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Abstract: Wood chips are extensively utilised as raw material for the pulp and bio-fuel industry,
and advanced material analyses may improve the processes in utilizing these products. Electrical
impedance spectroscopy (EIS) combined with machine learning was used in order to analyse
heartwood content of pine chips and bark content of birch chips. A novel electrode system integrated
in a sampling container was developed for the testing using frequency range 42 Hz–5 MHz. Three
electrode pairs were used to measure the samples in x-, y- and z-direction. Three machine learning
methods were used: K-nearest neighbor (KNN), decision tree (DT) and support vector machines
(SVM). The heartwood content of pine chips and bark content of birch chips were classified with an
accuracy of 91% using EIS from pure materials combined with a k-nearest neighbour classifier. When
using mixed materials and multiple classes, 73% correct classification for pine heartwood content
(four groups) and 64% for birch bark content (five groups) were achieved.
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1. Introduction

The variety of solid bio-based raw materials has rapidly extended during the last decade. This
means also a large variation of quality and specific properties. Wood chips are extensively utilised as a
raw material for many bio-refining industrial processes, including bio-energy production, pulp and
liquid bio-fuel industry. High quality wood chips used for pulp production are commonly known as
pulp chips. If the properties of chip materials are known beforehand, the processes may be improved,
for example by adjusting the amount of chemicals. Large amount of resins or bark may cause problems
in bio-refining processes.

To the extent of our knowledge, there is no feasible on line technique to determine the
extractive content of wood chips [1–5]. Perhaps the main challenge in the measurement is the
inhomogeneous nature of the material and temperature variation starting below zero in Northern
countries. Near-infrared/infrared (NIR/IR) techniques have been used for laboratory analyses of
extractives and for on line moisture content (MC) measurement of wood chips. The drawback of the
techniques is that often the calibration is very specific and only the surface layer can be measured. On
the contrary, it is possible to obtain information from a relevant volume of biomass by EIS technique,
and not only from the surface.

Electrical impedance spectroscopy (EIS) has been widely used to study different types of biological
materials [6]. One of the main applications has been to study fundamental electrical properties of
materials and correlate these properties with material structure. It may be used to investigate the
dynamics of bound or mobile charge in the bulk or interfacial regions of liquid or solid materials (e.g.,
ionic or insulator materials). Many processes take place throughout the material when it is electrically
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stimulated and lead to the overall electrical response. A general EIS-based material-electrode system
may be analysed using an exact mathematical model based on a plausible physical theory that
predicts theoretical impedance or by an equivalent circuit model. In impedance spectroscopy analysis,
the changes in concentrations between different types of charge carriers and the effect of changing
microstructure are compared with impedance responses, and different types of electrical models are
studied for describing the effect. An emphasis is put on the models with distributed elements, which
can be used for estimation of different types of resistance and capacitance distributions.

With the EIS method, electrodes are used to create dynamic electric field in material, measure the
complex electrical impedance at a specified frequency range and determine the properties of material
in the effective electric field. The results may be utilised in further processing. Thus, it is possible to
classify the sample according to its properties at an early stage of processing in forest industries, in
order to increase the efficiency of wood processing and use.

The effect of various properties of wood on EIS has been widely studied [7–13]. EIS has been
applied to tree physiology research, for example, the cell structure and temperature acclimation of
trees have been extensively studied [14–16], but also other studies concentrating on physiology based
factors have been published [17]. The distributed element circuit-based models were found to be
most useful in the analyses [18]. Low frequency EIS has been used for wood decay, pore distribution
and oil content analyses [19,20]. Recent studies include EIS applications for roots and wood-based
composites [21,22].

The extractive content is significantly higher in birch bark compared with birch stem wood [23].
Pine heartwood contains substantially higher amounts of extractives compared to pine sapwood.
Extractives of pine heartwood have a significant effect on electrical properties and they can be analysed
using EIS [9,10,24–26]. The correlation is clear both in fresh and dried wood and according to the
earlier studies, resin acid content may be determined using EIS.

Many classification and machine learning methods have been used for measurement data analyses.
Recent studies include machine learning with optics, NIR and X-rays [27–32]. Electromagnetic waves
using radio and microwave frequencies have been used with machine learning based classification
techniques [33,34]. The results show the potential of machine learning combined with electromagnetic
wave-based techniques for efficient non-destructive classification of biological materials.

Machine learning methods have also been applied for wood material classification. Successful
classification analyses using optics, NIR, microwaves and ultrasonic data have been published [35–39].
In a recent study, moisture content of wood chips has been studied using electro-magnetic waves
and support vector machines [40]. The most often used machine learning methods include Bayes,
neural networks, supported vector machine, decision tree and k-nearest neighbor classifiers. Typically
supervised classification methods have been used, including training and testing sets. Furthermore,
deep learning has been used for wood material classification [40].

To the best of our knowledge, the heartwood content or bark content of wood chips has not been
studied with EIS. In this study, EIS measurements were carried out in laboratory to analyse and classify
bio-based raw material properties including bark/stem wood and sapwood/heartwood ratios. The
main hypothesis was that with EIS and machine learning, these ratios could be determined, regardless
of the MC and density variations, which are known to affect the electrical properties of wood. The
underlying objective is to measure these ratios in the industry. This study is a preliminary step towards
developing an industrial on line measurement.

2. Materials and Methods

Birch (Betula pendula/Betula pubescens) and Scots pine (Pinus Sylvestris) logs were collected from
Northern Savo region in Finland in winter 2018. The pine material was cut from five logs including
both sapwood and heartwood. The sapwood and heartwood parts of the logs were separated and the
parts were cut to chips using Bosch AXT 25 TC shredder (Robert Bosch GmbH, Gerlingen-Schillerhöhe,
Germany). The heartwood and sapwood materials were blended carefully to obtain samples with
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heartwood content of 100%, 75%, 50%, 25% and 0%. From the six birch logs, the bark was separated
from the stem wood. Then the materials were mixed to get birch chip specimens with bark content of
100%, 75%, 50%, 25%, 0%. The pure materials are shown in Figure 1. The size distribution of the wood
samples were similar, but the bark samples included more small particles (Figure 1).
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Figure 1. Studied materials: (a) Pine sapwood; (b) Pine heartwood; (c) Birch chips; (d) Birch bark.

Electrical impedance (Z) can be considered a complex quantity, which consists of real (resistance R)
and imaginary parts (reactance X). Reactance can be represented in two forms, inductive and
capacitive. The impedance plane representation can be plotted as separated functions of frequency
(e.g., capacitance and conductance spectra) or in a complex plane with frequency as the parametric
variable. The measurements can be presented in the impedance plane by plotting the imaginary part
as a function of the real part.

The impedance measurements were carried out in a container (polypropylene, wall thickness 1.6
mm) with the measurement electrodes attached on the walls of the container. Prior to the impedance
spectrum measurements, the measurement container was weighed with a plastic bag (polyethylene,
thickness 10 µm) without sample chips. Then, the plastic bag in the container was filled with chips
and weighed again. The plastic bag was first put into the container and then filled carefully with
the tested material until the container was full. After filling, the lid was installed. Temperature (T)
and relative humidity (RH) were measured, too. The measurements were conducted with normal
laboratory conditions (T 22–24 ◦C; RH 25–40%). Weighing was used in determination of moisture
content but not in further analyses.

Hioki 3531Z HiTester impedance analyser was used to measure the complex impedance spectrum
from 42 Hz to 5 MHz. The total number of different frequencies were 34. The open circuit voltage was
10 V pp sine wave excitation and 16 averaging measurements were made with slow speed. Before the
measurement series, open and short circuit compensations were carried out to calibrate the impedance
system. Aluminum sheet electrodes were used in this study (Figures 2 and 3). They were glued inside
the measurement container and connected to the impedance analyser via coaxial cables. Three electrode
pairs were used to measure the wood chip samples in x-, y- and z-direction. Size of the electrodes
in x- and y-direction was 50 × 80 mm (height × width) and d = 100 mm in z-direction; the distance
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between electrodes was 118 mm in z-direction and 160 mm in x- and y-direction. The electrodes were
in contact with the plastic bag including wood chip sample during the measurement and thus there
was a capacitive connection between sample and electrodes. Electrodes in x and y-directions (electric
field in horizontal direction) were curved and flat in z-direction (electric field in vertical direction). The
measurement was carried out in a Faraday gage to reduce electromagnetic field noise.
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Figure 3. Electrode configuration: (a) 3D schematic, (b) top view.

A series of impedance measurements was conducted, including drying and re-wetting of the
samples. At first, the impedance measurements were made at original condition after the sample
preparation (originally fresh wood). The next impedance measurements were made when the samples
were drying at the laboratory (T = 22–24 ◦C, RH = 17–19%) for several days. Before measurement,
each sample was mixed to reduce the moisture distribution inside the sample. When the MCs of
samples were below 20%, water was added into the samples to increase the MC. After adding the
water, the samples were conditioned at least 24 h before the next impedance measurements. The series
measurements including drying and rewetting was repeated two times. After the series, the samples
were dried at +103 ◦C and the accurate MC was determined using weighing. Finally, the dried samples
were measured again using EIS.
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2.1. The Extractive Content Determination

The extractive contents of the samples were determined according to the method [41]. The
method includes acetone extraction and gas chromatography analysis. The amount of acetone-soluble
matter in wood chips provides a measure of the content of wood extractives, often called resin. The
acetone-soluble matter includes, e.g., fatty acids, resin acids, fatty alcohols, sterols, di- and tri-glycerides,
steryl esters and waxes. In addition, acetone-extracts of wood chips and mechanical pulps may also
contain phenolic compounds such as lignans.

2.2. Data Analysis

Three classification methods were used: k-nearest neighbor (KNN), decision tree (DT) and support
vector machines (SVM) (Figure 4). The classification methods were tested and compared by using
training and testing sets. The input from the training set was fed into a classifier and the classifier
was trained. After the training, the trained classifier was applied to the testing set and the correctness
of the operation was determined. The tests were carried out using Matlab2016b and Classification
Learner app (The MathWorks, Inc., Natick, MA, US).
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Figure 4. Principles of the machine learning methods: (a) decision tree; (b) KNN classifier and (c) linear
support vector machine and (d) non-linear support vector machine.

K-nearest neighbor classifier is a nonparametric classifier. The training set for each class represents
a class and the unknown pattern from the testing set is classified by finding the nearest neighbors from
the sets of training patterns. Statistically more reliable results can be achieved by using more than
one nearest neighbor. In KNN, the unknown pattern is placed in a class with most of the k-nearest
neighbors in the training set.

Decision tree is a nonparametric classifier. It builds a tree-model based on the training data, where
the root of the tree is the entire population of the input and each leaf represent the different classification
outputs. The output leaf is selected by the decision nodes that represent different input values.

A support vector machine is a non-parametric classifier. It builds a hyperplane that maximizes
the margin between the classes. Hyperplane is built based on the training observations, which are
closest to different classes. Training observations, which are used to build the separating hyperplane
are called support vector machines. The hyperplane can be linear or nonlinear separable.

The machine learning methods were validated using cross-validation, which separates the data
to multiple training and test sets. Training sets are used to train the model and the test set is used to
calculate the error of the trained model. Leave-one-out cross-validation was used, the method uses
one sample as a test set and rest of the data set as a training set. Leave-one-out cross validation builds
as many different models as there are samples and then calculates the average error of the models.
Every sample is used once as a test set and the error is calculated based on these samples. Average
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accuracy of the models was used to determine the accuracy of the selected model. As leave-one-out
cross-validation creates a single result for each of the models, deviation of the results was not calculated.

Neighborhood component analysis (NCA) was used to select optimal frequencies from the spectral
data. Different frequencies were used for different classification sets.

Trial and error were used to choose the best hyperparameters for each of the models. Models were
validated using different hyperparameters and model with the best accuracy were used as a classifier.
KNN were tested using 1, 10 and 100 for number of neighbours. Euclidean distance metric function
was used in all KNN models. Support vector machine models were tested using linear, polynomial
and Gaussian kernel functions. One was used for a multiclass method in all support vector machine
models. Decision tree models were tested using 4, 20 and 100 values for maximum number of splits.
Gini index was used for split criterion method in all decision tree models. All data were standardized
before training the models.

3. Results

Impedance spectra were measured from three different directions, all consisting of 34 different
frequencies from 42 Hz to 5 MHz. The impedance modulus and phase values with standard deviations
are presented at 10 kHz and 1 MHz (Table 1).

Table 1. Impedance and phase average and standard deviation values at 10 kHz and 1 MHz in pure
material sets. Measurement X-direction (X), Y-direction (Y), and Z-direction (Z), (Figure 3).

Material 10 kHz 1 MHz

|Z| (Ω) ϕ (◦) |Z| (Ω) ϕ (◦)
Pine sapwood (X) 6.6 (0.7) −68.4 (13.0) 5.2 (0.3) −63.3 (9.1)

Pine heartwood (X) 7.5 (0.5) −67.8 (14.8) 5.8 (0.2) −77.9 (7.9)
Birch wood (X) 6.9 (0.6) −69.4 (10.5) 5.4 (0.3) −69.0 (10.5)
Birch bark (X) 6.1 (0.8) −60.4 (10.7) 4.8 (0.5) −53.8 (11.1)

Pine sapwood (Y) 6.6 (0.7) −67.9 (12.8) 5.2 (0.4) −63.1 (9.2)
Pine heartwood (Y) 7.4 (0.5) −67.3 (15.1) 5.8 (0.2) −78.0 (7.9)

Birch wood (Y) 6.9 (0.6) −69.4 (10.7) 5.4 (0.3) −69.4 (9.8)
Birch bark (Y) 6.0 (0.7) −61.1 (12.4) 4.7 (0.6) −50.9 (13.1)

Pine sapwood (Z) 6.3 (0.7) −63.6 (15.9) 5.1 (0.4) −64.5 (12.1)
Pine heartwood (Z) 5.6 (0.2) −80.5 (7.5) 5.6 (0.2) −80.5 (7.5)

Birch wood (Z) 6.6 (0.6) −66.7 (12.0) 5.2 (0.4) −70.4 (11.6)
Birch bark (Z) 6.0 (0.7) −74.5 (11.3) 4.5 (0.6) −56.3 (13.1)

Examples of the measured complex electrical impedance spectra are shown for fresh pine (Figure 5)
and for fresh birch (Figure 6).

The impedance spectra of pine sapwood chips and heartwood chips were considerably different
(Figure 5a,d) in respect of the dispersion frequency and the magnitudes of the real and imaginary
parts. For the mixed materials (Figure 5b,c) the differences in spectra were reduced but observable.
The measurements at x- and y-directions (Figure 3) were quite similar but z-direction was different.

The impedance spectra of birch wood chips and birch bark were different (Figure 6a,d). Especially
the ratios of the real and imaginary parts of the spectra were different. The real and imaginary part of
impedance measured from bark was smaller compared to the response of stem wood chips. When
spectra of mixed materials (Figure 6b,c) were measured, the difference was reduced but still the
differences can be recognized from the spectra. Similar to the pine chips, the measurements at x- and
y-directions were quite similar, but the z-direction was different. The difference between the complex
electrical spectra measured at three different directions is remarkably different when comparing stem
wood material and bark.
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Figure 6. Examples of complex electrical spectra of fresh birch chips and bark: (a) Birch wood 100%,
(b) birch wood 75%, bark 25%, (c) birch wood 25%, bark 75% and (d) bark 100%. Frequency range
120 Hz–1 MHz. Measurements in x- (red), y- (blue) and z-directions (yellow, top to bottom).

The three classification techniques were used to determine the efficiency of multi-parameter EIS
in categorizing the raw materials. The shown accuracy is the average from each of the model results.

Several classification tests were made. Table 2 shows the classes and MC range for the tests
including 75% or 100% pure material content. Classification results are shown in Tables 3 and 4.
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Table 2. Classification of heartwood content from pine chips and bark content from birch chips: material
classes according to the content percentages and moisture content range of each class.

Material
Test Class 1 Class 1

MC-Range (%) Class 2 Class 2
MC-Range (%)

Pine100 heartwood 0–24 sapwood 0–58
Pine75 heartwood 75–100% 0–31 Sapwood 75–100% 0–58

Birch100 birch bark 0–58 birch wood 0–46
Birch 75 birch bark 75–100% 0–58 birch wood 75–100% 0–48

Table 3. Classification results, correct classification (%). Classification of heartwood content from pine
chips, bark content from birch chips and pine chips from birch chips and birch bark. MC range 0–60%.
Test groups and correct classification using decision tree (DT), support vector machine (SVM) and
K-nearest neighbor (KNN). N = number of samples. Birch/pine classification included three classes:
birch, pine and birch bark.

Material
Test DT (%) SVM (%) KNN (%) N

Pine100 73 85 90 41
Pine75 69 85 89 80

Birch100 89 93 93 53
Birch 75 74 83 75 101

Birch/pine100 65 78 69 80
Birch/pine 75 71 84 86 152

Table 4. Classification results, correct classification (%). Pine heartwood/sapwood and birch bark/wood,
5 classes: 0, 25%, 50%, 75% and 100% mix ratios. Classification by using decision tree (DT), support
vector machine (SVM) and K-nearest neighbor (KNN). N = number of samples.

Material/
MC Range (%) DT (%) SVM (%) KNN (%) N

Pine
0-60 41 35 30 97

30-60 * 30 65 73 40
Birch
0-60 34 40 37 123
30-60 61 66 66 61

* Four classes—MC of heartwood samples was below 30%.

Classification of pure materials gave the best results, by using SVM or KNN it was possible to
achieve correct classification rate better than 90% in MC range 0–60%. The best results were achieved
using KNN with 10 for the number of neighbors. SVM gave the best results using polynomial kernel.
When increasing the number of classes, the correct classification (%) was reduced (Tables 3 and 4).
When the MC range was above the FSP (about 30% MC), the classification results were improved, KNN
classifier gave 73% classification accuracy for pine heartwood content and both KNN and SVM 66%
for birch bark content. The best results were achieved using KNN with 1 for the number of neighbors.
SVM gave the best results using polynomial kernel.

The results of the extractive content analyses showed that pine heartwood and birch bark contain
substantial amount of extractives compared with birch wood or pine sapwood. The extractive content
decreased when the material was dried, except for pine sapwood. The highest change was with birch
wood samples.

4. Discussion

The study represents novel methods to improve analysis of biomass. So far the main interest of the
studies has been moisture content using large scale of measurement methods including electromagnetic
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spectrum from very low frequencies [19,20] to high frequencies, e.g., gamma-rays [24]. This study
showed that it is possible to classify materials according to their electrical impedance spectrum, and
thus, it will be possible to determine more accurate models for MC, as one of the main issues affecting
the accuracy of MC determination is the inhomogeneity of the studied material.

In the MC range, 0–60%, MC dominates the impedance measurement as expected. With narrower
MC range (30–60%), which is typical MC range for industrial processes utilizing wood chips, the
classification results improved significantly. It was possible to classify materials even into five classes
according to heartwood/sapwood ratio or bark/stem wood ratio. In addition, the pure raw materials
could be distinguished from each other using EIS with good accuracy in all MC ranges. The plastic
insulator layer (plastic bag) between aluminum electrodes and the sample inhibited effectively the
electrode polarization effect, which would has a high impact on the measurement. On the other hand,
because of the insulation, there is no direct current going through the sample and the response is mainly
capacitive. If the contact between electrodes and material would have been galvanic, accumulation
of ions would have a significant effect to the results (effect of current density). By using thin plastic
bags around the sample, it was possible to eliminate the electrode polarization effect, and it is more
practical because plastic bags are used in industry.

The determined extractive contents were in accordance with previous studies [23]. Birch bark
contains significantly more extractives than birch wood and pine heartwood, and is rich in extractives
compared to pine sapwood. The effect of extractives has been reported earlier—electrical impedance
spectroscopy may be used to distinguish wood materials according to their extractive content [9]. If
the MC variation is high and MC is below the fiber saturation point (FSP), the MC dominates the EIS
measurement. When MC is above the fiber saturation point or if the MC is limited to a certain range,
the classification according to wood material’s characteristics is possible using EIS. In addition to the
extractive content, other characteristics of the material affect the results, too. This is important especially
for the different types of materials such as birch stem wood and bark. Cellulose, hemicellulose, lignin
and ash content is also very different between stem wood and bark [23,42,43].

When comparing the heartwood/sapwood ratio at MC range 30–60% there was no pure heartwood
samples at that MC range. Thus, four group classification was used. On the other hand, MC may be
determined accurately using EIS, and thus, the MC value might be useful for the material analyses.

When the data was divided into smaller classes, the distributions got narrower. For analyzing
materials with 2–3 classes, the distributions were workable for the classification. When the number
of classes increased to five, some of the test samples differed considerably from the ones used in the
training, which affected the classification results.

One of the new findings in this study was that birch material could be distinguished from pine
material with good accuracy in all tested MC ranges. Birch has higher density on average, which affects
the capacitance. On the other hand, the anatomical structure of hardwood and softwood is different,
which affects the results. Structural differences affect the electrical properties, e.g., when measuring
at different directions of wood. Here, we measured the electrical properties of samples in x-, y- and
z-directions (Figure 3). The distributions of electrical parameters in different frequencies are different
when measuring from top to bottom compared to the side-to-side measurements though the material
is cut to chips and blended. The difference of bark from stem wood materials was detectable especially
when comparing the difference of x- and y-direction with z-direction.

When comparing the classification methods, the DT classification gave the poorest results. The
overall results of SVM and KNN were better and similar to each other. The inhomogeneous materials
including distributions and complex non-linear data affected the results. The SVM uses vectors and
KNN measurement points for classification, and both are non-linear methods. Thus, the methods
produced similar classification results. If only few neighbor elements are used, KNN may handle
non-linear data effectively [44]. All the studied machine learning methods could be used effectively to
classify the studied material despite of the varying MC. The result shows the potential of combined
electrical spectrum analysis with machine learning for advanced analysis of wood chips.
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Artificial intelligence-based non-linear methods, with EIS, may be even more advantageous for
industrial material analyses than the equivalent model analyses because of the efficiency of the models
to extract useful non-linear information from the electrical spectra. The models may be implemented
for real time measurement, which is often not possible for equivalent model analyses because of
time consumption. In theory, the raw data from electrical spectra contain all information about the
measurement. Even though the equivalent model analysis is perhaps the best way to make a theoretical
model for an electrical system, it is not always the best choice for industrial application when quick
real-time analysis is required.

EIS may be used together with the other measurement techniques. By using two or more methods
together, the analysis may be improved. Machine vison and X-ray techniques are among the potential
methods to increase the biomass analysis accuracy together with EIS. X-rays and EIS can measure
the whole volume of biomass but machine vision systems can get information only from the surfaces.
Tomographic systems, including electrical impedance tomography and/or X-ray tomography may give
accurate spatial information of the biomass material.

5. Conclusions

Good classification efficiency was achieved by using electrical impedance spectrum analysis
combined with multiple parameter analyses and machine learning techniques. It was not possible to
distinguish small levels of bark or heartwood content if MC range was from 0–60% but pure materials
were distinguished from each other. The results improved significantly when the MC range was
limited to typical industrial process moisture contents above FSP (30–60%). An overall 73% correct
classification was achieved for different degrees of pine heartwood content (four classes) when using
KNN classifier. When birch bark content was studied, both KNN and SVM classifiers gave 66% correct
classification rate (five classes). When pure materials were classified (two classes), KNN classifier
gave 93% classification accuracy for birch bark content (MC range 0–58%), and 91% accuracy for pine
heartwood content (MC range 0–58%), respectively. EIS method combined with machine learning
holds potential for an advanced analysis method for wood chips for laboratory and industry.
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