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a b s t r a c t

The skeletal muscle in our body is a major site for bioenergetics and metabolism during exer-

cise. Carbohydrates and fats are the primary nutrients that provide the necessary energy

required to maintain cellular activities during exercise. The metabolic responses to exercise

in glucose and lipid regulation depend on the intensity and duration of exercise. Because

of the increasing prevalence of obesity, recent studies have focused on the cellular and

molecular mechanisms of obesity-induced insulin resistance in skeletal muscle. Accumu-

lation of intramyocellular lipid may lead to insulin resistance in skeletal muscle. In addition,

lipid intermediates (e.g., fatty acyl-coenzyme A, diacylglycerol, and ceramide) impair insulin

signaling in skeletal muscle. Recently, emerging evidence linking obesity-induced insulin

resistance to excessive lipid oxidation, mitochondrial overload, and mitochondrial oxidative

stress have been provided with mitochondrial function. This review will provide a brief com-
keletal muscle prehensive summary on exercise and skeletal muscle metabolism, and discuss the potential

mechanisms of obesity-induced insulin resistance in skeletal muscle.

© 2013 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access
. Introduction

he prevalence of obesity has reached epidemic proportions
orldwide, and is threatening to become a global epidemic,

uggesting that obesity is spreading to all regions of the
orld and is imposing an enormous economic (cost) burden
n many countries for its treatment and/or prevention. In
he modern society, obesity induced by high-caloric/high-fat
iet (HFD) and reduced physical activity results in a seri-

us health threat because of the increased risk of developing
hronic diseases such as cardiovascular disease, diabetes,
nd cancer, all of which are associated with insulin resis-
ance. Skeletal muscle plays an important role in regulating
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whole-body homeostasis. For example, skeletal muscle is
responsible for approximately 80% of the postprandial clear-
ance of glucose.1

In the development of obesity and type II diabetes: (1)
insulin secretion from beta cell is impaired; (2) hepatic glu-
cose production from liver is increased; and (3) peripheral
glucose utilization in muscle is decreased.2 In particular,
obesity-induced insulin resistance in skeletal muscle is a
multifactorial process. So far, it is unclear which specific
mechanism(s) is responsible for obesity-induced insulin resis-
0 Inha-ro, Nam-gu, Incheon 402-751, Republic of Korea.

tance. However, a number of contributing factors have been
suggested. In this paper, we will summarize some potential
mechanisms of obesity-induced insulin resistance in skeletal
muscle.
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Exercise training has been well known to provide benefits
as a potential intervention for obesity-related chronic dis-
eases, impaired contractile function, and risk of muscle injury.
In addition, regular exercise training has many desirable
effects for people with obesity and type II diabetes, suggest-
ing that physical activity decreases insulin resistance and
increases insulin sensitivity in skeletal muscle.3–5 Although
previous data showed the beneficial effects of exercise on
insulin sensitivity in obese skeletal muscle, the exact mech-
anism(s) by which exercise protects against obesity-induced
insulin resistance in skeletal muscle has not yet been fully
understood. Therefore, in the next section, an overview of
the role of exercise in obesity-induced insulin resistance in
skeletal muscle will be provided.

2. Characteristics of skeletal muscle fibers
and exercise

Skeletal muscle contains two different kinds of fibers, which
provide different speeds of contraction and ability of produc-
ing force,6 namely, type I (slow fiber or slow-twitch fiber) and
type II [fast fiber or fast-twitch (FT) fiber]. Furthermore, the
type II fibers consist of two isoforms. In humans, type II fibers
are classified into FT type a (type IIa) and FT type x (type IIx).
However, in animals, type IIb is used instead type IIx. The type
I and type II fibers have different speeds of contraction due to
different forms of myosin adenosinetriphosphatase (ATPase).
Myosin ATPase is the enzyme that splits ATP to produce energy
for muscle contraction. For example, type I fibers have a slow
form of myosin ATPase, whereas type II fibers have a fast form
of myosin ATPase.6 Therefore, ATP is split more rapidly in type
II fibers than in type I fibers in response to neural stimulation
for muscle contraction.

In general, most muscles in our body consist of approxi-
mately 50% type I fibers and 50% type II fibers.7 However, the
exact percentage of each fiber type varies in various muscles.
In addition, the percentage of each fiber type varies from one
individual to another. For example, power athletes (e.g., track
sprinters) typically possess a large percentage of fast fibers,
whereas endurance athletes generally have a high percentage
of slow fibers.8,9 Although muscle fiber types are known to
play a role in sport performance, an individual’s muscle fiber
composition is not the only factor that determines success
in athletic events. In fact, successful athletes have consider-
able interaction of physiological, psychological, neurological,
cardiopulmonary, and biomechanical factors.

In general, type I fibers have a high level of aerobic
endurance as well as very high efficiency at generating ATP
from the oxidation of carbohydrate and fat for muscle fiber
contraction and relaxation.10 Type I fibers can continuously
produce ATP during periods of oxidation. Because type I fibers
have high aerobic endurance, they are recruited very often
during low-intensity endurance events (e.g., marathon) and
during most daily activities (e.g., walking). By contrast, type

II fibers have relatively low aerobic endurance compared with
type I fibers.10 Type II fibers are recruited to perform in the
absence of adequate oxygen (i.e., in anaerobic conditions), and
they play a major role in high-intensity exercise. For example,
Integr Med Res ( 2 0 1 3 ) 131–138

type II fibers are the primary fiber type for short, high-intensity
power athletes (e.g., sprinters).

3. Exercise and bioenergetics in skeletal
muscle

Our body uses carbohydrate, fat, and protein substrates to
provide the necessary energy to maintain cellular activities
both at rest and during exercise. The primary nutrients during
exercise are carbohydrates and fats, with protein contributing
a relatively small amount of the total used energy.11 Exercise
provides a big challenge to the bioenergetics in the working
muscle. The body’s total energy expenditure during exercise
may increase by 15–25 times above expenditure at rest. Most
of the energy production is used to produce ATP for the con-
traction of skeletal muscle. Similar to this process, skeletal
muscle can generate and consume large quantities of ATP
during exercise.

The metabolic responses to exercise are affected by the
intensity and duration of exercise.6 For example, during high-
intensity, short-term exercise (i.e., 2–20 seconds), most of the
ATP in muscle is generated by the ATP–phosphocreatine sys-
tem. During periods of intense exercise (i.e., > 20 seconds),
much of the needed ATP is produced by anaerobic gly-
colysis. However, during periods of prolonged exercise
(i.e., > 10 minutes), the energy comes primarily from aerobic
metabolism.

Carbohydrate as glycogen is stored in the skeletal muscle
and liver. The direct source of carbohydrate for muscle energy
metabolism is provided by muscle glycogen, whereas liver
glycogen is served to replace blood glucose.12 For example,
when blood glucose levels decrease during periods of pro-
longed exercise, glucose by liver glycogenolysis is released into
the blood to maintain blood glucose levels, which is trans-
ported to the working skeletal muscle as fuel. The relative
contribution of blood glucose and muscle glycogen during
exercise for energy metabolism depends on the intensity and
duration of exercise.10 During low-intensity exercise, blood
glucose works predominantly, whereas during high-intensity
exercise, muscle glycogen plays the greater role for energy
metabolism. In addition, muscle glycogen is the primary
source of carbohydrate during the 1st hour of submaximal pro-
longed exercise. However, blood glucose works predominantly
as a fuel due to the decline in muscle glycogen levels.

Most fat as triglycerides is stored in adipocytes (fat cells).
However, some fat is also stored in skeletal muscle.7 For energy
metabolism during exercise, triglycerides are divided into free
fatty acid (FFA) and glycerol. The FFA is converted into acetyl-
coenzyme A (CoA) in the Krebs cycle to produce ATP. Like
carbohydrate, the intensity and duration of exercise deter-
mine the relative contribution of adipocytes (plasma FFA) and
muscle (triglycerides) for energy metabolism.10 For example,
during low-intensity exercise, the primary source of fat is
plasma FFA (i.e., FFA from adipocytes), whereas during high-
intensity exercise, muscle triglycerides play the greater role

for energy metabolism. In addition, the contribution of plasma
FFA and muscle triglycerides is very similar at the beginning
of exercise. However, as the duration of exercise increases,
plasma FFA plays the greater role as a fuel source.

dx.doi.org/10.1016/j.imr.2013.09.004
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Fig. 1 – Insulin signaling in skeletal muscle. ADP,
adenosine diphosphate; Akt, protein kinase B; AS160, Akt
substrate of 160 kDa; ATP, adenosine triphosphate; FADH2,
flavin adenine dinucleotide reduced; GLUT4, glucose
transporter protein 4; IRS-1, insulin-receptor substrate-1;
NADH, nicotinamide adenine dinucleotide reduced; TCA,
t
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glucose transport into the cells. Indeed, much attention
ricarboxylic acid.

. Glucose and lipid metabolism in skeletal
uscle

keletal muscle is the major site that uses both glucose
nd lipid as fuel sources for energy metabolism. After

meal, approximately two-thirds of ingested glucose is
aken up by skeletal muscle through an insulin-dependent

echanism.13 In general, the plasma insulin concentration
etermines the contribution of glucose and lipid as fuel
ources. For example, following glucose ingestion with meal,
he elevation in plasma glucose concentration stimulates
nsulin secretion from the beta cell and insulin stimu-
ates glucose uptake through insulin signaling in skeletal

uscle.14

In normal skeletal muscle metabolism, insulin stimulates
kt phosphorylation through insulin-receptor substrate-1

IRS-1) and phosphatidylinositol 3-kinase (PI3K), and activated
kt phosphorylates Akt substrate 160 (AS160) allowing glu-
ose transporter protein 4 (GLUT4) storage vesicles to move to
he plasma membrane for glucose.15–18 There are five major
soforms of GLUTs. Only GLUT4 is found in the skeletal mus-
le. After the uptake of glucose into the skeletal muscle
hrough the GLUT4 vesicles, glucose is immediately phos-
horylated by hexokinase, and the phosphorylated glucose

s stored as glycogen or enters into the glycolytic pathway
or oxidation in mitochondria through the tricarboxylic acid

ycle and electron transport system (Fig. 1). However, dur-
ng conditions of fasting, at which muscle glucose uptake is
educed and the plasma FFA is elevated, FFA serves as the
133

major fuel source for energy metabolism in skeletal mus-
cle. Once the FFA enters the skeletal muscle through fatty
acid translocase/CD36 and fatty acid–binding protein, they
are activated by long-chain acyl-CoA synthetase to form a
fatty acyl-CoA (FA-CoA), which is then partitioned toward the
synthesis of lipid [triacylglycerol (TAG)] in the cytoplasm or
toward mitochondria for oxidation in the presence of carni-
tine palmitoyltransferase 1 and carnitine palmitoyltransferase
2 (Fig. 2).19 Thus, the ability of skeletal muscle to switch
from glucose oxidation during a mixed meal state to fat oxi-
dation during the fasting state is referred to as metabolic
flexibility.20

5. Obesity and insulin resistance

Obesity is associated with a number of alterations in skele-
tal muscle metabolism leading to insulin resistance. However,
it remains unclear which specific mechanism(s) is respon-
sible for obesity-induced insulin resistance. The following
discussion will highlight some potential mechanisms of
obesity-induced insulin resistance in skeletal muscle in
terms of mitochondrial role in the cells: (1) mitochondrial-
independent mechanisms; and (2) mitochondrial-dependent
mechanisms.

5.1. Mitochondrial-independent mechanisms

Although the exact mechanism that leads to the development
of insulin resistance in skeletal muscle is not yet fully under-
stood, increased intracellular fat content and lipid metabolites
have been shown to play a primary role in skeletal muscle
insulin resistance, independent of mitochondria.21–23

5.2. Accumulation of intramyocellular lipid

It has been reported that TAG in skeletal muscle is a promi-
nent marker in the development of insulin resistance showing
a negative relationship between intramyocellular lipid (IMCL)
concentration and insulin sensitivity in nonobese adults.24 An
imbalance between fatty acid oxidation (FAO) and fatty acid
synthesis could lead to lipid accumulation within the skeletal
muscle, leading to insulin resistance. However, other data sug-
gest that this is not a simple cause-and-effect mechanism. For
example, endurance athletes show both high insulin sensitiv-
ity and elevated IMCL levels.25 In addition, the overexpression
of diacylglycerol acyltransferase producing TAG from diacyl-
glycerol (DAG) and FA-CoA in the skeletal muscle of mice has
been reported to increase both TAG and insulin sensitivity.26

Therefore, IMCL does not appear to be a marker of insulin
resistance in skeletal muscle.

5.3. Accumulation of lipid intermediates (e.g., FA-CoA,
DAG, and ceramide)

The insulin signaling is responsible for insulin-mediated
has been recently focused on lipid intermediates such as
acyl-CoA, DAG, or ceramides that inhibit insulin signal-
ing, which are attractive mediators of insulin resistance in
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Fig. 2 – Fatty acid synthesis and oxidation signaling in skeletal muscle. ACSL, long-chain acyl-CoA synthetase; ADP,
adenosine diphosphate; ATP, adenosine triphosphate; CPT-I, carnitine palmitoyltransferase 1; CPT-II, carnitine
palmitoyltransferase 2; DAG, diacylglycerol; FA-CoA, fatty acyl-CoA; FADH2, flavin adenine dinucleotide reduced; NADH,
nicotinamide adenine dinucleotide reduced; TAG, triacylglycerol; TCA, tricarboxylic acid.

Fig. 3 – Effects of lipid intermediates (e.g., FA-CoA, DAG, ceramide) on insulin signaling in skeletal muscle. FA-CoA or DAG
activates serine/threonine kinases, which phosphorylate serine IRS-1 leading to the impairment of insulin signaling. In
addition, ceramide inhibits Akt phosphorylation leading to reduced glucose uptake. ACSL, long-chain acyl-CoA synthetase;
ADP, adenosine diphosphate; Akt, protein kinase B; AS160, Akt substrate of 160 kDa; ATP, adenosine triphosphate; CPT-I,
carnitine palmitoyltransferase 1; CPT-II, carnitine palmitoyltransferase 2; DAG, diacylglycerol; FA-CoA, fatty acyl-CoA;
FADH2, flavin adenine dinucleotide reduced; GLUT4, glucose transporter protein 4; IRS-1, insulin-receptor substrate-1;
NADH, nicotinamide adenine dinucleotide reduced; TCA, tricarboxylic acid.

dx.doi.org/10.1016/j.imr.2013.09.004
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Fig. 4 – Effects of ROS on insulin signaling in skeletal muscle. ROS induced by electron transport system (complexes I and
III) alters insulin signaling leading to insulin resistance. ACSL, long-chain acyl-CoA synthetase; ADP, adenosine
diphosphate; Akt, protein kinase B; AS160, Akt substrate of 160 kDa; ATP, adenosine triphosphate; CPT-I, carnitine
palmitoyltransferase 1; CPT-II, carnitine palmitoyltransferase 2; FA-CoA, fatty acyl-CoA; FADH2, flavin adenine dinucleotide
reduced; GLUT4, glucose transporter protein 4; IRS-1, insulin-receptor substrate-1; NADH, nicotinamide adenine
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keletal muscle.21–23 These emphasize that diminished fatty
cid import and oxidation in mitochondria are a pivotal
egulator in skeletal muscle insulin resistance, favoring acti-
ation of serine/threonine kinases (e.g., I�B kinase, c-Jun
-terminal kinase, protein kinase C theta) or ceramides that

mpair insulin signaling in skeletal muscle.17,27 For exam-
le, FA-CoA or DAG activates serine/threonine kinases, which
hosphorylate serine IRS-1 leading to insulin resistance.16

n addition, FFA produces sphingolipids (ceramides), which
nhibit Akt phosphorylation leading to reduced glucose uptake
Fig. 3).28–31

.4. Mitochondrial-dependent mechanisms

lthough many studies indicated that diminished mitochon-
rial function is associated with the development of insulin
esistance in skeletal muscle,32–34 others also have chal-
enged the notion that a reduction of mitochondrial oxidative
apacity plays an essential role between obesity and insulin
esistance,35–38 indicating that impairment of mitochondrial

etabolism was not responsible for insulin resistance in
keletal muscle. However, the following two mechanisms are

merging evidence that obesity-induced insulin resistance in
keletal muscle is principally driven by mitochondrial over-
oad and oxidative stress rather than oxidative capacity in

itochondria.
oxylic acid.

5.5. Mitochondrial overload

In normal mitochondria, FFAs enter mitochondria to produce
acetyl-CoA during �-oxidation, which undergoes additional
processes including Krebs cycle and electron transport chain
(ETC) in the mitochondrial matrix, leading to CO2 produc-
tion in the Krebs cycle and ATP generation in the ETC.
However, too much FFA intake (i.e., excessive �-oxidation)
induces a lipid burden on mitochondria (called mitochondrial
overload), and the mitochondria produces partially oxidized
fatty acid such as acylcarnitine (called incomplete FAO).39

This incomplete FAO may contribute to lipid-induced impair-
ments in insulin action. For example, Koves et al40 suggested
that insulin resistance was associated with increased incom-
plete FAO in skeletal muscle. They showed the connection
between the development of insulin resistance and lipid-
induced mitochondrial overload by incomplete FAO in skeletal
muscle. However, the precise connection between increased
�-oxidative by-products and insulin resistance is not clear so
far.

5.6. Mitochondrial oxidative stress
Metabolic oversupply (e.g., HFD and obesity) and reduced
energy demand (e.g., physical inactivity) are major risk factors
for insulin resistance and type 2 diabetes. Emerging evidence
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Fig. 5 – Effects of exercise on mitochondrial function and insulin signaling in skeletal muscle. Exercise increases fatty acid
oxidation (e.g., �-oxidation and TCA) and protects against obesity-induced ROS, which impairs insulin signaling in skeletal
muscle. In addition, exercise activates AS160 and GLUT4 resulting in increased insulin sensitivity. ACSL, long-chain
acyl-CoA synthetase; ADP, adenosine diphosphate; Akt, protein kinase B; AS160, Akt substrate of 160 kDa; ATP, adenosine
triphosphate; CPT-I, carnitine palmitoyltransferase 1; CPT-II, carnitine palmitoyltransferase 2; DAG, diacylglycerol; FA-CoA,
fatty acyl-CoA; FADH2, flavin adenine dinucleotide reduced; GLUT4, glucose transporter protein 4; IRS-1, insulin-receptor
substrate-1; NADH, nicotinamide adenine dinucleotide reduced; ROS, reactive oxygen species; TAG, triacylglycerol; TCA,

tricarboxylic acid.

indicates that overnutrition results in elevated mitochon-
drial oxidative stress (i.e., reactive oxygen species or ROS),
which is the primary factor for the development of insulin
resistance in skeletal muscle (Fig. 4).41,42 Too much energy
supply induces excessive production of nicotinamide adenine
dinucleotide reduced (NADH) and flavin adenine dinucleotide
reduced (FADH2) through �-oxidation in mitochondria. These
increased NADH and FADH2 levels may be surplus-reducing
equivalents. In other words, if �-oxidation is increased by
oversupply of fatty acids without a corresponding increase
in energy demand, surplus-reducing equivalents are gen-
erated. These surplus-reducing equivalents are associated
with increased mitochondrial membrane potential, leading to
increased production of superoxide and hydrogen peroxide.
This increased ROS may result in insulin resistance.39,43 To
confirm the implication of mitochondrial oxidative stress in
skeletal muscle insulin resistance, we recently demonstrated
that administration of a mitochondrial-targeted antioxi-
dant [e.g., mitochondrial-targeted oxidant scavenger (SS31)

and mitochondrial-targeted catalase] prevented HFD-induced
insulin resistance in animal model,41 suggesting that mito-
chondrial ROS is a critical factor in the etiology of HFD-induced
insulin resistance in skeletal muscle. However, the cellular and
molecular mechanisms of how oxidative stress causes insulin
resistance are still largely unknown. Redox-sensitive protein
modifications may be a crucial mechanism for determining
how oxidative stress regulates the insulin-signaling cascade
with obesity.43 In the near future, linking mitochondrial bioen-
ergetics with insulin resistance will provide a mechanistic
basis for the clinical strategies in treating obesity-induced
insulin resistance.

6. Exercise and insulin resistance

The development of insulin resistance in skeletal muscle is
associated with impairments at a number of key regulatory
steps with obesity in the abovementioned factors, includ-
ing elevated IMCL, lipid intermediates (e.g., FA-CoA, DAG,
ceramide), mitochondrial overload, and mitochondrial ROS.
However, exercise is widely recognized as having beneficial

effects on cardiovascular, respiratory, metabolic, and neuro-
muscular health. Furthermore, emerging evidence suggests
that exercise protects against obesity-induced insulin resis-
tance (Fig. 5).

dx.doi.org/10.1016/j.imr.2013.09.004
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Obesity is associated with lower rates of skeletal mus-
le FAO, which is linked to insulin resistance. However,
xercise training increases FAO in skeletal muscle of obese
ndividuals.4,44,45 For example, Bajpeyi et al46 indicated that
MCL was elevated in obese and diabetic individuals. How-
ver, after 10 days of exercise training, IMCL content was
ignificantly decreased. Houmard et al47 also found that 10
ays of short-term exercise training stimulated PI3K activ-

ty that resulted in improved insulin sensitivity in sedentary
bese individuals. In addition, 12 weeks of exercise training

ncreased insulin action and reversed impairment of AS160
hosphorylation in insulin-resistant aged individuals.5 In the
ame way, GLUT4 gene expression was higher in the skele-
al muscle of endurance-trained individuals than sedentary
ndividuals.48

Furthermore, improvements in mitochondrial function
ave been observed in sedentary obese individuals after exer-
ise training.49,50 Recently, we also found that a long-term
FD caused an increased skeletal muscle H2O2 emission,

n conjunction with the development of insulin resistance
n rodents. However, mild exercise training attenuated HFD-
nduced H2O2 elevation and insulin resistance in skeletal

uscle,51 suggesting that increased energy expenditure (e.g.,
xercise) is fundamental to the preservation of mitochondrial
unction/integrity and/or for preventing oxidative stress on a
aily basis.

Interestingly, exercise mode has differential effects on body
omposition and insulin resistance. For example, Willis et al52

emonstrated that aerobic training was the optimal mode
f exercise for reducing fat mass and body mass, whereas
esistance training was needed for increasing lean mass in
bese individuals. Furthermore, Slentz et al53 showed that aer-
bic exercise was more effective than resistance exercise at

mproving visceral fat, total abdominal fat, and insulin resis-
ance. However, Slentz et al54 observed that both moderate
nd vigorous exercise training improved pancreatic beta-cell
unction in sedentary and overweight individuals.

. Conclusions

keletal muscle is the primary tissue to use both glucose and
ipid as fuel sources to regulate insulin sensitivity in our body.
besity plays a pivotal role in the pathogenesis of insulin resis-

ance in skeletal muscle. Obesity-induced insulin resistance
n skeletal muscle results from various potential mechanisms
ncluding accumulation of IMCL and lipid intermediates (e.g.,
A-CoA, DAG, and ceramide), mitochondrial overload-induced
ncomplete FAO, and mitochondrial oxidative stress. Exer-
ise represents one of the most effective means of reversing
nsulin resistance in skeletal muscle of obese patients at high
isk for type II diabetes. However, further research is neces-
ary to determine the cellular and molecular mechanisms
y which exercise training protects against obesity-induced
nsulin resistance in skeletal muscle.
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