium has been shown to
trigger a bidirectional Notch signaling between endothelial cells
and monocytes (93, 141).

Several reports have linked endothelial cells to SARS-
CoV2 pathology, where histological sections through hearts,
kidneys and lungs showed accumulation of both inflammatory
cells and viral particles within the endothelium (81, 142,
143). This COVID-19-associated endotheliitis could explain
the impaired circulatory function in the various vascular beds
and the clinical complications in COVID-19 patients (144–
146). Furthermore, endothelial cells express the ACE2 receptor,
the entry portal for the virus (147–150). This, coupled with
previous reports of development of autoantibodies against
endothelial cells after SARS-CoV1 infection, suggests that CoV2
infection of endothelial cells and their subsequent damage is a

prominent step in the pathogenesis of COVID-19 (151, 152).
Important to consider here is the discrepancy that exists between
current studies, where some advocate for the endothelial cell
hypothesis of COVID-19 pathology, which reinforces the idea
that endothelial cells are the origin for COVID-19-associated
cardiovascular impairments. In contrast, others promote a
pericyte-COVID-19 hypothesis, where pericytes are the main
contributors to disease progression. The studies that propose
the pericyte hypothesis are based on the fact that ACE2
expression in the heart is highest in pericytes, and in the
brain vasculature ACE2 is on vascular smooth muscle cells and
pericytes and not on the endothelium (121, 153). Although the
endothelial cell hypothesis seems to be more plausible according
to consequences of endotheliitis in COVID-19 patients, these
discrepancies highlight the importance of considering tissue type
in disease pathology.

CONCLUSIONS

COVID-19 is associated with a large number of cardiovascular
sequelae, including dysrhythmias, myocardial injury, myocarditis
and thrombosis. Many of these complications seem to be
linked to compromised signaling pathways in the patients,
including the Notch pathway (Figure 1). Notch signaling can
indirectly enhance viral entry through inducing FURIN, the
protease responsible for exposing the fusion sequences of the
viral S-protein. The established role of Notch signaling in
both inflammation and coagulation suggests its involvement
in COVID-19 cytokine storm and hypercoagulopathy, both of
which are main contributors to the cardiovascular complications.
Furthermore, Notch activation is known to exacerbate hypoxic
events by cooperating with HIF-1α in addition to enhancing
structural defects in the air sacs in the lungs, which together
may contribute to enhanced lung pathology in COVID-19
patients. Lastly, the suggested role of the endothelium in
COVID-19 cardiovascular impairments coupled with the specific
localization of Notch4 receptors on the apical membrane of
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the endothelium reinforces the idea that the Notch pathway
serves as a communication channel between endothelial and
inflammatory cells.

In summary, several scenarios can be considered regarding
the link between the Notch pathway and COVID-19-associated
cardiovascular events. COVID-19 may act upstream to increase
Notch signaling, leading to enhanced viral entry and associated
pathogenic processes. Alternatively, maladaptive responses of
Notch signaling due to COVID-19 infection may contribute to
the enhanced inflammatory, coagulopathic, and hypoxic events.
Both scenarios eventually lead to exacerbation of cardiovascular
impairments in COVID-19 patients that are Notch-associated.
Gamma-secretase inhibitors, which inhibit Notch receptor
cleavage have been used to attenuate Notch signaling in cancer
and Alzheimer disease (154, 155). These compounds, however,
are associated with significant toxicity. Alternatives include
Notch-specific antibodies and decoys. Antibodies allow blockade
of individual Notch components, thus are not associated with

complications seen with the pan inhibitors (156–158). Notch
decoys also selectively block Notch receptors by a unique
mechanism that involves mimicking the Notch extracellular
domain of a specific Notch ligand or receptor (159, 160). Finally,
uncovering new aspects of a Notch-COVID-19 relationship
might helpmitigate cardiac and pulmonary complications caused
by the SARS-CoV family of viruses.
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