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SARS‑CoV‑2 (CoV) is the etiological agent of the COVID‑19 pandemic and evolves to evade both host 
immune systems and intervention strategies. We divided the CoV genome into 29 constituent regions 
and applied novel analytical approaches to identify associations between CoV genomic features and 
epidemiological metadata. Our results show that nonstructural protein 3 (nsp3) and Spike protein (S) 
have the highest variation and greatest correlation with the viral whole‑genome variation. S protein 
variation is correlated with nsp3, nsp6, and 3′‑to‑5′ exonuclease variation. Country of origin and time 
since the start of the pandemic were the most influential metadata associated with genomic variation, 
while host sex and age were the least influential. We define a novel statistic—coherence—and show 
its utility in identifying geographic regions (populations) with unusually high (many new variants) or 
low (isolated) viral phylogenetic diversity. Interestingly, at both global and regional scales, we identify 
geographic locations with high coherence neighboring regions of low coherence; this emphasizes 
the utility of this metric to inform public health measures for disease spread. Our results provide a 
direction to prioritize genes associated with outcome predictors (e.g., health, therapeutic, and vaccine 
outcomes) and to improve DNA tests for predicting disease status.

The COVID-19 pandemic, caused by the 2019 novel coronavirus (SARS-CoV-2), has fundamentally changed 
the world. More than a year later, there are a diversity of efforts ongoing to develop both therapeutic strategies 
as well as vaccine distribution. Yet, we know from experience, the virus will evolve strategies to escape both host 
immune systems and intervention strategies. Characterizing the dynamics of coronavirus genomic variation is 
crucial to understand both viral (e.g., virulence) and host (e.g., immune response) biological activities related 
to these changes, which makes the coronavirus (CoV) genome the most important and most challenging source 
to investigate the virus behavior. For example, the viral Spike protein is considered a key element of the virus to 
initiate binding to host cells via cell-surface protein angiotensin-converting enzyme 2 (ACE2)1,2; hence, ACE2 
genetic variation has been targeted as a source to explain disease  severity3–5. Genomic variation has also been 
shown to be informative in terms of tracking the spread of the  virus6 and identifying major clades related to 
different variants of SARS-CoV-2 with different epidemiological  features7. CoV genomic variation has also 
been associated with host phenotypic variables (including epidemiological information) via changes in the 
virus protein structure, giving the latter great potential explanatory power with respect to clinical  outcomes8–10. 
Population-level studies of protein structural changes in CoV genomes may likewise inform its epidemic kinetics 
(e.g., speed of spread). However, our ability to effectively link genomic variation in viruses to epidemiological 
information is hindered by analytical limitations in current methodologies to test such associations. Here we 
apply our novel multi-resolution clustering approach for identifying variable CoV genomic regions and linking 
these regions to epidemiological factors. We apply a coherence metric to quantify and compare phylogenetic 
divergence of CoV genomes within locations to the divergence of CoV between locations. Our results have direct 
public health applicability, and the underlying methodology is robust to any collection of genomic features and 
epidemiological data.
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Results
We applied novel analytical approaches to characterize the dynamic nature of mutations across the coronavirus 
genome regions and to test for associations with publicly available clinical variables. We used two sets of data: 
one to investigate SARS-CoV-2 differences against previously detected coronaviruses at the nucleotide and 
protein level, and another including only SARS-CoV-2 genomes to characterize the dynamics of the COVID-
19 pandemic in association with epidemiological data. We generated dissimilarity matrices between the whole 
viral genome and specific regions, and applied omeClust11 (“Methods”), a multi-resolution clustering approach 
to investigate viral lineage diversity in relation to clinical and epidemiological data. We also used the nucleotide-
based distance structure among samples to assess the relationship between variation explained by the whole 
genome and specific regions. Using this approach, we identified novel associations between the spike protein 
and nsp3 and the whole genome variation within the SARS-CoV-2 and among lineages of other coronaviruses. 
Further, we found that epidemiological variables such as country of origin and days from the start of the pan-
demic explain most of the genomic variation. Our results show that host, infected individuals, gender, and age 
have the lowest explanatory power of the viral genomic variation. This suggests that the viral genome mutations 
are independent of those specific characteristics of the infected hosts. In addition, the specific gene differences 
among the coronavirus families drive most of the genome differences, which can explain the speed of spread 
and higher infectivity of SARS-CoV-2.

CoV phylogenomics using specific viral genes. We used phylogenetic-based approaches that compute 
nucleotide similarities to investigate population-level dynamics of viruses; such tools have been previously used 
to investigate the origin of coronaviruses that infect  humans7,12. We used phylodynamic techniques to character-
ize the evolutionary dynamics of COVID-19. We first investigated the detailed genomic variation among coro-
naviruses to identify important changes at specific regions (i.e., protein and single nucleotide polymorphisms) in 
relation to epidemiological variables. We hypothesized that distinct genomic, population and phylogeographic 
signatures in SARS-CoV-2 circulate during different phases of the epidemic. We used a comprehensive collec-
tion of the SARS-CoV-2 genomes isolated from COVID-19 patients and accompanying epidemiological data 
identified within the GISAID  database13. As a separate analysis, we coupled SARS-CoV-2 genomic sequences 
from GISAID with other complete coronavirus genomes from GenBank (“Methods”).

Our results indicate that the phylogenetic trees based on the sequence alignments of nsp3 (Fig. 1) and Spike 
protein (Supplementary Fig. 1) provide similar phylogenetic structure to the whole viral genome tree (Supple-
mentary Fig. 2), although some clade differences were found for each coronavirus. We found that SARS-CoV-2, 
SARS-related, and MERS-CoV comprise distinct clades, with a SARS-related plus bat clade sister to SARS-
CoV-2. Two groups of Bat-SL-CoV taxa were sister to MERS-CoV and interspersed with the SARS-related clade. 
The homology-based distance of the viral genome has been used to distinguish the clades using the omeClust 
approach.

Figure 1.  Maximum Likelihood analysis of the nsp3 region of the CoV genomes. (a) RAxML cladogram 
(branch lengths not proportional to change) showing relationships between SARS-CoV-2, MERS, Bat-SL-CoV, 
and SARS-related and rooted using a Beta Coronavirus outgroup. Sequence identity estimates between the 
representatives of clades for CoV families reveal regions with potential functional importance. (b) RAxML 
phylogram (branch lengths proportional to change) estimated from 2,007 sequences from the GISAID database, 
including proportional representatives of genomes from Pangolin major clades.
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The major clades depicted in our tree conform well with previously detected  lineages14, but distinguished 
different minor lineages from those in Rambaut’s tree. Our phylogenetic analysis indicates that SARS-CoV-2 is 
sister to a clade comprised of bat coronavirus and SARS-related genomes. Bat-SL-CoV also falls in several clades 
sister to and within the SARS-related clade, and sister to the clade including SARS-related, SARS-CoV-2, and 
MERS-CoV. omeClust was able to identify four different lineages corresponding to four coronavirus families 
(normalized mutual information (NMI) = 0.9).

CoV subclades, diversity, and gene signal. To investigate the influence of the CoV genes in the phy-
logenetic trees, we applied omeClust to the inter-sample distances of 29 regions and CoV genomes from the 
GISAID SARS-CoV-2 alignment. We identified communities of CoV lineages by applying omeClust (“Meth-
ods”) to a distance matrix built from dissimilarity among genome alignments. Distance matrices were cal-
culated for genome and gene partitions using GTR + G  distances15,16. These distances are used as inputs into 
the omeClust algorithm along with clinical data including organism, date (year), and country. The correlation 
between CoV lineage communities and metadata reported by omeClust as enrichment score using normalized 
mutual information for all CoV genes is shown (Fig. 2a). Results show that variation in distance matrices for the 
genomes and specific regions is explained by metadata and the Spike protein and nsp3 regions correlate with the 
viral genome overall. Identified clades of CoV using genome variation (Fig. 2b) are explained mostly by organ-
isms (NMI = 0.9). Date (NMI = 0.62) and country (NMI = 0.41) also have some influence in the clade structure. 
omeClust results identified clades and organisms as the most influential metadata and suggest that the major 
variation among coronavirus organisms happens in the Spike (Fig. 2c) and nsp3 proteins (Fig. 2d). omeClust 
gives similar enrichment scores for the whole genome, and the Spike protein and nsp3 region. However, regions 
such as E, nsp10, and M have different specifications and separation properties. In omeClust analysis, we used 
five distinguished organisms (“Methods”).

Within‑viral genome variation associations reveal important genes. To identify associations 
among CoV genes including well-studied genes (e.g., Spike protein) and other CoV genes, we used the correla-
tion between nucleotide level distances in population samples. We generated distance matrices for our study 
samples from 2069 representative GISAID samples using homology dissimilarity (TN93 model distances) across 
29 specific genome regions (“Methods”). Then to investigate the relationship between region variation, we tested 
if there was a relationship between the overall structure of these dissimilarity matrices using the Mantel  test15. 
This is an important step to relate proteins with clinical outcomes and identify mechanisms in COVID-19 geno-
type–phenotype associations such as Spike protein (S) variant G614 having an evolutionary fitness advantage 
compared to  D61416 that we also see in our data in location the 23,403 A > G. We used 29 specific regions of 
the viral genome and the whole genome. Our results indicate that variation in the whole genome is signifi-
cantly associated with variation in the Spike protein (correlation = 0.32) and nsp3 regions (correlation = 0.39) 
(Fig. 3a). Additionally, the Spike protein is associated with nsp3 (correlation = 0.20), which is the highest corre-
lation between the Spike protein and individual gene regions/proteins (excluding metaregions ORF1ab and the 
full genome), and nsp6 (correlation = 0.07), which has a potential role for facilitating viral  replication10. Genome 
regions that are not associated with any other regions need to be investigated individually with metadata of 
interest.

We used the number of selected sites as a characterization of change in each site of the viral genome to pri-
oritize potential important regions. Consistent with our population-level variation, the Spike protein and nsp3 
have high numbers of sites under selection (Fig. 3b). We obtain the number of sites under selection from  HyPhy17, 
which is embedded in Datamonkey 2.018. In addition, we investigated mutations across the CoV2 genomes 

Figure 2.  Subclade identification using CoV genome and gene variation in population of sample in our study. 
Subclade finding was performed using omeClust and enrichment score of metadata was measured based on 
the overlap of detected clades and metadata using normalized mutual information (NMI). (a) regions of CoV 
genome have been clustered using z-score of enrichment scores for three metadata variables available for all 
lineages. Regions such as S, nsp6, N, nsp3, ORF1a, ORF1ab are more similar to genomes using clusters of scaled 
enrichment scores. (b) omeClust identifies communities of CoV lineages that are mostly explained by organisms 
(NMI = 0.9). (c) Spike protein that facilitates binding and entering to host cells carries similar variation 
among organisms as the whole CoV genome. (d) nsp3 protein has a similar variation to S protein and can be 
targeted as a protein with an important biological function. omeClust detects four communities (points colors) 
corresponding to the four known organisms (points shapes).
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(“Methods”). Sites flagged as mutations at the beginning and end of the genome are likely sequencing artifacts and 
not veritable mutations (Fig. 3c). The 3′-to-5′ exonuclease, endoRNAse, 2′-O-Ribose methyltransferase, and Spike 
proteins—roughly from bp 19,000 to 23,000—show a greater-than-average frequency of mutations. The two peaks 
of mutation counts in nsp3 (location 3037 C > T) and Spike protein (location 23,403 A > G) tend to co-occur19.

Associations among SARS‑CoV‑2 genes and epidemiological data. We explored associations 
between viral genome similarity across samples and metadata downloaded from GISAID (“Methods”) using 
the PERMANOVA test (Fig. 4). Our results indicated host characteristics such as Age and Sex are less correlated 
with the viral genome variation compared to other epidemiological data such as Country and Days. Association 
between days, country, country of exposure, and region with SARS-CoV-2 genome and genes indicates differ-
ent CoV clades of the SARS-CoV-2 are spreading in different world regions and the virus is evolving over time.

We used lineage information provided in the GISAID as a control for our analysis as it is driven by viral 
genome variation and we expected a significant correlation between lineage and genome variation. Viral com-
munities detected by omeClust and lineage reveal similar associations with CoV genome and genes suggesting 
alignment between two approaches, lineage labeling, and omeClust community detection.

SARS‑CoV‑2 variation and geography. We used the viral genome alignment among our samples to 
investigate the diversity and spatiotemporal distributions of SARS-CoV-2 lineages. Location-wide phylogenetic 

Figure 3.  Association among SARS-CoV-2 genome and genes variation. (a) The SARS-CoV-2 genome and 29 
specific regions are used to structure dissimilarity among samples in the GISAID cohort. Relationships between 
variation explained among proteins, regions, and the whole genome of CoV using paired measurements with 
differences across subjects are quantified by Mantel tests (square of the Mantel statistic, see “Methods”). (b) the 
selection proportion (histogram bars) and the number of sites under selection (values above the bars) for each of 
the 21 specific regions detected by  HyPhy17 on October 28, 2020. Spike protein and nsp3 are among the regions 
with a high number of sites under selection, while nsp10 and ORF6 regions have the lowest number of sites. 
The RNA-dependent RNA polymerase (RdRP) has the highest selection proposition from the HyPhy analysis, 
the number of sites under selection divided by the length of the gene region, which shows no association in our 
analyses. (c) the count of SARS-CoV-2 SNPs (in log scale) shows distinct patterns across genome regions. The 
3′-to-5′ exonuclease, endoRNAse, 2′-O-Ribose methyltransferase, and Spike proteins have a heightened number 
of mutations. The red line is an arbitrary cutoff at log(8000) to emphasize large differences as we show the results 
in the log scale.
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distances indicate the homogeneity of lineages in specified locations (countries world-wide, and states for the 
USA). We defined a ‘coherence’ measurement to quantify the similarity of lineages within a location (countries 
or states) compared to other locations (“Methods”). Countries with greater coherence show greater similarity 
and less phylogenetic separation of lineages (Fig. 5). The coherence can be used as a measurement of diversity 
and spatiotemporal distributions of SARS-CoV-2 lineages in a region of interest. A coherence score of 1.0, like 
in Qatar, indicates that viral lineages in Qatar are more similar to each other compared to the rest of the world. 
Brunei, Algeria, Kuwait, Uruguay, Egypt, and Japan follow behind Qatar, with coherence scores greater than 0.5. 
A high within-community diversity is indicated by a low coherence score such as Malaysia (coherence = − 0.45). 
A natural extension for this metric is in the realm of public health, where coherence can be used as a surrogate 
for assessing the effectiveness of policies such as the use of face  coverings20 and/or travel  restrictions21 (Fig. 5b).

Figure 4.  Association between SARS-CoV-2 genome regions and metadata. Distances among CoV genomes 
and 29 specific regions using GTR + G-based distances were used to assess relationships between variation 
explained between proteins, regions, and the whole genome of SARS-CoV-2 using paired measurements with 
differences across subjects by omnibus (PERMANOVA) test. White cells refer to scenarios where there was not 
sufficient variation to perform our analyses.

Figure 5.  Quantification of coherence of lineages within a specified area compared to other areas. Higher 
coherence values indicate lower phylogenetic distance within a specific geographic region relative to other 
areas. (a) 15,721 viral genome sequences from infected individuals downloaded from GISAID on May 
8th, 2020, and the sequencing data were aligned and used to compare the diversity of SARS-CoV-2 within 
countries compared to the rest of the world. (b) samples from each state of the US have been compared to the 
rest of the US to investigate the similarity of the virus lineages within each state. Several counties and states 
exhibited differentiation into specific clades. States or countries with darker colors likely show a higher level of 
community-driven spread. In contrast, states or countries with lower coherence (lighter colors) show a greater 
level of disease introduction from outside the region. The figure is implemented in omicsArt22, a  ggplot223 based 
 R24 package.
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Genomic variation related to protein structures. Protein structures have important roles in viral 
function (e.g., binding to human cells) and provide an additional dimension for understanding viruses, espe-
cially relative to their evolution to drug and vaccine resistance. We used the SWISS  model25 to build protein 
structures of coronavirus families using available RefSeq genomes for Bat-SL-CoV, SARS, MERS-CoV, and 
SARS-CoV-2. Our results suggest that there are clear differences between important proteins across coronavirus 
families. For example, the Spike protein has a different structure in SARS-related vs. Bat-SL-CoV and MERS-
CoV; however, it has a similar structure to SARS-CoV-2 (Supplementary Fig. 3). The Spike protein has impor-
tant functions such as facilitating entry into target  cells26 via host attachment and virus-cell membrane fusion, 
determining host  range27, and lipid  modification10. Spike protein variation was significantly correlated with nsp3 
(coefficient = 0.20); here, we show a similar pattern for nsp3 in predicted protein structure, where SARS-related 
and SARS-CoV-2 have similar nsp3 secondary structures, as well as Bat-SL-CoV and MERS-CoV, which also 
have similar nsp3 secondary structures.

We used proteins that have a high correlation with genome variation, Spike protein, and nsp3 protein, and 
four proteins with lower variation, including N, ORF6, 2′ O Ribose Methyltransferase proteins. Our results sug-
gest that ORF6 is the most variable region in terms of secondary structure. The S protein is dominated by coils 
in its secondary structure.

Protein secondary structures come in three classes: helices, strands, and coils. Different secondary structures 
show different robustness to mutations; in this context, robustness refers to the ability of a molecule to maintain 
its shape or function when its residues are mutated. A feature with higher robustness can have a greater number 
of mutations without undergoing structural change. Proteins composed of helices have been shown to be more 
robust to mutations than strands and both are more robust than coils (Fig. 6). In other words, proteins that are 
composed of helices are more likely to retain their folded conformation when their residues are  mutated28. It is, 
therefore, interesting that coils, the least robust of the three structural features, dominate the structure of most 
proteins in the betacoronavirus family. Mutations, by this logic, are more likely to have a high structural impact 
in these viruses. A notable exception is ORF6 alpha of SARS-CoV-2, which shows a high proportion of helices 
compared to other proteins across the different viruses.

Discussion
SARS-CoV-2 virus has infected individuals across the world, and no demographics and individual characteristics 
have shown immunity to the infection. The outcome of COVID-19 disease has varied among individuals and, as 
the virus evolves rapidly, characterizing this variation sheds light on understanding viral behaviors. We investi-
gated viral genomic variation relative to genomic features (e.g., sites under natural selection, gene regions, etc.), 
epidemiological features (e.g., date of diagnosis, age, sex, region, etc.), and protein structural features (e.g., coils, 
helices, loops, etc.)—although our approach can be used for other clinical features (e.g., obesity, coinfections, 
drug treatments, etc.) when they become available. We used two paths of viral genome investigations comparing: 
(1) variation among coronavirus types such as MERS-CoV and Bat-SL-CoV, and SARS-CoV-2 to find differences 
amongst these related lineages of coronaviruses and associated phenotypes (e.g., speed of spread and severity of 
the disease), and (2) variation among SARS-CoV-2 genomes to variants associated with differences in clinical 
and epidemiological data.

We hypothesized that specific genes that give a higher enrichment score (separation) of viral lineages might 
have an important role in viral behavior, such as transmissibility and severity, and this can be further explained 
by testing their associations with clinical metadata. We applied variation association tests not only to the whole 
genome alignment data, but also to 29 specific regions of the viral genome, to obtain sharper resolution of the 

Figure 6.  Predicted protein structure from sequence data across coronavirus families. (a) proteins with high 
variation among coronaviruses tend to have different protein structures. Blank cells indicate proteins that could 
not be successfully modeled by SWISS-MODEL (b) amino acid composition in predicted secondary structures 
of proteins show different patterns among CoV genome proteins. Gray cells refer to proteins that contained stop 
codons in our alignment or were otherwise not amenable to structural analysis.
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potential function of important variation. We consistently found that Spike protein and nonstructural protein 
3 (nsp3) significantly represent the viral genome variation among coronavirus families and also among SARS-
CoV-2 genomes. We additionally highlight sites undergoing selection in the N gene; the origin of this selective 
pressure may come from the role of the nucleocapsid protein in producing nuclear localization  signals29. We 
also identify mutational hotspots in the 3′-to-5′ exonuclease, endoRNAase, 2′-O-Ribose methyltransferase, Spike 
protein, ORF7a/b, and ORF8. Mutations in some regions have been linked to host functional alterations such as 
the role of ORF7a in host immune  suppression30 and ORF8’s role in intracellular stress  pathways31,32. Functional 
roles of other viral mutations remain to be characterized. We assessed associations between distances among 
genes with epidemiological features and found genetic variation correlated with country of exposure and days 
from start of the pandemic. Our community finding approach using dissimilarity from viral genomes and regions 
found subclades consistent with GISAID lineage data. Our coherence analysis framework provides an insight-
ful lens to examine viral evolution in a geographic and public health context. We observed striking differences 
across states, even states which are contiguous to one another. For example, Idaho has a remarkably different 
coherence score compared to Oregon and Washington, while Louisiana’s score is drastically different from that 
of Texas. This trend is similarly observed at a more global level—China and Kazakhstan, for example, have dra-
matically different coherence scores. Travel, face covering usage, local restrictions, and other factors may play a 
role in these differences and additional investigation is warranted to characterize viral spread and containment 
via genomic features. Regardless, the results suggest that coherence may serve as an important population level 
measurement for designing and assessing public health efforts.

In the future, we need to pair viral genome variation to host metabolomics and protein changes to provide 
a more detailed description of biological activity as host responses. This requires paired omics, metabolite and 
protein profiling, and also the characterization of the human microbiome, as well as well-designed studies to 
investigate specific aspects of virus infections and related health outcomes. For example, confounding factors 
(e.g., ethnicity and previous health records) need to be considered. Our quantifications of important genes (pro-
teins) enable generating hypotheses for COVID-19 treatment, such as vaccine development and gene editing 
in targeted regions of the viral genome. Overall, we present a compelling analytical framework for integrating 
clinical data and viral genomic data to make novel discoveries and insights on the interactions between these 
data types, all of which provides helpful insights into combating COVID-19.

Methods and materials
Viral genome sequences. We downloaded SARS-CoV-2 genomic sequences from GISAID and aligned 
them with other complete coronavirus genomes from GenBank for bat coronavirus (Bat-SL-CoV, including Bat 
coronavirus, Bat SARS coronavirus HKU3, and Bat SARS-like coronavirus), Middle East Respiratory SARS-
related coronavirus (MERS-CoV), Severe acute respiratory syndrome-related coronavirus (SARS-related), and 
outgroup sequences from the Alphacoronavirus  genus33 from the transmissible gastroenteritis virus. We seg-
mented both the SARS-CoV-2 genome alignment and the combined coronavirus genome alignment into 29 seg-
ments corresponding to the gene regions of SARS-CoV-2. In our analyses, we used a set of coronavirus genomes 
as a representative of phylogenetic tree including genomes for all previously recorded coronavirus genomes 
(e.g., MERS-CoV, and Bat-SL-CoV) in GenBank and a representative set of SARS-CoV-2. We kept the number 
of SARS-CoV-2 here as large as MERS-CoV genomes, the largest set we have for other coronavirus families. We 
downloaded a representative set of SARS-CoV-2 genomes with complete metadata (including age and sex, year, 
and country) from individuals infected during the COVID-19 pandemic from the GISAID database. These data 
were used for testing associations between variation in SARS-CoV-2 genomes and available epidemiological 
metadata.

Sequence alignment and phylogeny estimation. For our dataset containing only SARS-CoV-2 
sequences, no alignment was necessary as the MSA was available from GISAID. This alignment was subsetted to 
2069 representative genomes of all clades for ease of computational analysis. Subsetting was performed so that 
each clade would be represented proportionally in the smaller dataset, this was accomplished computationally 
by calculating the proportional size of each clade, multiplying that number by 500, rounding up, and then ran-
domly sampling the resulting number of sequences from each clade:

For the combined data set with SARS-CoV-2 (580 genomes) + Bat-SL-CoV + MERS-CoV + SARS-
related + outgroup sequences (a total of 1,339 sequences), full-length genome sequences were aligned using the 
global alignment strategy in  MAFFT34 via the CIPRES Science Gateway V. 3.335 under the default parameters.

From these alignments, we used  Modeltest36 to infer the best model of evolution for alignments from both 
datasets, and these sequences were used to reconstruct a phylogeny in RAxML using a rapid bootstrap analy-
sis and the GTRGAMMAX  model37. RAxML-HPC BlackBox on the CIPRES Science Gateway V. 3.335 was 
used with the mlsearch and bootstrapping parameters. After estimating phylogenies, several long branches were 
observed and subsequently trimmed to account for significant variance in sequence quality. Branches with a 
length of > 0.0006 were trimmed and removed from the alignment, as were sequences with a proportion of > 0.035 
of ‘N’ characters in the genome. We performed these filtering steps under the assumption that those branches 
were likely assigned long lengths or an erroneous placement in the tree due to low-quality sequencing runs. We 
segmented aligned genomes into 29 individual coding and non-coding regions based on the features from the 
GenBank entry NC_045512.2, the SARS-CoV-2 reference genome. The GenBank entry contains the basepair 

Number To Select =

⌈

500 ∗
number of sequences in clade

total number of sequences

⌉
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position start and end points of each of these 29 regions; that information was used to divide the alignment into 
constituent regions. Upon dividing, phylogenies were reconstructed for two genes of particular interest—nsp3 
and S. Phylogenies were estimated using maximum likelihood as implemented in RAxML as described above. 
We extracted the SNPs from the multialignment file of the CoV genomes using the snp-sites  tool38. Then we kept 
sites with a minor allele frequency greater than 0.00005 using vcftools (v0.1.13)39 with maf threshold = 0.00005.

To investigate associations among variation in viral genome regions and with epidemiological data, we per-
formed analyses on both whole-genome viral alignments as well as regional alignments. The multiple sequence 
alignment (MSA) was subsequently divided into 29 constituent gene regions (i.e., spike, envelope, ORF1A, etc.) 
by fetching the GenBank entry for the SARS-CoV-2 reference sequence, splitting the genomes based on the 
base pair positions that correspond to constituent gene regions, and outputting a single multi-fasta file for each 
gene region. In so doing, we generated 29 multi-fasta files, each containing the sequence for an individual gene 
region for each of the sequences in our MSA file. If our MSA contained 500 sequences, then the script would 
generate 29 multi-fasta files, each containing 500 sequences. Each of these files was then subjected to a distance 
calculation using the dna.dist function in the  R24 package  ape40. Our code is available at https:// github. com/ 
omics Eye/ covid- 19/.

OmeClust for community detection. Our omeClust algorithm (http:// github. com/ omics Eye/ omeCl ust) 
proceeds by (1) building a representation of the overall structure of the viral samples based on their genome sim-
ilarity (a hierarchy) and hierarchical clustering (zoom out), (2) descending the hierarchy to find heterogeneous 
clusters (zoom in) using a binary-silhouette score, (3) calculating resolution score for each cluster to prioritize 
important clusters and enrichment score for each metadata to rank the impact of the metadata on the detected 
communities. Dissimilarity matrices between the CoV genome regions were calculated using the TN93 model 
from the R package  ape40 between samples using both whole viral genomes and specific protein-coding genes 
of the CoV-2 genome. Then, we applied omeClust on each dissimilarity matrix along with metadata and clinical 
information collected for all samples. omeClust produces two main outcomes: 1) it detects the communities or 
groups of samples (community structure) and 2) determines the influential metadata variables in association 
with the discovered structural groups (subclades). For each variable, it calculates an enrichment score using the 
normalized mutual information score between sample community labels and sample metadata.

Mantel test. The Mantel test statistic (the Pearson correlation between distances) is used to quantify correla-
tion among distance matrices between samples in populations. mantel.test function in ape R package was used 
for this analysis.

PERMANOVA test. PERMANOVA41 was used to measure variance explained by metadata of interests 
(e.g., age, gender, and country) using the adonis function in the R package vegan. The total variance explained 
by added metadata including lineage and three resolutions (low, mid, and high) of omeClust variables were cal-
culated independently. Then, the total variance explained of other variables, including country, country of expo-
sure, sex, age, regions, and days were calculated dependently, including all other variables in the model. We used 
the omnibus (PERMANOVA) test to detect associations between SARS-CoV-2 genome variation (CoV lineages, 
genes, and genomes) and epidemiological (e.g., date of diagnosis, age, sex, race, region, etc.) data.

Coherence measurement. Similarity of SARS-CoV-2 lineages within locations (e.g., countries and states) 
compared to other locations were detected by a ‘coherence’ measurement defined here. Coherence is a measure 
based on the silhouette  score42, in a supervised manner where sample labels are used as cluster labels for which 
we then calculate the silhouette score for each label. In this study, lineages from one location are considered as 
members of one cluster. The coherence approach compares the mean phylogenetic divergence of lineages within 
each location to the divergence of lineages (within the same location) traversing in all locations. For each loca-
tion, the silhouette score is used to quantify how members of a cluster are heterogeneous within one location 
compared to the rest of the locations in the study. The resulting coherence score, then, is on a scale from -1 to 1 
with 0 indicating no coherence (i.e., relatively equal phylogenetic diversity within locations compared to among 
locations), 1 would indicate phylogenetic diversity at a given location is extremely low relative to surrounding 
phylogenetic diversity (perhaps indicative of a very isolated founding event), whereas -1 suggests more phylo-
genetic diversity within the location compared to among locations, which would be indicative of diversification 
within location.

Mutations across CoV2 genomes. We extracted the SNPs from the multialignment file of the CoV 
genomes using the snp-sites  tool38. Then we kept sites with a minor allele frequency greater than 0.00005 using 
vcftools (v0.1.13)39 with maf threshold 0.00005. For this analysis, we aligned 15,721 CoV2 genomes (down-
loaded from GISAID on May 8th, 2020) to a reference CoV2 genome from Wuhan using the MAFFT tool.

Protein structure analysis and SWISS model. Using the gene partitioning schema previously described, 
we identified the amino acid sequence using each of the three possible reading frames for each gene region 
across MERS-CoV, SARS-related, Bat-SL-CoV, and SARS-CoV-2 genomes. Six proteins—S, nsp3, N, ORF6, 2′ 
O Ribose Methyltransferase and the RNA Dependent RNA Polymerase were chosen for structural analysis. The 
first two were identified as variable regions, the other 4 were more consistent. The sequences without stop codons 
were inferred to be viable proteins and modeled using the interactive modeling module on SWISS-MODEL. In 
the case where multiple models were successfully generated for a given amino acid sequence, the model with 

https://github.com/omicsEye/covid-19/
https://github.com/omicsEye/covid-19/
http://github.com/omicsEye/omeClust
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the highest Global Model Quality Estimation (GMQE) score was selected. Images were captured with the “Take 
Snapshot of 3d Molecule” option using “extreme” as the resolution selection.

Amino acid sequences were subsequently analyzed using the predict HEC function in the R package 
 DECIPHER43, which calculates the probability of a residue forming part of a helix, beta-sheet, or coil confor-
mation using the GOR IV  method44. A window size of 7 was used. The predicted secondary structure was then 
further analyzed to calculate the proportion of each of the aforementioned conformations in each residue. The 
results of this analysis were presented as heatmaps using the pheatmap package in R.
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