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Some allelic variants of the serotonin transporter linked polymorphic region (5-HTTLPR)
result in lower levels of expression of the serotonin transporter gene (SLC6A4). These
low-expressing (LE) alleles are associated with mental-health disorders in a minority of
humans that carry them. Humans are not the only primates that exhibit this polymorphism;
other species, including some monkeys, also have LE and high-expressing (HE) variants
of 5-HTTLPR. We propose a behavioral genetic framework to explain the adaptive
evolution of this polymorphism in primates, including humans. We hypothesize that both
LE and HE alleles are maintained by balancing selection in species characterized by
short-term fluctuations in social competition levels. More specifically, we propose that LE
carriers benefit from their hypervigilant tendencies during periods of elevated competition,
whereas HE homozygotes cope best when competition levels do not deviate from the
norm. Thus, both alleles have long-term benefits when competition levels tend to vary
substantially over relatively short timescales within a social group. We describe this
hypothesis in detail and outline a series of predictions to test it. Some of these predictions
are supported by findings in the current literature, while others remain areas of future
research.
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INTRODUCTION
Understanding the neurobiological mechanisms that shape the
production of behavior is a fundamental goal of neuroscience.
Thanks to recent advances in genomics, it is now possible to inves-
tigate this question at the genetic level. A genetic variant that has
received considerable attention in recent years is the serotonin
transporter linked polymorphic region (5-HTTLPR), which is a
promoter sequence that regulates the expression of the serotonin
transporter gene (SLC6A4) (Canli and Lesch, 2007; Homberg and
Lesch, 2011). Serotonin transporter (5-HTT) proteins mediate
the reuptake of serotonin from the synaptic cleft, which serves
to terminate neurotransmission and replenish serotonin stores
in presynaptic terminals. SLC6A4 expression is hypothesized
to influence cortical development and consequently cognitive
function, especially with regard to emotion regulation networks
(Jedema et al., 2010).

Humans have two common versions of 5-HTTLPR, a “short”
(S) allele, which consists of 14 tandem repeats, and a “long” (L)
allele, which consists of 16 tandem repeats (Nakamura et al.,
2000). There is geographic variation in the degree to which the
L allele is more frequent than the S allele (Chiao and Blizinsky,
2010), and the latter is typically associated with lower quan-
tities of 5-HTT resulting from reduced rates of SLC6A4 tran-
scription (Greenberg et al., 1999). However, some rare versions
of the L allele, i.e., those characterized by additional single
nucleotide mutations, also result in reduced amounts of 5-HTT
(Hu et al., 2006). Given this complexity, we use the terms

“low-expressing” and “high-expressing” to refer to functional
variants of 5-HTTLPR.

The negative consequences of carrying low-expressing (LE) 5-
HTTLPR alleles have been well documented (Caspi et al., 2010).
For example, LE-allele carriers tend to score higher on personality
tests that measure neuroticism, which is a risk factor for anxiety
and depression (Lesch et al., 1996; Munafo et al., 2009). LE alle-
les do not necessarily result in mood disorders, however. Instead,
environmental factors have been proposed to mediate the phe-
notypic effects of 5-HTTLPR throughout the lifespan (Homberg
and van den Hove, 2012). Typically LE-allele carriers who expe-
rience stressful life events have a higher risk of depression than
less-stressed LE carriers (Caspi et al., 2003).

Because most studies of 5-HTTLPR have tended to focus on
mental-health disorders, relatively little attention has been paid to
the potential benefits of LE alleles (Belsky et al., 2007; Homberg
and Lesch, 2011). This is a glaring gap in our understanding of
serotonin transporter polymorphisms for two main reasons. First,
most people who carry LE alleles do not develop mental-health
disorders, and in fact LE-allele carriers often respond more pos-
itively to environmental enrichment than high-expressing (HE)
allele carriers (Belsky et al., 2009). Second, LE alleles are found
in relatively high frequencies (>10%) in all human populations
(Chiao and Blizinsky, 2010). These numbers are too high to be
explained by mutation and gene flow alone, suggesting instead
that this allele has been maintained by natural selection. Yet, it is
highly unlikely for an allele with purely negative consequences to
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be selectively maintained (Belsky et al., 2009; Homberg and Lesch,
2011).

In recent years, various benefits of the LE variant of 5-HTTLPR
have been proposed. For example, LE carriers exhibit increased
activity of the amygdala in response to emotionally relevant stim-
uli (Hariri et al., 2002; Caspi et al., 2010), a greater response of the
HPA-axis to aversive stimuli (Gotlib et al., 2008; Mueller et al.,
2010; Way and Taylor, 2010), and increased immune response,
blood pressure, and epinephrine during stressful tasks (Ohira
et al., 2009; Fredericks et al., 2010). These findings may explain
why LE carriers have difficultly disengaging from negative or
threatening stimuli, and why they respond more strongly to
both negative and positive environmental cues (Homberg and
Lesch, 2011). LE-allele carriers are also better able to change
their responses in line with shifts in reward context, and have
been described as more cognitively flexible (Vallender et al., 2009;
Jedema et al., 2010). Yet, despite this flexibility, LE carriers gener-
ally demonstrate an aversion to risks in financial (Crişan et al.,
2009; Kuhnen and Chiao, 2009) and social contexts (Watson
et al., 2009). Taken together, these finding have led to the sug-
gestion that LE-allele carriers are overly sensitive to external
stimuli (Homberg and Lesch, 2011). Such “hypervigilance” may
be moderately harmful in the day-to-day, but highly beneficial
under circumstances that have major impacts on fitness, such
as when life-threatening situations arise (Homberg and Lesch,
2011).

It is important to note that several studies of 5-HTTLPR have
failed to replicate previously documented phenotypic associa-
tions. This is due in part to the fact that novel significant results
are more likely to be published than failed replication attempts
(Duncan and Keller, 2011), and initial findings of significant
associations appear to have overestimated the true effect sizes
(Munafo et al., 2008). Moreover, genome-wide association studies
(GWAS) of human disease and personality have only infrequently
identified 5-HTTLPR, or indeed other common genetic variants,
as important loci (Flint and Munafo, 2013). While meta-analyses
of published findings have found statistically significant associa-
tions between 5-HTTLPR and some phenotypes (Schinka et al.,
2004; Sen et al., 2004; Munafo et al., 2008, 2009; Murphy et al.,
2013), the amount of phenotypic variation attributed to the
polymorphism is often less than 5%, which some authors have
suggested is too small to be indicative of a causal factor in disease
(Flint and Munafo, 2013).

A broader comparative perspective on 5-HTTLPR might help
to mitigate some of these complexities. Humans are not the only
primates to exhibit natural variation at this locus, nor are we the
only primates for which the serotonergic system is important.
Several species of monkey and all extant species of ape are poly-
morphic for 5-HTTLPR (Table 1). The taxonomic breadth of this
polymorphism provides an excellent opportunity to generate and
test hypotheses concerning the evolutionary pressures acting on
this system, and to do so independently of the complexities of
human neuropsychopathology.

The aims of this review are two-fold. First, we put forward
an argument in favor of adopting an evolutionary perspective
when studying 5-HTTLPR polymorphisms. Our intention is not
to deny the important criticisms that have been raised regarding

candidate genes studies. These are valid and should be taken into
account when possible. However, we also believe that a broader,
evolutionary perspective offers a valuable contribution to our
understanding of this, and perhaps other common genetic vari-
ants. Second, we use this perspective to put forward a hypothesis
for the evolution of 5-HTTLPR polymorphisms in primates. Our
framework builds on previous (not entirely dissimilar) hypothe-
ses and incorporates the most up-to-date findings regarding the
primate serotonergic system. We make explicit links to primate
social systems, and present an ecologically informed model that is
generally applicable across the primate order. We conclude with
a series of explicit predictions, some of which have already been
supported by findings in the literature, while others remain areas
for future research.

AN EVOLUTIONARY PERSPECTIVE
MECHANISMS OF POLYMORPHISM
A genetic polymorphism is defined as the presence of two or
more alleles in a population at frequencies that are greater than
expected by mutation and gene flow alone (Hedrick, 2009).
Polymorphisms are actively maintained by balancing selection.
This involves selection acting either through heterozygote advan-
tage, frequency-dependence, niche divergence, or by the existence
of two or more evolutionary stable strategies of roughly equal
benefit. These mechanisms make very different predictions about
the relationship between phenotypes and fitness. For example,
under heterozygote advantage, carriers of one copy of the LE allele
are predicted to do better than homozygotes for either the LE
or HE alleles. This has important consequences for studies that
lump LE homozygotes together with heterozygotes for the pur-
pose of statistical analysis. Thus, any hypothesis that purports
to explain the evolution of 5-HTTLPR polymorphisms must be
explicit about the type of balancing selection that is implied.

SMALL EFFECT SIZES
Natural selection acts on phenotypes not genotypes. This is
because the relative fitness of a particular genotype depends on
the benefits of the associated phenotype in a particular environ-
ment. If a beneficial phenotype is heritable at the population
level, then selection will act to change allele frequencies over time.
Phenotypic variation in a population does not have to be entirely,
or even mostly, explained by genetic differences in order for nat-
ural selection to work. As long as there is a genetic association,
even if it is relatively weak, selection acting on the phenotype will
result in changes in allele frequencies.

This is an important point in light of the small effect sizes typ-
ically observed in genetic association studies of 5-HTTLPR. For
example, in an early study of the relationship between 5-HTTLPR
and anxiety-related traits, Lesch et al. (1996) observed that geno-
type explained only 3–4% of the total phenotypic variation in a
large sample of 505 individuals. Subsequent meta-analyses have
confirmed that the effects of LE alleles on individual differences
in personality traits are relatively small (Schinka et al., 2004; Sen
et al., 2004; Munafo et al., 2009). Similarly, early fMRI stud-
ies found that people with LE alleles tended to exhibit greater
activation of the amygdala than HE-allele carriers (Hariri et al.,
2002, 2005). But a recent meta-analysis of 31 imaging studies
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Table 1 | Summary of 5-HTTLPR polymorphisms in primates and other species.

Species Repeats Polymorphic Location Repeat No of n Allele References

size repeat frequencies

elements

Gorilla gorilla y y PL1 44 bp 18, 20 1 NA Lesch et al., 1997

Gorilla gorilla y y PL1 44 bp 16, 17, 18 14 54%(16), 14%(17),
32%(18)

Inoue-Murayama et al., 2000

Homo sapiens y y PL1 44 bp 14,16 505 43%(14), 57%(16) Lesch et al., 1996

Homo sapiens* y y PL1 44 bp 14, 16, 20 102 77%(14), 22%(16),
0.4%(20)

Inoue-Murayama et al., 2000

Hylobates
muelleri

y y PL1 44 bp 15, 16, 17,
22, 23

15 7%(15), 3%(16),
50%(17), 7%(22),
33%(23)

Inoue-Murayama et al., 2000

Pan paniscus y y PL1 44 bp 18, 20 1 50%(18), 50%(20) Lesch et al., 1997

Pan troglodytes† y y PL1 44 bp 18, 20 2 50%(18), 50%(20) Lesch et al., 1997

Pan troglodytes
verus

y n PL1 44 bp 17.5 16 100%(17.5) Inoue-Murayama et al., 2000

Pongo
pygmaeus

y y PL1 44 bp 18, 20 1 NA Lesch et al., 1997

Pongo
pygmaeus

y y PL1 44 bp 18, 20, 22 9 11%(18), 78%(20),
11%(22)

Inoue-Murayama et al., 2000

Macaca
arctoides

y NA PL2 21 bp 24 2 100%(24) Wendland et al., 2006

Macaca
cyclopsis

y y PL2 21 bp 23, 24 1 NA Shattuck, 2011

Macaca
nemestrina

y n PL2 21 bp 24 12 100%(24) Wendland et al., 2006

Macaca radiata y y PL2 21 bp 23, 24 33 33%(23), 67%(24) Chakraborty et al., 2010

Macaca
thibetana

y y PL2 21 bp 22 (“mti”) 3 100%(mti) Wendland et al., 2006

Macaca
tonkeana

y n PL2 21 bp 24 28 100%(24) Wendland et al., 2006

Macaca
fascicularis

y n PL2 21 bp 24 35 100%(24) Wendland et al., 2006

Macaca mulatta y y PL2 21 bp 23, 24 154 34%(23), 66%(24) Lesch et al., 1997

Macaca mulatta y y PL2 21 bp 23, 24, 25 289 26%(23), 74%(24),
2%(25)

Wendland et al., 2006

Macaca mulatta y y PL2 21 bp 23, 24, 25 107 28%(23), 70%(24),
2%(25)

Brent et al., 2013a

Macaca munzala y y PL2 21 bp 23, 24 24 2%(23), 98%(24) Chakraborty et al., 2010

Macaca radiata y y PL2 21 bp 23, 24 33 33%(23), 67%(24) Chakraborty et al., 2010

Macaca silenus y n PL2 21 bp 24 6 100%(24) Chakraborty et al., 2010

Macaca sylvanus y y PL2 21 bp “msy” 87 100%(msy ) Wendland et al., 2006

Papio Anubis y NA PL2 21 bp 1 NA Lesch et al., 1997

Papio Anubis y y PL2 21 bp 23, 24 NA 83%(23), 17%(24) Simons et al., 2011

Theropithecus
gelada

y n PL2 NA undetermined 30 NA Snyder-Mackler pers.
commun.

Ateles geoffroyi y NA 2 NA Lesch et al., 1997

Callithrix jacchus y n 20–23 bp 11 32 100%(11) Pascale et al., 2012

Callithrix jacchus y NA 1 NA Lesch et al., 1997

Cebus apella y n 20–23 bp 11 25 100%(11) Pascale et al., 2012

Galago
demidovii

n n 4 NA Lesch et al., 1997

Mus musculus n n 2 NA Lesch et al., 1997

Tupaia belangeri n n 3 NA Lesch et al., 1997

(orange, apes; blue, Old World monkeys; purple, New World monkeys; green, prosimians; red, non-primate mammals).
*Homo sapiens from Japan. †Subspecies unknown. Location = polymorphic location.
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found that only 1% of the variance in amygdala activation was
explained by genotype (Murphy et al., 2013). Thus, the “endophe-
notype” approach promoted by researchers in imaging genetics
(Hariri et al., 2006) might not be the solution to the problem of
small effect sizes in genetic association studies (Flint and Munafo,
2007).

Given the polygenic nature of complex traits, it is not sur-
prising to observe small effects in association studies of isolated
candidate genes. This is because multiple genes interact with each
other, and the environment, to produce complex phenotypes.
While the phenotypic effect of any given candidate gene may
be relatively small, in reality the influence of genetics on com-
plex behavioral phenotypes may be much larger. This is because
many other genes that might be involved are usually not examined
directly in genetic association studies that typically focus on one
or two isolated candidate genes. Similarly, just as single candidate
genes acting in isolation do not produce complex behavioral phe-
notypes, single endophenotypes do not produce complex behav-
iors either. Complex behavioral traits arise from complex neural
networks, and each area of the brain involved may influence the
phenotype in a small but essential way. Thus, small statistical
effect sizes can belie the biological importance of a candidate gene
or endophenotype because of the complexity of the system.

Lastly, the use of narrow means to quantify complex pheno-
types might result in small effect sizes. Many behavioral traits
are continua, with pathology residing at the extreme ends of trait
distribution. However, for most traits non-pathological contin-
uous variation constitutes the majority of observed variance. By
exploring only disease outcomes, or by quantifying complex traits
using data from a small number of experimental tasks, researchers
run the risk of capturing only a small portion of the phenotypic
variance, thereby reducing their ability to uncover meaningful
genetic associations. Broader and more exhaustive characteri-
zations of behavioral phenotypes, including those that aim to
capture normal variation not just pathology, might help to solve
this problem.

PARSIMONY AND THE COMPARATIVE METHOD
The comparative method is a powerful tool for testing hypothe-
ses about evolutionary convergence (Nunn and Barton, 2001).
This approach models interspecific diversity as a series of natural
experiments in the relationship between phenotypes and environ-
ments. When two or more species exhibit a similar phenotype,
the comparative approach seeks to find a single adaptive expla-
nation for every instance of convergence, rather than multiple
species-specific explanations. This convention is an application of
the principle of parsimony, which is the best place to start when
formulating hypotheses about phenotypic similarities between
species.

Tandem repeats in the 5-HTT promoter exist in all primates
studied to date (Table 1), but not in species considered to be liv-
ing analogues to the ancestor of primates, such as the tree shrew
(Lesch et al., 1997). This suggests that repeats at this locus arose
following the divergence of the primates from their common
ancestor with other mammals. While a repeated element is found
in the 5-HTT promoter of all primates, only some species express
a variable number of repeats. For example, all tufted capuchin

(Cebus apella) individuals have 11 repeats (Pascale et al., 2012).
Variable numbers of repeats within the 5-HTT promoter occur at
one of two known locations: polymorphic location number one
(PL1), which is found in apes, and polymorphic location num-
ber two (PL2), which is found in Old World monkeys (Lesch
et al., 1997). All species of ape genotyped to date (n = 5) are
polymorphic at the promoter site, with repeat lengths ranging
from 14 in humans, to 23 in gray gibbons (Hylobates muelleri)
(Table 1). Most apes (hominoids) possess the 16-repeat HE allele
(the “long” allele) along with a high prevalence of longer repeat
lengths (18–20), whose impact on levels of 5-HTT expression
are unknown (Lesch et al., 1997; Inoue-Murayama et al., 2000,
2008). Notably, humans are the only hominoid in which the LE
14-repeat allele has been found. In monkeys, 5-HTTLPR poly-
morphisms have been best characterized in the genus Macaca,
the extant members of which are distributed mainly throughout
Asia. The most common repeat lengths found in macaques are
the shorter 23-length repeat, which is functionally analogous to
the human LE allele, and the longer 24-length repeat, which is
analogous to the human HE allele (Lesch et al., 1997). Of the 12
macaque species genotyped to date, five are polymorphic for the
LE and HE alleles, while the rest are monomorphic for either the
HE allele, or for a rare repeat of different length (e.g., the msy
repeat found in M. sylvanus) (Table 1).

The presence of LE and HE 5-HTTLPR alleles throughout the
primate order suggests that independent evolution has occurred
multiple times at this locus. Thus, a strong argument can be made
in favor of examining this genetic variant using a broad compara-
tive approach. With this in mind, we have developed a behavioral
genetic framework that attempts to explain the evolution of 5-
HTTLPR polymorphisms in primates as a function of divergent
strategies for coping with fluctuating levels of competition within
groups.

BEHAVIORAL GENETIC FRAMEWORK
SOCIAL COMPETITION AND 5-HTTLPR
Group living is beneficial for animals mainly because it reduces
the risks of predation (Van Schaik, 1983). Yet, along with such
benefits come certain costs, including competition between group
members for access to mates and resources (Sterck et al., 1997).
Many primates rely on social strategies to mitigate these costs
(Kudo and Dunbar, 2001), and variation in sociality is associ-
ated with differential survival and reproductive success (Silk et al.,
2003, 2010; Majolo et al., 2012; Brent et al., 2013a).

Some researchers have suggested that carriers of the LE allele
are better able to mitigate the costs of within-group competition
because they are more sensitive to social stimuli (Jansen et al.,
2010; Heiming et al., 2011; Homberg and van den Hove, 2012).
However, this statement implies that LE allele carriers are more
successful than HE homozygotes in competitive societies. If this
were true, then we would expect highly competitive species like
rhesus macaques (M. mulatta) to be monomorphic for the LE
allele, which is not the case. Therefore, we suggest that a new
hypothesis is required that posits either a heterozygote advan-
tage in competitive contexts, or that attempts to explain why both
the LE and HE alleles might be similarly beneficial in the face of
competition.
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We propose the following framework; as with previous
authors, we suggest that 5-HTTLPR is associated with an indi-
vidual’s ability to cope with intra-group competition. However,
unlike previous authors that have focused on average differences
in competition levels between species, or between groups of the
same species (Wendland et al., 2006; Chakraborty et al., 2010),
we suggest that the driving force underlying the evolution of
this system is variance in competition levels within a group over
time.

FLUCTUATING COMPETITION LEVELS OVER SHORT PERIODS OF TIME
Physical and social environments are dynamic. Erratic changes
can occur in the physical environment in the form of stochastic
fluctuations in climate, predation pressure, and food availabil-
ity. Similarly, variations in the social environment can result
from demographic changes, breeding seasonality, and the varying
demands of parental care (e.g., lactation and perceived infan-
ticide risk). Any of these environmental changes can result in
changes in the level of competition between members of a social
group. These changes can occur over extended time periods (e.g.,
decades), but can also represent shorter periods, such as months
or even days.

Figure 1 depicts how competition levels can fluctuate over a
period of one year within a hypothetical primate group. In this
example, competition levels do not deviate substantially from
the mean most of the time. However, dramatic environmental
changes occasionally result in competition levels that are sub-
stantially elevated (or substantially reduced) (Figure 1A). Given
information on the extent to which competition levels vary over
time, species can be classified into one of two groups: those for
which competition levels are highly variable over short periods of
time (Figure 1A), and those for which they are relatively stable
(Figure 1B).

We propose that 5-HTTLPR polymorphisms evolve in primate
species with levels of intra-group competition that are highly vari-
able over short timeframes. As outlined in greater detail below,
we hypothesize that LE-allele carriers cope best when intra-
group competition levels are substantially elevated above average,
whereas group members that are homozygous for the HE allele
cope best when competition levels do not differ substantially from
the norm.

DIFFERENTIAL SENSITIVITY TO COMPETITION
Rates of aggression are highest during periods of substantially
elevated levels of intra-group competition (Brent et al., 2013b),
making potentially fatal injuries more likely. Hypervigilance to
social threats is likely to be beneficial in the face of elevated
competition. Individuals can mitigate the risks of social aggres-
sion either by withdrawing from social interactions in general,
or by continuing to engage socially while employing strategies
to avoid conflicts. Commonly used conflict avoidance strate-
gies include ritualized submissive gestures and low-cost signals
of benign intent (Silk et al., 2000; Flack and de Waal, 2007).
Risk avoidance is likely to be most adaptive during periods
of elevated competition, when the potential benefits of risky
behaviors are reduced relative to the costs of taking those
risks.

FIGURE 1 | Levels of intra-group competiton within hypothetical

primate groups. One group has highly variable levels of intra-group
competetion over the period of 1 year (A), the other has relatively invariable
levels (B). Black lines indicate mean intra- group competition levels, while
gray bars indicate one standard deviation above and below the mean.

LE-allele carriers tend to be risk averse and hypersensitive
to both environmental stimuli and changes in reward context
(Vallender et al., 2009; Jedema et al., 2010). As such, we propose
that these individuals excel at attending to substantial fluctuations
in competition levels and at adjusting their social strategies in
response to those changes. Adjustments to social strategies that
are likely to be beneficial during periods of elevated competi-
tion include heightened social vigilance and active avoidance of
potentially hazardous social conflicts.

However, there are potential downsides to monitoring changes
in the environment too closely. If small perturbations in the
local environment do not reflect substantial changes in com-
petition levels within the group as a whole, then it can be
costly to monitor and respond to this type of random “noise.”
Moreover, vigilance takes both time and energy, and interrupts
other important behaviors, such as feeding (Chang et al., 2013).
This in turn can reduce feeding efficiency and result in a reduc-
tion in total food intake. During periods in which competition
levels do not deviate substantially from the mean, we propose
that LE-allele carriers tend to waste time and energy monitor-
ing and responding to relatively unimportant changes in their
local environments. In contrast, because HE homozygotes are
less responsive to fluctuations in competition levels in general,
they can conserve time and energy when competition levels are
not substantially elevated. This would give HE homozygotes an
advantage over LE-allele carriers when environmental conditions
are typical.

In Table 2, we summarize the behavioral “best practices” to
cope with highly variable levels of intra-group competition. We
predict that, due to their risk aversive tendencies and biased
attention to social threats, LE-allele carriers will be best suited
to situations in which competition levels are substantially ele-
vated above average. In contrast, we predict that, due to their
greater willingness to take (sometimes beneficial) risks, and their
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Table 2 | Behavioral “best practices” in primates with fluctuating levels of within-group competition over time.

Average competition levels Elevated competition levels

Social tendencies Normal amounts of vigilance, occasionally engage in
risky social interactions

Hypervigilance, strictly avoid risky social
interactions

Sensitivity to changes in competition level Ignore small fluctuations Respond quickly to large fluctuations

Which genotype is better? HE homozygotes LE-allele carriers

tendencies to conserve time and energy by not being overly vig-
ilant or attending to minor changes in competition levels, HE
homozygotes will be best suited to situations when competition
levels are not substantially different from mean levels (Table 2).

Crucially, our hypothesis assumes that levels of intra-group
competition are balanced over the lifetime of group members
such that LE allele carriers and HE homozygotes have similar lev-
els of long-term survival and reproductive success. It is for this
reason that we have focused mainly on fluctuations in competi-
tion levels that occur over short timescales. Otherwise, balancing
selection would not occur. It should also be noted that during
periods of substantially reduced competition we expect selection
pressures to be relaxed. In other words, all individuals cope well
with periods of relative peacefulness, regardless of their behav-
ioral tendencies. Finally, we would like to emphasize that highly
variable levels of intra-group competition can occur in groups
with both high and low baseline competition levels. For example,
we have no reason to believe that substantial changes away from
low levels of competition are less meaningful to group members
than substantial changes in groups with relatively high baseline
competition levels.

TESTING THE PREDICTIONS
AT THE SPECIES LEVEL
To date, the only primates for which there is evidence of a func-
tional 5-HTTLPR polymorphism are humans and five species of
macaque (Table 1). It is not known whether the other species with
this polymorphism exhibit differences in serotonergic function-
ing. Interestingly, humans and rhesus macaques (M. mulatta) are
the two most widely distributed species of primate in the world,
with humans occupying all continents, and rhesus macaques
ranging from the Indian sub-continent, through the Himalayas
to South-East Asian and China. The wide geographic range
and behavioral flexibility of these two species have previously
been linked to the presence of the LE allele (Suomi, 2006).
However, the distributions of the other macaque species with
the LE allele are relatively limited. Lion-tailed macaques (M.
silenus), for example, are found only in a tiny section of Southern
India (Molur et al., 2003). This suggests that geographic range
size is not a good predictor of the presence/absence of the
LE allele.

Alternatively, some researchers have argued that macaque
species with less-tolerant social styles are more likely to have both
LE and HE versions of 5-HTTLPR (Wendland et al., 2006; Canli
and Lesch, 2007). However, this correlation has been rejected
by more recent evidence of polymorphism among socially toler-
ant macaques (Chakraborty et al., 2010). One problem with the
social style concept (Thierry, 2007) as applied to the question of

5-HTTLPR evolution is that it does not take into account variabil-
ity in competition levels within social groups. Until classification
schemes with explicit consideration of within-group variability
are created, it will remain unclear whether intra-group com-
petition levels are more variable in polymorphic compared to
monomorphic species of macaque, or indeed other primates. The
potential role of phylogenetic inertia (Blomberg and Garland,
2002) should also be considered in any interspecific analysis,
as the genotypes of closely related species may be determined
by their common ancestries more than their current socio-
ecological conditions (Di Fiore and Rendall, 1994; Thierry et al.,
2000).

Clearly there is also a general need for a greater understanding
of 5-HTTLPR allele distribution and function across the primate
order. Thus far, we have very little information about this pro-
moter region in haplorhine primates outside of macaques, and
we know almost nothing about this locus in strepsirhines. For
many species that have been genotyped, sample sizes are often
too small (e.g., n = 1) to definitively conclude whether the pro-
moter is polymorphic or not (Table 1). Targeted genotyping of
additional animals in a broader range of species will improve our
understanding of this locus and its role in the evolution of primate
behavior.

AT THE INDIVIDUAL LEVEL WITHIN SPECIES
Perhaps a more promising approach to testing our hypothesis
is to examine the reproductive success of each genotype within
species. However, fitness is challenging to measure in the best
of circumstances, and this is especially true of long-lived ani-
mals that are slow to reproduce like primates. Nevertheless there
are some tractable proxies, including number of offspring sired
and subject morbidity. One study of free-ranging male rhesus
macaques living on the island of Cayo Santiago, Puerto Rico,
found that individuals with different 5-HTTLPR genotypes did
not differ in the total number of offspring sired (Krawczak et al.,
2005). That is, carriers of the LE allele had as much reproductive
success as HE homozygotes. These findings suggest that balanc-
ing, rather than directional, selection is underway in the Cayo
Santiago macaques, which supports our hypothesis. We can test
this hypothesis further by examining differences in morbidity
between individuals with different 5-HTTLPR genotypes. That is,
we expect LE-allele carriers to receive fewer injuries during peri-
ods of elevated competition levels compared to HE homozygotes.
This is because hypervigilance and high emotional reactivity in
LE carriers should enable them to avoid aggressive encounters
more effectively. In other words, the increase in morbidity asso-
ciated with elevated competition levels should be greater in HE
homozygotes than in LE-allele carriers.

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 588 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Dobson and Brent Evolution of 5-HTTLPR polymorphisms

Another approach would be to examine the response of the
HPA-axis. Hormones, such as cortisol, are released in response
to disruptions of homeostasis. This system triggers behavioral
and physiological processes that help individuals to cope with
stressors, and restore homeostasis (McEwen, 1998; McEwen and
Seeman, 1999; Sapolsky, 2000; McEwen and Wingfield, 2003).
Cortisol levels are therefore a good physiological indicator of
how well individuals are coping with their current environ-
ments, with elevated baseline levels being indicative of frequent
homeostatic disruptions. Due to their greater sensitivity to exter-
nal stimuli, we predict that LE-allele carriers will have higher
baseline cortisol levels compared to HE homozygotes, regard-
less of the competitive context. We also predict that LE-allele
carriers will experience a more rapid increase in cortisol lev-
els than HE homozygotes in response to increasing competition
levels. In males, we may also expect a similar pattern for testos-
terone, with LE-allele carriers exhibiting a more rapid increase in
testosterone levels compared to HE homozygotes in preparation
for increased levels of competition. Data are currently being col-
lected on Cayo Santiago to test these predictions in free-ranging
rhesus macaques.

CONCLUSIONS
Most research on 5-HTTLPR has emphasized the negative con-
sequences of LE alleles under adverse environmental conditions.
But the sheer prevalence of these so-called “risk alleles” within
human populations, and among some non-human primates,
suggests that LE-allele carriers enjoy a substantial amount of
reproductive success. In this paper, we have outlined a detailed
hypothesis for how 5-HTTLPR polymorphisms evolved in rela-
tion to ecologically relevant selective pressures in primates. It is
clear that much more work needs to be done to test the predic-
tions of our hypothesis. But we argue that the time has come for
the fields of psychiatry and imaging genetics to take evolution
more seriously.
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