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Abstract

Background: BCOR acts as a corepressor of BCL6, a potent oncogenic protein in cancers of the lymphoid lineage.
We have found the recurrent somatic mutation of BCOR occurred in mature T-cell lymphoma (TCL). The role of
BCOR mutation in lymphoid malignancies is unknown.

Methods: Lymphoma patient samples were analyzed to identify missense mutations in BCOR using Sanger
sequencing. Transfection, RNA interference, immunoprecipitation, western blotting, cell proliferation, cytokine assays
and quantitative real-time PCR were employed to determine the functional relevance of the novel K607E mutation
in BCOR. The significant transcriptional changes were analyzed by performing DNA microarray profiling in cells
expressing BCOR K607E mutant.

Results: One hundred thirty-seven lymphoma patient samples were analyzed to identify K607E mutation of the
BCOR gene. The BCOR K607E mutation was identified in 15 of 47 NK/T cell lymphoma cases (31.9%), 2 of 18
angioimmunoblastic T-cell lymphoma cases (11.1%), 10 of 30 peripheral T-cell lymphoma, not otherwise specified
cases (33.3%), and 13 of 42 diffuse large B-cell lymphoma cases (30.9%). Molecular analysis of BCOR K607E mutation
revealed that compared to the wild-type BCOR, the mutant BCOR bound to the BCL6, PCGF1, and RING1B proteins
with lesser affinity. Ectopic expression of BCOR K607E mutant significantly enhanced cell proliferation, AKT
phosphorylation and the expression of interleukin-2 (IL-2) with up-regulated expression of HOX and S100 protein
genes in T cells. BCOR silencing also significantly enhanced cell proliferation, AKT phosphorylation, and IL-2
production.

Conclusions: Functional analyses indicated that K607E mutation of BCOR is oncogenic in nature and can serve as a
genetic marker of T-cell lymphoma.
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Background

Malignant lymphomas can develop outside or within the
lymphoid tissues, such as the lymph nodes and spleen.
T-cell non-Hodgkin malignant lymphomas (NHLs) are
uncommon malignancies that represent approximately
12% of all lymphomas [1]. Natural killer (NK)/T-cell
lymphomas, such as extranodal NK/T-cell lymphoma
nasal type (ENKTL), and peripheral T-cell lymphoma
(PTCL), angioimmunoblastic T-cell lymphoma (AITL),
and cutaneous T-cell lymphomas (CTCL) are rare and
aggressive subtypes of T-cell NHLs. Unlike most non-
Hodgkin lymphomas (which are generally B cell-related),
these lymphomas are formed in response to the accumu-
lation of one or more mutations within the T cells [2—
4]. Recent genomic studies have identified highly recur-
rent somatic mutations in TET2, DNMT3A, IDH2,
RHOA, and CD28, in diverse mature T-cell lymphoma
(TCL) subtypes [5—10]. However, the roles of these mu-
tations with respect to the regulation of T cell signaling
and oncogenesis are yet to be elucidated in most cases.

BCOR (BCL-6 interacting corepressor) was identified
as a corepressor that interacts selectively with the POZ
domain of BCL6, a key transcription factor required for
the development of germinal center B cells and diffuse
large B-cell lymphomas [11-13]. BCL6 was initially iden-
tified as a potent oncoprotein in the lymphoid lineage
[14, 15]. BCOR can repress transcription when tethered
to a promoter and potentiate transcriptional repression
by BCL-6 [11, 16]. The BCOR protein can also bind to
other transcriptional factors and plays a key role in the
regulation of early embryonic development and
hematopoiesis [17, 18]. Additionally, BCOR forms a
regulatory complex comprising ring finger protein 1B
(RING1B), polycomb group ring finger 1 (PCGF1), and
lysine-specific demethylase 2B (KDM2B) and functions
as a component of the noncanonical polycomb repres-
sive complex 1 (PRC1) [19, 20].

Recent whole-exome sequencing efforts have identified
somatic BCOR mutations in various hematological dis-
eases. Specifically, we and other groups reported that re-
current somatic mutations of BCOR occurred in
extranodal NK/T-cell lymphoma (ENKTL) [21, 22].
However, the role of BCOR mutations in lymphoid ma-
lignancies is largely unknown. In this study, we report
for the first time the frequencies of BCOR K607E muta-
tion in various types of TCLs and the functional role of
mutant BCOR in malignant lymphoma cells.

Methods

Validation of BCOR mutation by sanger sequencing

To detect BCOR mutations in lymphoma samples, gen-
omic DNA from formalin-fixed, paraffin-embedded sam-
ples or fresh-frozen lymphoma tissues was subjected to
PCR amplification using the following primers: K607E
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forward 5'-GAGCTTGGTGGAAGGCCGTTCTC-3’
and K607E reverse 5'- GGCACCAAAACCAGCAGG
AGCTC-3" (Additional file 1, supplementary methods).
The resulting PCR products were sequenced using a
nested oligonucleotide primer (5'- GGAAGGCCGT
TCTCGTTTGC-3"). The QIAamp DNA Mini Kit (Qia-
gen) and RNeasy Mini Kit (Qiagen) were used for DNA
and RNA extraction, respectively. Patient’s samples were
used after obtaining informed consent from patients.
The study was approved by the Institutional Review
Board of Samsung Medical Center, Seoul, Korea, and
was performed in accordance with the Declaration of
Helsinki.

Cloning of BCOR

A ¢DNA clone encoding full-length human BCOR was
obtained by PCR amplification. PCR-generated DNA
fragments encoding BCOR were cloned into the
pcDNA3.1 vector to express Flag-tagged proteins. Mu-
tant of BCOR, specifically Lys607Glu (AAG to GAG),
was generated using the QuikChange Site-Directed Mu-
tagenesis kit (Stratagene).

Cell culture and transfection and RNA interference

The Jurkat (human T cell acute lymphoblastic leukemia)
cell line and BJAB (Burkitt’s lymphoma) cell line were
maintained in RPMI-1640, containing 10% FBS, 100 U/
ml penicillin, 100 pg/ml streptomycin. To overexpress
BCOR, plasmids expressing Flag-tagged wild-type BCOR
and BCOR mutant (K607E) were transfected into cells
using the Nucleofector I device along with Nucleofector
solution V (Amaxa), according to the manufacturer’s
protocols. A mixture of dsRNA nucleotides targeting dif-
ferent regions of BCOR mRNA and negative control
small interfering RNA (scrambled siRNA) was obtained
from Dharmacon. For transient expression, cells were
transfected with BCOR siRNA and scrambled siRNA
oligonucleotides.

Immunoprecipitation

BCOR was purified using an anti-FLAG M2 affinity
beads (Sigma) according to the manufacturer’s protocol.
Briefly, cell lysates were incubated with anti-FLAG M2
beads for 4h at 4°C on a rotator to pull down the
FLAG-tagged target protein. After incubation, immune
complexes were collected by centrifugation and washed
three times using ice-cold washing buffer (50 mM Tris-
Cl, pH 7.4; 150 mM NaCl) at 4 °C. Whole-cell lysate and
bead-bound protein complexes were separated by SDS-
PAGE, followed by immunoblotting with the appropriate
antibodies.
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Antibodies and immunoblotting

Cells were lysed in RIPA buffer. Cell lysate samples were
resolved by SDS-PAGE and blotted to PVDF mem-
branes. The blots were probed with anti- FLAG (Sigma),
anti-BCOR (Bethyl Laboratoris), anti-BCL6 (Cell Signal-
ing), anti-PCGF1 (Abcam), anti-RING1B (Cell Signal-
ing), and anti-phospho-AKT (Cell Signaling), followed
by anti-rabbit HRP-conjugated antibody (Bio-Rad). Im-
munostained proteins were detected by ECL (Amersham
Pharmacia Biotech). Additional details are provided in
supplementary methods (Additional file 1).

Cell proliferation and cytokine assays

Cell proliferation and cytokine assays were determined by
using a CCK8 assay kit and ELISA kit. Additional details are
provided in supplementary methods (Additional file 1).

Gene expression analysis

Gene expression analysis using Agilent’s Gene Expres-
sion Hybridization Kit (GPL13497) was performed for
cell lines expressing wild-type BCOR and BCOR K607E
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mutant, as well as for cell lines transfected with BCOR
siRNA. Differentially expressed genes were selected by
performing Student’s t-test using normalized expression
counts. HOX and S100 were selected and extracted from
the microarray data and their expression visualized using
R (version 3.6.1). Finally, gene ontology analysis was
performed using the ToppGene suite.

RNA isolation, reverse transcription reaction, and
quantitative real-time PCR

Total mRNA was extracted from cultured cells or fresh-
frozen lymphoma tissues using TRIzol reagent (Ambion
by Life Technologies). First-strand ¢cDNA was synthe-
sized from 2 pg total RNA using SuperScript II RNase
Reverse Transcriptase (Invitrogen). Quantitative real-
time PCR was carried out with SYBR Green Master Mix
(Applied Biosystems) using the Applied Biosystems
QuantStudio™ 6 Flex Real-Time PCR Instrument (384-
well). Relative expression was evaluated using the com-
parative cycle threshold (27**“") method.
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Fig. 1 Validation of K607E mutation on BCOR. a Schematic representation of mutation position and functional domains of the BCOR protein. b
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Statistical analysis

All data were analyzed by independent t-tests or analysis
of variance using SPSS software. Differences with a p-
value <0.05 were considered statistically significant. Re-
sults are expressed as the mean * standard error of the
mean (SEM).

Results

Frequent alterations in the BCOR gene

We have previously reported that recurrent somatic mu-
tations of BCOR occurred in lymphoid malignancies,
particularly extranodal NK/T-cell lymphoma (ENKTL)
[21]. In order to more precisely estimate the frequency
of BCOR mutation in lymphoma patients, we examined
genomic DNA from 47 NK/T cell lymphoma patient
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(E197X and W289X) along with one type of missense
mutation (K607E) (Fig. 1a, b and Figure S1, Additional
file 2). In contrast to two nonsense mutations in BCOR,
BCOR 1819 A > G (K607E substitution) was found at a
high frequency in 15 of 47 NK/T cell lymphoma patients
(31.9%).

To better estimate the K607E mutation rate and to de-
termine subtype specificity among diverse categories of
lymphoma, we expanded the patient cohort to include
an additional 18 angioimmunoblastic T-cell lymphoma
(AITL) cases, 30 peripheral T-cell lymphoma (PTCL)
cases for T-cell lymphoma, and 42 diffuse large B-cell
lymphoma (DLBCL) cases for B-cell lymphoma (Fig. 1c).
The K607E mutation of BCOR was detected in 2 of 18
AITL (11.1%), 10 of 30 PTCL (33.3%), and 13 of 42

samples and detected two types of nonsense mutations DLBCL (30.9%). All mutation-positive cases were
~
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Fig. 2 Functional analyses of the K607E mutation in BCOR. a Expression of BCOR K607E mutant decreased the interaction with BCL6, PCGF1, and
RINGTB. BJAB cells were transfected with plasmids encoding flag-tagged wild-type (WT) BCOR or K607E mutant, and immunoprecipitation was
performed using an anti-flag M2 antibody. Immunoblotting analysis was performed using anti-BCL6, PCGF1, and RING1B. Alpha-tubulin was used
as the loading control. This result is representative of four independent experiments. The uncropped blots are presented in Supplementary Figure
S4 (Additional file 5). b Enhanced cell proliferation in K607E mutant expressing mutated BCOR (**P < 0.01 compared with cells expressing wild-
type BCOR). Jurkat cells were transfected with wild-type BCOR or K607E mutant expressing plasmids. After 48 h, cells were stimulated with plate-
bound anti-CD3/CD28. Data are shown as the mean + SEM of six independent experiments performed in triplicates. ¢ Expression of BCOR K607E
mutant enhanced phosphorylation of AKT without stimulation. The blot was probed with anti-phospho-AKT antibody, and subsequently stripped
and reprobed with anti-AKT antibody. Alpha-tubulin was used as the loading control. This result is representative of three independent
experiments. The uncropped blots are presented in Supplementary Figure S4 (Additional file 5). d Expression of BCOR K607E mutant enhanced IL-
2 production after stimulation with PMA and ionomycin (**P < 0.01 compared with cells expressing wild-type BCOR). The results are expressed as
the mean + SEM of six independent experiments performed in triplicates
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heterozygotes, as validated by Sanger sequencing of the
PCR products. The results indicated that K607E muta-
tion of BCOR occurs in all tested subtypes of lymphoma
with an overall frequency of 30%.

Functional analyses of K607E mutation in BCOR

We next explored the functional significance of K607E
mutation in BCOR. The K607E mutation is located near
the BCL6 binding domain (Fig. 1a), suggesting that the
mutation may affect the interaction of BCOR with the
partner proteins. To analyze the effect of BCOR K607E
mutation on BCL6 binding, we transfected plasmids en-
coding Flag-tagged wild-type BCOR or BCOR K607E
mutant into BJAB cells. The interaction of BCL6 with
the BCOR K607E mutant decreased compared to that
observed with the wild-type BCOR (Fig. 2a). Further-
more, the binding of PCGF1 and RING1B, components
of the BCOR complex to BCOR K607E mutant also de-
creased. These results indicate that the substitution of
607th amino acid from lysine to glutamic acid in BCOR
changes the binding of multiple partner proteins.

We subsequently analyzed the effect of the BCOR
K607E mutation on cell proliferation and AKT phos-
phorylation. Jurkat (human T-cell acute lymphoblastic
leukemia) and Hut-78 (human cutaneous T-cell lymph-
oma) cells transfected with the construct expressing
BCOR K607E showed an approximately 20% higher pro-
liferation rate than cells expressing wild-type BCOR, ei-
ther with or without co-stimulation with anti-CD3 and
anti-CD28 (Fig. 2b and Figure S2A, Additional file 3).
This result indicates that the BCOR K607E mutation re-
sulted in constitutive activation of T-cell stimulation and
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cell proliferation. We also examined the phosphorylation
of AKT, which is involved in T cell signaling pathways
and cell proliferation [23]. As expected, anti-CD3/CD28
co-stimulation resulted in increased AKT phosphoryl-
ation (Fig. 2c). Importantly, cells expressing BCOR
K607E showed a higher level of AKT phosphorylation
compared to cells expressing wild-type BCOR even with-
out stimulation. These results are consistent with the
finding that mutant BCOR results in constitutive activa-
tion of signaling.

We also analyzed the effect of BCOR K607E mutation
on cytokine production by T cells (Fig. 2d and Figure
S2B, Additional file 3). Expression of BCOR K607E mu-
tant in T cells enhanced the production of IL-2, a key
cytokine for T-cell activation and proliferation [24],
compared to that of wild-type BCOR after co-
stimulation with PMA and ionomycin. Similar to the re-
sults obtained upon expressing BCOR K607E, BCOR si-
lencing also significantly enhanced cell proliferation,
AKT phosphorylation, as well as IL-2 production (Fig. 3).
Collectively, these results indicate that the K607E muta-
tion of BCOR is likely a loss-of-function mutation.

Gene expression signature of BCOR K607E mutant in T-
cell lymphoma

The BCOR protein acts as a corepressor of BCL6 and
can also bind to other transcriptional factors [11, 17].
Binding assays showed that the binding of several part-
ner proteins with BCOR K607E mutant decreased com-
pared to the level seen with wild-type BCOR (Fig. 2a).
To identify the significant transcriptional changes in-
duced by BCOR K607E mutant in T cells, we compared
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Fig. 3 Silencing of BCOR increased cell proliferation, AKT phosphorylation, and IL-2 production. Jurkat cells were transfected with scrambled
SiRNA or BCOR siRNA oligonucleotides. a After transfection, relative cell proliferation was determined using a cell counting kit (CCK-8) for the
indicated time. Data are shown as the mean + SEM of five independent experiments performed in triplicates (**P < 0.01 compared with cells
transfected with scrambled siRNA). b Cell lysates (20 pg) were prepared 48 h after transfection and processed for immunoblotting with the
indicated antibodies. Alpha-tubulin was used as the loading control. This result is representative of three independent experiments. The
uncropped blots are shown in Supplementary Figure S5 (Additional file 6). ¢ Analysis of the production of IL-2 by ELISA. After transfection, cells
were stimulated with PMA and ionomycin. Data are shown as the mean + SEM of five independent experiments performed in triplicates
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the gene expression profiles in cells expressing wild-type
BCOR, cells expressing BCOR K607E mutant and cells
with BCOR knocking-down using DNA microarray pro-
filing (Fig. 4). Using a filter criterion of at least a 1.5-fold
change with p <0.05, the number of genes with altered
expression in Jurkat cells expressing BCOR K607E mu-
tant and those expressing wild-type BCOR were deter-
mined. It was observed that the expression increased for
90 genes and decreased for 256 genes in cells expressing
BCOR K607E mutant (Fig. 4a). Furthermore, the mutant
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samples clustered more similarly with the siRNA knock-
down samples than with the wild-type sample (Fig. 4a
and b), suggesting that BCOR K607E is a loss-of-
function mutant. Gene ontology analysis revealed that
gene clusters enriched in the genes upregulated by
BCOR K607E mutant were associated with signaling re-
ceptor activity, molecular transducer activity, regulation
of ion transport and behavior, as well as intrinsic and in-
tegral components of plasma membrane related genes
(Fig. 4c).
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expressing cells as compared to cells expressing the wild-type BCOR, determined via GO analysis of genes
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Next, we focused on genes upregulated in BCOR
K607E mutant expressing cells compared to wild-type
BCOR expressing cells. The genes with significant
changes in expression are listed in Table 1. We also per-
formed quantitative real-time PCR (qRT-PCR) for
checking the expression of select genes (ISPD, HOXB6,
ATP13A4, MAK, and SLC7A8) from among the list of
top 10 genes upregulated by BCOR K607E mutant (Fig-
ure S3A, Additional file 4), and these findings were con-
sistent with the gene expression profiling results.

To date, numerous studies have shown that functional
abnormalities of HOX transcription factors play a critical
role in the development and progression of many types
of cancers [25, 26]. HOXB6 was identified as the 3rd
most upregulated gene in the highly expressed gene list
(Top 10 upregulated genes, Table 1). One of the known
BCL6 targets, SIO0A11 [27] was moderately upregulated
in cells expressing the K607E mutant as well as in cells
transfected with the BCOR siRNA. We further per-
formed hierarchical cluster analysis of HOX genes (n =
39) and S100 protein genes (1 = 19) present in the differ-
entially expressed genes set. These HOX and S100 pro-
tein genes showed the greatest fold changes in cells
expressing the BCOR mutant (Fig. 5a). In order to verify
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the microarray results, qRT-PCR was used to check the
expression of select genes (Fig. 5b). BCOR K607E
mutant-expressing cells exhibited significantly upregu-
lated HOX genes (HOXA4, HOXB2, HOXB6, HOXB9
and HOXCS) and S100 protein (SI00AS8, S1I00A9, and
SI00A12) genes expression by approximately 1.3-2.5
fold compared with wild-type BCOR-expressing cells.
We also checked the expression of selected genes among
genes upregulated by BCOR K607E mutant in fresh-
frozen tumor patient samples by qRT-PCR. These genes
(HOX, S100 protein, ISPD, ATPI3A4, MAK, and
SLC7A8) were also significantly upregulated in tumor
samples expressing BCOR K607E mutant as compared
to that in tumor samples expressing wild-type BCOR
(Fig. 5c and Figure S3B, Additional file 4), and these
findings were consistent with gene expression profiling
results obtained in cell lines. Overall, these results indi-
cated that BCOR mutants can activate the expression of
several transcription factors, such as HOX and S100
protein.

Discussion
Recurrent inactivating somatic BCOR mutations have
been identified in various hematological malignancies,

Table 1 Top 10 up-regulated and down-regulated genes by BCOR K607E mutant

No Gene Symbol Gene Title fold change
K607E/WT siRNA/WT

Top 10 up-regulated genes
1 ISPD isoprenoid synthase domain containing 2.88 1.74
2 ESRG embryonic stem cell related (non-protein coding) 262 1.83
3 HOXB6 homeobox B6 250 201
4 LOC101929560 uncharacterized LOC101929560 248 1.62
5 CNKSR3 CNKSR family member 3 240 1.55
6 ATP13A4 ATPase type 13A4 2.31 1.73
7 MAK male germ cell-associated kinase 228 1.60
8 SLC7A8 solute carrier family 7 (amino acid transporter light chain, L system), member 8 227 1.83

PTAFR platelet-activating factor receptor 2.24 1.90

10 LOC101927250 uncharacterized LOC101927250 223 1.83

Top 10 down-regulated genes
1 DNMBP-AST DNMBP antisense RNA 1 0.27 0.30
2 DNAJB8-AST DNAJBS8 antisense RNA 1 0.29 0.32
3 GRINT glutamate receptor, ionotropic, N-methyl D-aspartate 1 032 0.35
4 SORBS2 sorbin and SH3 domain containing 2 033 034
5 NTM neurotrimin 033 0.36
6 ARRDC3-AS1 ARRDC3 antisense RNA 1 033 037
7 ARHGAP28 Rho GTPase activating protein 28 0.34 0.38
8 MAGEA11 melanoma antigen family A, 11 034 037
9 LOC93432 maltase-glucoamylase (alpha-glucosidase) 0.36 0.39
10 Inc-OBFC2A-3 Inc-OBFC2A-3:1 0.36 041
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acute myeloid leukemia (AML), myelodysplastic syn-
drome (MDS), chronic myelomonocytic leukemia, me-
dulloblastoma, and retinoblastoma [28, 29]. We and
other groups have previously reported recurrent somatic

mutations of BCOR in T cell lymphoid malignancies [21,
22]. However, the role of BCOR mutations in the regula-
tion of T-cell signaling and oncogenesis remains to be
elucidated. In this study, we detected two cases with
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nonsense mutations, E197X (26.1%) and W289X (5.9%),
and one case with a missense mutation, K607E (31.9%)
in 47 NK/T-cell lymphoma. We further identified a
novel K607E mutation of BCOR gene in a cohort of 137
lymphoma patients (Fig. 1). Clinically, BCOR K607E
mutation in lymphoma patients has no correlation with
gender, age, lesion location, and survival.

Recently, the tumor suppressor function of BCOR has
been confirmed in vivo in a Myc-driven lymphomagene-
sis model as well as in transgenic mice expressing a
truncated form of BCOR (partial internal deletion) that
cannot bind to BCL6 [30, 31]. However, its tumor sup-
pressor function remains largely uncharacterized. Our
data showed that the K607E mutation in BCOR—which
results in the protein being unable to bind to BCL6—
significantly enhanced cell proliferation, AKT phosphor-
ylation, and IL-2 production in T cell lymphoma lines
(Fig. 2). The effects of BCOR K607E mutant expression
on cells were similar to those of BCOR silencing, rather
than to those of BCOR wild-type overexpression (Fig. 3).
In both the BCOR K607E mutant-expressing and
BCOR-silenced groups, gene upregulation was highly
correlated, as compared with the wild-type BCOR (Fig. 4
and Table 1). These results provide evidenced that
BCOR K607E mutation possesses a tumor activator role,
suggesting that BCOR potentially functions as a tumor
suppressor in T cell lymphoma.

BCL6 was initially discovered as an oncogene in B-cell
lymphomas and consequently emerged as a therapeutic
target [32—34]. Furthermore, BCL6 is also expressed in
the malignant T-cells of AITL, anaplastic large cell
lymphoma (ALCL), and follicular helper T cells (Tth
cells) [35-37]. BCL6-driven gene expression in T-cells is
less well characterized. BCOR is likely to be a crucial
mediator of BCL6 function in these cancers, whereas
BCL6 can coordinate the actions of the BCOR
polycomb-like complex (BCOR, PCGF1, RING1B, and
KDM2B) to potently repress target genes [11]. As shown
in Fig. 5, the expression of HOX (HOXA4, HOXB?2,
HOXB6, HOXB9 and HOXC5) and S100 protein
(SI00A8, SI00A9 and SI100A12) genes was significantly
and markedly higher in BCOR mutant-expressing T cells
than that in BCOR wild-type-expressing T cells. Overall,
these results indicate that BCOR mutation can activate
the expression of HOX and S100 proteins.

The homeodomain genes (HOX) encode a family of
highly conserved transcription factors that play an im-
portant role in embryonic development, hematopoiesis,
and leukemogenesis [25, 26]. Elevated HOX gene ex-
pression has been observed in acute myeloid leukemia
(AML) and is correlated with poor prognosis [38, 39].
HOXBS6 is included in the list of highly expressed genes
in this study. We also examined HOX gene expression
patterns in T cells expressing BCOR K607E or wild-type
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BCOR by qRT-PCR (Fig. 5). It was observed that BCOR
K607E mutant significantly upregulated the expression
of particular HOX genes. Interestingly, we also discov-
ered an apparent association between PCGF1 and HOX
expression in the group of T cells expressing BCOR
K607E. Polycomb-group (PcG) proteins are known to
suppress the expression of HOX genes, and a recent
study showed that polycomb group ring finger 1
(PCGF1), a member of the BCOR complex, is involved
in the regulation of HOX gene expression [40]. In this
study, the K607E mutant showed decreased binding to
PCGF1 and RING1B, indicating that the K607E mutant
specifically abrogated the HOX repressor function of
PCGF1.

S100 proteins comprise a group of damage-associated
molecular pattern (DAMP) molecules considered to be
important inflammatory mediators [41]. Elevated levels
of S100 proteins has been detected in inflammation,
neoplastic tumor cells, and various human cancers [42—
44]. In particular, SI00A8, S100A9 and S100A12 are
highly abundant proteins released by neutrophils and
have been identified as important biomarkers in many
inflammatory diseases and cancers [41]. However, the
role of these specific S100 proteins in the pathogenesis
of such diseases is entirely unknown. In this study, we
showed that the transcripts of three S100 proteins
S100A8, S100A9 and S100A12 were upregulated in
BCOR K607E mutant expressing cells compared with
wild-type BCOR expressing cells (Fig. 5). We thus
propose that they serve as important mediators in the
molecular pathogenesis of T cell lymphoma.

Conclusions

In summary, we identified and functional characterized
the K607E mutation of BCOR in T cell lymphoma. We
also reported the gene expression profile of T lymphoma
cell lines expressing BCOR K607E mutant, and sug-
gested several novel target genes involved in the patho-
genesis of this disease. Hence, we propose that BCOR
plays the role of a tumor suppressor in the pathogenesis
of T lymphocyte malignancies. The K607E mutation of
BCOR is oncogenic in nature and can serve as a genetic
marker for T-cell lymphoma.
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cated genes from the list of Top10 genes showed upregulation by BCOR
K607E mutant. GAPDH was used as a control to normalize the levels of
these transcripts. Data are shown as the mean + SEM of six independent
experiments performed in triplicates (*P < 0.05, **P < 0.01 compared with
cells transfected with wild-type BCOR and wild-type BCOR tumor
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