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Abstract: (1) Background: The aim of the present study was to compare oxygen gradient ektacy-
tometry parameters between sickle cell patients of different genotypes (SS, SC, and S/β+) or under
different treatments (hydroxyurea or chronic red blood cell exchange). (2) Methods: Oxygen gradient
ektacytometry was performed in 167 adults and children at steady state. In addition, five SS patients
had oxygenscan measurements at steady state and during an acute complication requiring hospital-
ization. (3) Results: Red blood cell (RBC) deformability upon deoxygenation (EImin) and in normoxia
(EImax) was increased, and the susceptibility of RBC to sickle upon deoxygenation was decreased
in SC patients when compared to untreated SS patients older than 5 years old. SS patients under
chronic red blood cell exchange had higher EImin and EImax and lower susceptibility of RBC to
sickle upon deoxygenation compared to untreated SS patients, SS patients younger than 5 years old,
and hydroxyurea-treated SS and SC patients. The susceptibility of RBC to sickle upon deoxygenation
was increased in the five SS patients during acute complication compared to steady state, although
the difference between steady state and acute complication was variable from one patient to another.
(4) Conclusions: The present study demonstrates that oxygen gradient ektacytometry parameters are
affected by sickle cell disease (SCD) genotype and treatment.

Keywords: sickle cell disease; red blood cell deformability; oxygenscan; clinical severity; acute com-
plication
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1. Introduction

Sickle cell disease (SCD) is a group of inherited red blood cell (RBC) disorders marked
by the presence of a mutation in the β-globin gene leading to the production of an abnormal
hemoglobin (Hb) [1]. The most common form of SCD is sickle cell anemia (SCA; HbSS
disease (SS)). The mutation responsible for SCA occurs at the sixth position of the β-
globin gene, leading to the replacement of a glutamic acid by valine, which causes the
production of HbS. The main pathophysiological feature of HbS is that it polymerizes
when deoxygenated, leading to the sickling of RBCs [2]. HbC is another Hb variant,
also caused by a mutation at the sixth position of the β-globin gene, but in this case
leading to the replacement of the glutamic acid by a lysine. HbC may form crystals under
both oxygenated and deoxygenated conditions and promotes severe RBC dehydration
through the activation of the K-Cl cotransporter [3,4]. The second most common form
of SCD is HbSC disease (SC), in which RBCs from patients contain both HbS and HbC.
Compared to SS patients, SC patients are generally considered to have a milder SCD
phenotype. However, a significant proportion of these patients can develop frequent acute
vaso-occlusive events and chronic organ damage [5,6].

The deformability of RBC from individuals with SCD is markedly abnormal, regard-
less of genotype. RBC deformability measured under the normoxic condition is decreased
in both SS and SC patients, with SS patients showing the most pronounced decrease [7,8].
Several studies reported some associations between the degree of impairment of normoxic
RBC deformability measured at steady state in SCD patients and the presence of chronic
complications, such as priapism [9], leg ulcers [10], glomerulopathy [11], and retinopa-
thy [5,12]. While RBC deformability measured in normoxic conditions has been found to
be affected by vaso-occlusive crisis in SS [13], a recent study found no change in normoxic
RBC deformability in SS patients between steady state and vaso-occlusive crisis [14]. Since
HbS deoxygenation may further cause a decrease in RBC deformability, there is a need to
fully assess the behavior of sickle RBC under deoxygenation to test whether the rheological
changes could reflect clinical severity/complications.

The recently developed technique of oxygen gradient ektacytometry allows for a more
comprehensive functional characterization and rheological behavior of SCD RBCs over a
range of oxygen tensions. We recently reported an association between oxygen gradient
ektacytometry parameters measured at steady state and the frequency of vaso-occlusive
crisis in both SS adults and children [15]. However, it remains unknown whether oxygen
gradient ektacytometry parameters are modified during acute complications. Moreover,
Rab et al. [16] recently reported on the rheological behavior of RBCs from three SC patients
over an oxygen gradient. Despite the limited sample size, their findings suggest differences
between SS and SC patients. However, it is unknown whether these differences apply to
all subpopulations of SS patients, such as those with increased levels of fetal hemoglobin.
Boisson et al. [17] also reported oxygen gradient ektacytometry data on 14 SC patients, but
no comparison was performed with SS individuals.

The aim of the present study was to compare oxygen gradient ektacytometry pa-
rameters between untreated and treated (hydroxyurea or chronic transfusion) SS and SC
patients. In addition, we sought to determine if changes in deformability upon deoxygena-
tion (EImin), deformability at normoxia (EImax), and point of sickling (PoS) correlated
with onset and resolution of acute clinical complications in few patients. Comparison of
SS and SC rheology biomarkers may also shed light on pathophysiological differences
between the two genotypes.

2. Materials and Methods
2.1. Patients

A cohort of 167 adults and children at steady state and followed at the Hospitals of
Lyon (France) was enrolled: 29 non-transfused and untreated (i.e., not on hydroxyurea
therapy) SS patients older than 5 years old (SS), 11 non-transfused SS patients younger
than 5 years old (SS < 5 years old), 45 SS patients treated with hydroxyurea (SS with HU),
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54 SS patients treated with chronic red blood cell erythrapheresis (SS transfused), 22 SC
(SC) patients, and 6 patients with S/β+-thalassemia (Sβ+). For the SS transfused group,
blood was sampled just before erythrapheresis. It was decided to separate non-transfused
SS patients younger than 5 years old from the other non-transfused (and without HU) SS
patients in the analyses because it was previously demonstrated that RBC deformability
measured in isotonic condition remained very high in SS patients younger than 5 years
old because of the still high HbF level [7]. Information regarding the number of hospi-
talized patients with vaso-occlusive crises (VOC) and acute chest syndrome (ACS) in the
previous two years and data on the presence of chronic complications, namely, leg ulcers,
retinopathy, osteonecrosis, and glomerulopathy, were collected from the medical charts.
Blood was collected in EDTA tubes for hematological and blood rheological measurements.
In addition, five patients with SS had oxygenscan measurements at steady state and during
an acute complication requiring hospitalization.

The study was conducted in accordance with the guidelines set by the Declaration
of Helsinki and was approved by the Regional Ethics Committees (L14-127). Diagnosis
of SS and SC was made according to expert recommendations [18]. SS or SC status was
confirmed by DNA studies [19].

2.2. Hematological and Oxygenscan Parameters

Hb concentration, mean cell volume (MCV), mean corpuscular hemoglobin concentra-
tion (MCHC), and percentage of reticulocytes (Retic) were determined with a hematology
analyzer (Advia, Siemens, Rungis, France). Lactate dehydrogenase levels (LDH) were deter-
mined by standard biochemical method. Blood viscosity was measured at native hematocrit
(Hct), 25 ◦C, and at a shear rate of 90 s−1 using a cone/plate viscometer (Brookfield DVII+
with CPE40 spindle, Brookfield Engineering Labs, Natick, MA, USA). Ektacytometry was
carried out with the laser-assisted optical rotational red cell analyzer (Lorrca, RR Mecha-
tronics, The Netherlands) with the oxygenscan module to measure RBC deformability over
an oxygen gradient. A volume of 50 µL of blood, standardized to a fixed RBC count of
200 × 106, was mixed with 5 mL of high viscous (30 cP) Oxy-Iso polyvinylpyrrolidone
(PVP) suspension [20]. The suspension was sheared at 30 Pa and 37 ◦C into the Couette
system made of glass of the ektacytometer. The oxygen partial pressure (pO2) was grad-
ually decreased from 160 mmHg to 20 mmHg (deoxygenation) and then re-increased to
normoxic values [16,20,21]. The diffraction pattern was analyzed by the computer, and an
elongation index (EI) that reflects RBC deformability was calculated. Several parameters
can be derived: (1) EImax, the RBC deformability at normoxia; (2) EImin, the lowest RBC
deformability reached upon deoxygenation; (3) point of sickling (PoS), the pO2 at which
RBC deformability decreases below 5% of EImax during deoxygenation; and (4) delta EI,
the difference between EImin and EImax. All measurements were standardized as recom-
mended [20]. RBC aggregation was determined at 37 ◦C by the laser backscatter method,
using the Lorrca MaxSis (RR Mechatronics, Hoorn, The Netherlands) after adjustment
of the Hct to 40% with autologous plasma [22]. RBC aggregate strength was determined
using a re-iteration procedure [22]: 7 separate pre-defined shear rates between 7.5 s−1 and
800 s−1 were applied on the RBC suspension, with or without alternating disaggregation
shear rate, to locate the minimal shear rate needed to prevent RBC aggregation.

2.3. Statistics

A one-way analysis of variances with a post hoc Tukey test was used to compare the
different parameters between the six populations at steady state. A paired student t test
was used to compare the oxygenscan parameters in the same individuals between steady
state and acute clinical complication. A Pearson’s test was used to test for the presence
of correlations between biological parameters. Frequency of clinical complications was
compared between SS and SC patients with a chi2 test. The significance level was defined
as p < 0.05. Data are displayed as means ± SD. Statistical analyses were conducted using
SPSS software (version 20, IBM SPSS Statistics, Chicago, IL, USA).
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3. Results
3.1. Comparisons between Groups

The characteristics of the six groups of patients are shown in Table 1. Except for the
SS < 5 years old group, the groups were not significantly different with respect to age. The
fetal Hb (HbF) level was higher in the SS with HU group and tended to be higher in the
SS < 5 years old (p < 0.10) group than in the SS group. These two groups also exhibited
a higher HbF level than that of the SS transfused, SC, and Sβ+ groups. LDH levels of the
three non-transfused SS subgroups were not significantly different. These groups had a
higher LDH level than that of the transfused SS, SC, and Sβ+ groups. The transfused group
had the lowest LDH values. Hb concentration was higher in the SS transfused, SC, and Sβ+

groups than in the SS group. The SS with HU group tended to have higher Hb than that
of the SS group (p < 0.10), and the SC group had higher Hb than that of the SS transfused
group. As expected, MCV was higher in the SS with HU group and lower in the SC and
Sβ+ groups when compared to that of the SS group. MCHC was higher in the SC group
and lower in the SS transfused and Sβ+ groups when compared to that of the SS group.
The percentage of reticulocytes was lower in the SC and Sβ+ groups when compared to
that of the four SS groups. RBC aggregation was slightly lower in the SC group than in the
other groups, but no difference was observed for the RBC aggregate strength between the
six groups.

Table 1. Baseline hematological parameters and RBC aggregation in the 6 groups.

SS
(N = 29)

SS < 5 Years
Old (N = 11)

SS with HU
(N = 45)

SS Transfused
(N = 54) SC (N = 22) Sb+ (N = 6)

Age (yrs) 24.1 ± 14.0 3.6 ± 1.2 *** 27.1 ± 13.0 +++ 23.4 ± 12.7 +++ 29.5 ± 17.2 +++ 21.2 ± 12.1 ++

HbF (%) 11.1 ± 12.4 15.7 ± 11.4 18.3 ± 8.5 *** 3.6 ± 3.7
***+++xxx

4.6 ± 6.7
**+++xxx 6.8 ± 6.8 +xx

HbC (%) / / / / 39.5 ± 11.2 /
HbA (%) / / / 49.3 ± 16.2 / 14.3 ± 17.2

Hb (g/L) 84.7 ± 14.2 80.6 ± 14.7 90.4 ± 12.7 + 96.1 ± 17.9
**++x

110.5 ± 13.9
***+++xxx### 97.2 ± 24.3 *+$

MCV (fl) 78 ± 12 83 ± 11 95 ± 14 ***++ 85 ± 10 **xx 74 ± 10 +x### 62 ± 9
**+++xxx###$

MCHC (g/dL) 34.2 ± 1.7 34.1 ± 1.4 35.1 ± 1.3 32.9 ± 4.5 *xxx 35.6 ± 1.1 *### 31.2 ± 2.7 *+xx$$

LDH (IU/L) 380 ± 207 451 ± 240 334 ± 218 122 ± 210
***+++xxx 224 ± 176 **++x 236 ± 209 *+#

Retic (%) 8.8 ± 3.7 10.4 ± 5.5 8.0 ± 4.2 10.1 ± 6.1 x 4.1 ± 4.5
**++xx### 2.6 ± 1.9 **++x##

RBC
aggregation (%) 60 ± 10 65 ± 9 64 ± 11 59 ± 11 x 54 ± 10 *++xxx# 63 ± 5 $

RBC aggregates
strenght (s−1) 442 ± 246 550 ± 203 509 ± 272 424 ± 300 369 ± 236 445 ± 282

Different from SS: * p < 0.05, ** p < 0.01, *** p < 0.001; different from SS < 5 years old: + p < 0.05, ++ p < 0.01, +++ p < 0.001; different from SS
with hydroxyurea (HU): x p < 0.05, xx p < 0.01, xxx p < 0.001; different from SS transfused: # p < 0.05, ## p < 0.01, ### p < 0.001; different from
SC: $ p < 0.05, $$ p < 0.01.

Clinical characteristics were compared between the SS (i.e., SS patients without trans-
fusion, without HU, and older than 5 years old) and SC groups (Table 2). The frequency of
patients who exhibited at least one vaso-occlusive-like event (i.e., VOC or ACS) during the
last two years was higher in SS than in SC individuals. In contrast, a higher proportion of
SC patients had a retinopathy compared to SS patients. The proportion of osteonecrosis
was not different between the two groups. The number of cases with glomerulopathy or
leg ulcers was too low in these two groups to make a comparison.
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Table 2. Clinical complications in untreated SS and SC patients over 5 years of age.

SS
(N = 29)

SC
(N = 22)

VOC or ACS (%) 63.3 37.9 *
Osteonecrosis (%) 16.7 20.7
Retinopathy (%) 0 47.0 ***

VOC = Vaso-occlusive crisis; ACS = Acute chest syndrome. Different from SS: * p < 0.05, *** p < 0.001.

The analysis of oxygenscan parameters (Figure 1) showed that EImin and EImax were
lower in SS patients than in the five other groups. The SS transfused group also had higher
EImin and EImax values than those of SS < 5 years old, SS with HU, and SC patients, but
this group was not significantly different from those of the Sβ+ group. No difference was
observed between the SC, SS < 5 years old, SS with HU, and Sβ+ groups for EImin and
EImax. The PoS was not significantly different between the SS, SS < 5 years old, and SS
with HU groups, and these three groups had higher a PoS than that of the SS transfused
group. Both SC and Sβ+ patients had a lower PoS than that of the SS group. The delta EI
was lower in the SS transfused group than in the SS, SS < 5 years old, SS with HU, and SC
groups. The SC group had a lower delta EI than that of the SS group. Blood viscosity was
higher in the SC group than in the four SS groups and tended to be greater in SC patients
than in patients with Sβ+ (p < 0.10). Figure 1F shows typical oxygenscan curves for the six
patient populations.

Figure 1. Comparisons of oxygen gradient ektacytometry parameters and blood viscosity between the 6 groups. (A) Min-
imum RBC deformability (Emin); (B) Maximum RBC deformability (EImax); (C) Point of Sickling (PoS); (D) Difference
between EImin and EImax (Delta-EI); (E) Blood viscosity at 45 s−1; (F) Typical oxygenscan curves for the 6 populations
tested. Compared to SS: * p < 0.05, ** p < 0.01, *** p < 0.001; different from SS < 5 years old: + p < 0.05, ++ p < 0.01, +++ p < 0.001;
different from SS with HU: xx p < 0.01, xxx p < 0.001; different from SS transfused: # p < 0.05, ### p < 0.001; different from
SC: $$$ p < 0.001. (F) Typical oxygenscan curves for the six populations and the different key point of the curves: the
RBC deformability at deoxygenation (EImin), the RBC deformability at normoxia (EImax), point of sickling (PoS) and the
difference between EImin and EImax (delta EI).
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3.2. Associations between Oxygenscan and Hematological Parameters

Correlations were tested between oxygenscan parameters and several hematological
parameters in combined SS (i.e., non-transfused SS, without HU, and older than 5 years
old) and SC patients. EImin (Figure 2A,D,G) and EImax (Figure 2B,E,H) were positively
correlated with Hb concentration and HbF level, and negatively with the percentage of
reticulocytes. We also observed a negative correlation between the PoS and, Hb (Figure 2C)
and HbF levels (Figure 2F), and a positive correlation between PoS and the percentage of
reticulocytes (Figure 2I).

Figure 2. Correlations between oxygen gradient ektacytometry parameters and hemoglobin (Hb) concentration, fetal Hb
(HbF) level and percent of reticulocytes (Retic) in all SS patients (excluding those under transfusion) and SC patients.
(A) EImin vs. Hb; (B) EImax vs. Hb; (C) PoS vs. Hb; (D) EImin vs. HbF; (E) EImax vs. HbF; (F) PoS vs. HbF; (G) EImin vs
Retic; (H) EImax vs. Retic; (I) PoS vs. Retic.

3.3. Oxygenscan Parameters and Acute Complication in SS

Figure 3 shows the course of oxygen gradient ektacytometry parameters in SS patients
during acute complications. This is illustrated by the case of a 3-year-old SS admitted to the
hospital to determine if a stroke had occurred. EImin (Figure 3A) and EImax (Figure 3B)
were very low, and the PoS (Figure 3C) was very high when compared to the mean values
(and confidence intervals) determined in the non-transfused SS patients (both younger or
older than 5 years old) of the present cohort. The computed tomography scan was negative,
but the next day, an angio-IRM showed a new brain lesion (central gray nuclei, corona
radiata, post and pre central gyrus, medial frontal gyrus) indicating stroke. While waiting
for a blood transfusion, the patient was given IV fluids containing glucose. Blood was
sampled before transfusion, and oxygen gradient ektacytometry parameters showed slight
improvement compared to the day of hospital admission, possibly from IV hydration. After
red cell exchange transfusion, EImin and EImax increased and PoS decreased to almost
0 mmHg. Figure 3D shows the different oxygen gradient ektacytometry curves and time of
blood sampling.
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Figure 3. (A–C) Evolution of oxygen gradient ektacytometry parameters in a patient hospitalized for stroke event and
then treated by chronic exchanged transfusion (5 weeks and 1 year after the event). (A) EImin; (B) EImax; (C) PoS;. A
dashed bold black line indicates the mean, and thin black dashed lines indicate confidence intervals, calculated in the SS
patients without any transfusion, older than 5 years old, not on hydroxyurea, and at steady state. A dashed bold blue
line indicates the mean, and thin blue dashed lines indicate confidence intervals, calculated in the SS patients without any
transfusion, younger than 5 years old, not on hydroxyurea, and at steady state. (D) Oxygenscan curves at the time of blood
sampling in the patient who had a stroke event. (E–G) Comparisons of oxygenscan parameters between steady state and
acute complication in 5 SS patients. (E) EImin; (F) EImax; (G) PoS. Significant difference: * p < 0.05.

Oxygen gradient ektacytometry measurements on five additional patients with acute
complications (four VOCs and one stroke) are shown in Figure 3E–G). From a statistical
point of view, we observed a trend towards a lower EImin (EImin decreased in four out of
five patients) and EImax (EImax decreased in three out of 5fivepatients) and a significantly
higher PoS (PoS increased in four out of five patients) during acute complication compared
to steady state.

4. Discussion

The higher EImin and EImax and lower PoS found in the SS patients receiving chronic
red blood cell exchanges confirm previous findings [16] and clearly show that exchange
blood transfusion allows the replacement of sickle RBCs by healthy RBCs with high
deformability, hence decreasing the proportion of RBC containing HbS, which may poly-
merize upon deoxygenation. SS patients receiving HU treatment also had improved RBC
deformability in both hypoxic and normoxic conditions compared to non-transfused SS pa-
tients, which reinforces previous findings showing increased normoxic RBC deformability
in HU-treated individuals [23–25]. The same finding was observed for young SS children.
This finding may be attributed to a higher HbF level observed in these two populations;
HU stimulates HbF production, and young SS children (5 years old) may still have a high
amount of HbF, because the switch from HbF to adult hemoglobin is delayed in SCD [26].
As previously demonstrated, the increase in the HbF level results in a decrease in the
proportion of HbS inside the RBC and limits its ability to polymerize [27]. This is also
supported by the correlations found between oxygenscan and hematological parameters
(Figure 2). Although the slight difference in PoS between non-transfused SS individuals
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and young SS children or SS patients with HU patients did not reach statistical significance,
we observed that deoxygenation had less impact on RBC deformability in the groups of
patients with a high HbF level compared to when non-transfused SS patients (i.e., lower
delta EI).

SC patients clearly exhibited better oxygenscan profiles than those of non-transfused
SS individuals with higher RBC deformability in both normoxic and hypoxic conditions
and lower PoS, which confirms the previous finding of Rab et al. [16] obtained in three SC
patients. The comparisons of the oxygenscan parameters between SC patients and different
SS subpopulations bring new findings that can be of clinical relevance. The oxygenscan
characteristics of SC patients were very close to those observed in HU-treated patients and,
to a lesser extent, to those observed in the youngest SS group. In addition, the difference in
RBC deformability between hypoxic and normoxic condition was smaller in SC patients
than in non-transfused SS patients. We speculate that RBCs from SC patients may pass from
oxygenated vascular areas to microcirculatory territories where oxygen tension is severely
decreased with better preservation of RBC deformability. This observation may explain
why fewer patients from the SC group experienced VOC or ACS in the two previous years
when compared to the SS group. The fact that the RBC response to deoxygenation in SC
patients is less than that in SS patients may explain the lower frailty of RBCs in the former
population, resulting in lower hemolysis and higher Hb, as is also the case for Sβ+ patients.

Although the milder anemia in SC patients is beneficial for adequate oxygenation
of the various organs in the body, the higher Hb concentration resulted in higher blood
viscosity compared to the other population tested in the present study. Previous studies
reported that both the milder anemia and the decreased normoxic RBC deformability
found in SC patients are responsible for a rise in blood viscosity as compared to healthy
individuals and SS patients [7,8]. The higher blood viscosity in SC patients is suspected to
play a role in the progressive development of chronic disorders, such as retinopathy [5],
which was present in half of the SC patients recruited in this study, while none of the
non-transfused SS patients of similar age had retinopathy.

Oxygen gradient ektacytometry parameters measured at steady state were recently
demonstrated to be associated with clinical severity in SS adults and children [15], in
particular with the frequency of vaso-occlusive crises. However, prior to the work described
here, no study investigated the changes in oxygen gradient ektacytometry parameters
during acute events, following patients longitudinally. The SS patients in our cohort who
developed acute complications had a relatively low PoS at steady state compared to the
values found in the rest of their group. During acute complications, the PoS rose in four of
five patients studied longitudinally, with some patients reaching values above 60 mmHg.
Since oxygen tension may vary between 60–65 mmHg and 30–40 mmHg in the pre-capillary
arterioles depending on the tissue area (myocardium–brain vs. muscle area) [28], a PoS
above 60 mmHg almost assures HbS polymerization if the transit time is long enough. The
PoS of the patient admitted for stroke was very high (80 mmHg), suggesting that RBC may
sickle in the pre-capillary arterioles of the brain where oxygen tension is high [29], which
could then considerably impair blood flow in the microcirculation. This high PoS value
could seem surprising, but Nash et al. [30] reported that RBC sickling may occur at an
oxygen tension greater than 60 mmHg, and more recently, Lu et al. [31] reported a decrease
in flow velocity of RBC from SS patients in a microfluidic device when oxygen tensions
approached 70 mmHg, which was consistent with a rise in blood viscosity caused by the
formation of sickled RBC. Chronic red blood cell exchange stabilized the patient clinically
and allowed for normalization of oxygen gradient ektacytometry parameters with PoS
values approaching 0 mmHg, thus reflecting the properties of normal RBCs, which do
not show a loss of deformability upon deoxygenation. It is difficult to assess whether
the differences in oxygen gradient ektacytometry parameters observed between steady
state and the acute complications are the consequence of changing RBC properties (for
instance, enhanced RBC oxidative stress, enhanced RBC dehydration, or accumulation
of metabolites inside RBC) during clinical events or whether acute changes in the RBC
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population, detected by oxygenscan parameters, precipitate clinical complications—a
classic chicken or the egg conundrum. Prospective studies and longitudinal follow-up of
SCD patients are needed to answer this question.

The present study also demonstrates that oxygen gradient ektacytometry parameters
may not always reflect acute changes in the clinical status of SS patients since one patient
had no change in EImin or PoS, and two patients had no change in EImax during acute
events in comparison with steady state. A similar finding has been reported in a previous
study where RBC deformability was measured in the normoxic condition in SS patients
at steady state and during vaso-occlusive crisis [14]. The authors demonstrated that the
mean RBC deformability of the SS group decreased during acute complication, but not all
patients exhibited a decrease, and a few of them even showed an increase. This surprising
finding may be explained by the fact that rigid sickled RBCs would be blocked or lysed in
the microcirculation of some patients during vaso-occlusion and would therefore not be
present in the blood samples. Further studies are needed to test the clinical usefulness of
oxygen gradient ektacytometry parameters during acute clinical events in larger cohorts of
SCD patients and to validate their predictive value.

5. Conclusions

The present study demonstrates that oxygenscan parameters are reflective of SCD
genotype and treatment. In addition, the use of oxygenscan may have clinical application,
as its parameters are associated with clinical severity and are sensitive to changes in the
clinical status. Further studies are needed to validate its predictive values.
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