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Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s

disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause

adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to

detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and

adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for

essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localiza-

tions, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the thera-

peutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional

and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respect-

ively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might

correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain

stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral

cerebellar cortex and deep cerebellar nuclei (FDR q50.05). Stimulation-evoked activation in all these regions of interest, as

well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations

with the long-term therapeutic effectiveness of deep brain stimulation (P50.05), with the strongest correlation (P5 0.001)

observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness

and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identi-

fied in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results

suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and

thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained

intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain

stimulation.
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Introduction
Deep brain stimulation (DBS) is a well-established therapy

for movement disorders including essential tremor,

Parkinson’s disease, and dystonia (Benabid et al. 1991;

Lagrange et al., 2002; Vidailhet et al., 2005). Stimulation

of the ventralis intermedius thalamic nucleus (VIM) has

proven to be particularly effective for patients with essential

tremor, for whom DBS can cause reductions in tremor se-

verity that persist for years or even decades following sur-

gery (Rehncrona et al., 2003; Sydow et al., 2003; Baizabal-

Carvallo et al., 2014). Essential tremor is a disorder with a

strong familial component, characterized primarily by a

kinetic tremor predominantly affecting the arms, head,

and/or voice that occurs during voluntary movements,

including writing, eating, and other daily activities (Louis,

2005). The disease is thought to be driven by pathological

oscillations within a tremor-related network involving

motor-related frontal cortex [sensorimotor, premotor

cortex, and supplementary motor area (SMA)], VIM, infer-

ior olivary nucleus, cerebellar cortex and dentate nucleus

(Deuschl et al., 2000; McAuley and Marsden, 2000; Pinto

et al., 2003; Schnitzler et al., 2009).

Recent functional MRI studies have unveiled structural and

functional alterations throughout the cerebello-thalamo-

cortical circuit that support the notion that essential tremor

is a disorder of pathological network activity (Buijink et al.,

2015; Gallea et al., 2015). As the clinical effects of stimulat-

ing VIM are comparable to those that have been achieved by

thalamic lesioning, it was originally proposed that DBS exerts

its effects through local inhibition (Benazzouz et al., 1995;

Boraud et al., 1996; Benazzouz and Hallett, 2000;

Dostrovsky et al., 2000), thereby blocking pathological oscil-

lations occurring between cerebellum and motor cortex.

However, PET studies (Ceballos-Baumann et al., 2001;

Perlmutter et al., 2002; Haslinger et al., 2003) and mathem-

atical models (McIntyre et al., 2004a, b) have shown that

therapeutic VIM DBS results in neural activation within

distal nodes of the cerebello-thalamo-cortical circuit, suggest-

ing that DBS may exert its effects through a more complex

mechanism involving multiple oscillators within the tremor

network. Indeed, studies that have combined functional

MRI with DBS have shown that the therapy is able to

induce changes in functional and effective connectivity

across neural networks (Kahan et al., 2012, 2014; Knight

et al., 2015; Gibson et al., 2016) in a manner that is depend-

ent on the applied stimulation parameters (Kim et al., 2013;

Paek et al., 2015; Gibson et al., 2016). However, the

question of how changes in blood oxygen level-dependent

(BOLD) signal induced by thalamic DBS are related to the

clinical effects of the therapy has yet to be addressed.

In this study, we applied intraoperative functional MRI

during VIM DBS in patients with essential tremor to test

the hypothesis that the observed DBS-evoked changes in

functional and effective connectivity would yield predictive

information about clinical outcomes, thereby providing in-

sights into the therapeutic mechanism. In addition, studying

anaesthetized patients afforded us the unprecedented oppor-

tunity to systematically study the effects of adverse effect-

inducing DBS on brain networks. By varying the location of

the active contacts on the DBS lead in each subject during

the experiment, we were able to apply stimulation settings

that did and did not induce a common unwanted sensory

adverse effect (paraesthesia) that can be induced by VIM

DBS. Our results provide a missing link between the net-

work-level changes induced by thalamic DBS and both the

therapeutic and adverse effects of the therapy, and contra-

dict the notion that thalamic DBS ameliorates tremor merely

through local inhibition of the thalamus.

Materials and methods

Patients

Ten patients (eight females; mean age: 69.3 � 7.9 years) diag-
nosed with essential tremor underwent bilateral VIM DBS
stereotactic surgery. The diagnosis of essential tremor was
based on the Movement Disorders Consensus Criteria
(Deuschl et al., 1998). All patients were approved for surgery
by the Mayo Clinic DBS Committee, which is composed of
neurologists, neurosurgeons, psychiatrists, neuropsychologists,
speech pathologists, and a biomedical ethicist. In all patients,
tremor predominantly affected the bilateral upper extremities,
and in some patients tremor also affected the head, jaw, and/or
voice (Table 1). This study was approved by the Mayo Clinic
Institutional Review Board, and all patients provided written
informed consent in accordance with the Declaration of
Helsinki.

Operative approach

Each patient was secured within the LeksellTM stereotactic
head frame (Elekta) and a 1.5 T structural MRI (General
Electric Signa HDx, 16x software) scan was performed prior
to implantation using magnetization-prepared rapid acquisi-
tion gradient-echo (MP-RAGE) sequence (Gibson et al.,
2016). The MRI data were merged with the Schaltenbrand
and Wahren human atlas (Schaltenbrand and Wahren,
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1977), and stereotactic coordinates were identified for the
VIM. Following microelectrode recording, quadripolar DBS
electrodes (3387 Medtronic) were implanted bilaterally under
local anaesthesia. Lead placement was confirmed by computed
tomography (Sensation 64, Siemens): image resolution:
0.59 � 0.59 � 1.00 mm3. Post hoc analysis of CT-MR fusion
data (Supplementary Fig. 1) confirmed that the mean location
and standard deviation of the most ventral DBS contact (con-
tact 0) across our subjects was 15 � 2.4 mm lateral;
18 � 2.3 mm posterior; 5 � 4 mm inferior to the anterior com-
missure in Montreal Neurological Institute (MNI) stereotactic
coordinates. When displayed with reference to a human brain
atlas (Eickhoff et al., 2007), the region of thalamus occupied
by the 40 DBS contacts studied was centred on motor thal-
amus (VIM) (Supplementary Fig. 1).

Intraoperative functional MRI:
data acquisition

The intraoperative functional MRI experiment was performed
during pulse generator implantation surgery, 1 week after the
DBS lead implantation surgery (for detailed methods, see
Gibson et al., 2016). After general anaesthesia induction, a
unilateral DBS lead was externalized under sterile conditions
and attached to a custom wire connected to an external pulse
generator (DualScreen 3628 Medtronic, Medtronic) outside
the sterile field. To minimize the effects of susceptibility arte-
facts produced by subgaleal connectors, the laterality (right in
eight patients, left in two patients) of the connected lead was
selected such that it was contralateral to the implantable pulse
generator (Gibson et al., 2016). Patients were then moved into
the magnet bore and all scans were conducted with patients
under general anaesthesia (Gibson et al., 2016). Average head
specific absorption rate (SAR) values of 50.1 W/kg were re-
corded during the functional MRI study in all the patients, and
a board-certified MRI physicist with expertise in MRI for pa-
tients with implanted electronic devices was present during all
the sessions (Gorny et al., 2013). An anesthesia team was also
present during all sessions and vital signs were continuously
monitored. For all sequences, a manufacturer’s standard trans-
mit/receive RF head coil was used (1.5-T quadrature head coil,
model 46-28211862; GE Healthcare). The functional MRI was
acquired using 2-dimensional gradient echo-echo planar ima-
ging (GE-EPI): repetition time/echo time, 3000/50; flip angle,
90�; field of view, 22 � 22 cm; matrix, 64 � 64; slice thick-
ness, 3.5 mm with a 0-mm gap thickness. For each acquisition,
135 volumes (the first five volumes were discarded for scanner
equilibration) were acquired using a block paradigm, with five
6-s stimulation periods (two volumes) alternated with six 60-s
rest periods (20 volumes), for a total time of 6 min 45 s per
run. Each patient underwent four runs of functional MRI in a
single session with 2 min of rest between each run. During
each run, bipolar DBS was applied at 90 ms, 130 Hz, 3 V,
with the following contact configurations applied across the
four runs in a counterbalanced order: 3�2 + , 2�1 + , 1�2 + ,
0�1 + . By convention, contact ‘0’ refers to the most ventrally-
located contact on the quadripolar DBS lead, contact ‘3’ is the
most dorsally-located. The cathode or current source is
denoted by ‘�’, and ‘ + ’ refers to the passive/return contact.
Following functional MRI, patients were returned to the oper-
ating room for pulse generator implantation.T
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Clinical evaluation

All clinical evaluations were supervised by a neurologist with
subspecialty training in movement disorders. During the week
following pulse generator implantation (1–2 weeks following
DBS lead implantation), patients underwent DBS programming
and clinical evaluation. The adverse effect evaluations were
performed using monopolar settings used during the routine
DBS programming protocol at our institution. Unilateral
monopolar stimulation at each cathode (0�, 1�, 2�, 3�;
130 Hz 60 ms) was applied and amplitude was increased until
patients reported experiencing an adverse effect, or to 3 V in
the case that no adverse effects were reported. In three pa-
tients, we confirmed that monopolar stimulation at pulse
width of 60 ms (i.e. 0� Case + 130 Hz 60 ms) resulted in DBS-
evoked paraesthesias at the same stimulation amplitude as bi-
polar stimulation at 90 ms (i.e. 0� 1 + 130 Hz 90 ms) (data not
shown). Following adverse effect evaluation, patients under-
went routine clinical DBS stimulator optimization and returned
at 1 month and 3 months for subsequent programming visits.
Tremor severity was evaluated preoperatively, and at each pa-
tient’s 3 month programming visit, using a modified version of
the Fahn-Tolosa-Marin (FTM) tremor rating scale Part A
(Fahn et al., 1993), which is routinely used to evaluate the
therapeutic effects of tremor at our institution. Tremor severity
contralateral to the DBS lead that was active during functional
MRI was calculated as the sum of six subscores from upper
and lower extremities contralateral to the active lead: upper
extremity at rest, upper extremity during extension, upper ex-
tremity during flexion, upper extremity during finger-to-nose
task (kinetic tremor), lower extremity at rest, and lower ex-
tremity during extension. The long-term clinical effectiveness
of each DBS electrode studied in the functional MRI experi-
ment was calculated as the per cent change in contralateral
FTM score at 3 months relative to the preoperative value for
each subject.

Functional MRI processing

Functional MRI data were preprocessed and analysed using
AFNI (Analysis of Functional NeuroImages; http://afni.nimh.
nih.gov) software packages (Cox, 1996). Prior to processing,
image data from two subjects who received left-sided stimula-
tion were flipped with respect to the mid-sagittal plane in order
to generate group activation maps with a consistent (right-
sided) stimulation lateralization. The high-resolution T1 ana-
tomical image was aligned to the fifth volume of the EPI time
series by affine registration using a local Pearson correlation
cost function (Saad et al., 2009). The first four volumes of the
time series were removed to ensure that all remaining volumes
in the time-series were at magnetization steady state. Despiking
and rigid body registration were used to estimate subject
movement during EPI scans and to correct for slice acquisition
timing (Cox and Jesmanowicz, 1999). In all subjects, estimated
displacement due to head motion was 50.5 mm in any given
axis between successive time series volumes. The time series
were then spatially transformed to the Talairach N27 brain
template (Holmes et al., 1998) via affine transformation matri-
ces estimated by registering T1-images to the N27 template.
The spatially normalized EPI data were intensity scaled, and
smoothed by a typical Gaussian blur of 6 mm full-width at
half-maximum.

At the individual session level, the general linear model esti-

mated the shape of the haemodynamic response with respect to
the timing of stimulation. To account for baseline drift and
residual motion artefact, regressors included six motion par-
ameters estimated during coregistration and a third-order base-
line drift function. A regressor was created for the above-

mentioned blocked stimulation paradigm, and convolved
with a gamma-variate haemodynamic response function.
Following the general linear model process, 40 beta-coefficient
activation maps were obtained for the entire subject group
(four contact-wise activation maps for each individual subject).

To obtain the stimulation-evoked activation map, a group-level
linear mixed-effects model was conducted to adjust for within-
subject activation baselines and the age effect (Chen et al.,
2014) (Supplementary Fig. 2A).

Correlation between deep brain
stimulation-evoked activation and
the therapeutic effect

For correlation analysis, we defined regions of interest from
the group activation map thresholded at a significance level of

false discovery rate (FDR) q5 0.05 (P5 0.002, t43.41).
Beta coefficients were extracted from individual activation
maps, averaged within each region of interest, and Pearson
correlations between region of interest-averaged beta values

and the per cent change in contralateral FTM scores at 3
months for each subject were calculated. Correlations were
also assessed between region of interest-averaged beta values
and per cent change in contralateral FTM subscores represent-
ing postural tremor (upper extremity extended + upper ex-

tremity flexed + lower extremity extended) and upper
extremity kinetic tremor, respectively. In addition, individual
voxels that exhibited correlations between beta values and
per cent change in contralateral FTM scores are reported.
For this analysis, Monte Carlo simulation indicated that an

initial, voxel-wise threshold of P5 0.01 and a minimum clus-
ter size of 654 voxels gave a corrected P-value of 0.01
(� = 0.01; two-tailed P50.01; Pearson r4 0.403; cluster
size5654 voxels).

Deep brain stimulation-evoked
adverse effect map

Based on the results of clinical evaluation, activation maps
were categorized into two groups: stimulation localizations at

which patients reported experiencing DBS-evoked paraesthe-
sias at or below 3 V, and those for which patients were par-
aesthesia-free at and below 3 V. A group-level linear mixed-
effects model was conducted to examine between-group differ-
ences in response to the adverse effect. The model included the

age as a between-subject covariate and contact conditions as
within-subject covariates (Supplementary Fig. 2B). Monte
Carlo simulation indicated that an initial, voxel-wise threshold
of P50.01 and a minimum cluster size of 654 voxels gave a
corrected P-value of 0.01 (� = 0.01, t4 2.92) for the signifi-

cance level of the group difference between DBS evoked acti-
vations with and without paraesthesias.
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Dynamic causal modelling

Deterministic, one-state dynamic causal modelling for functional
MRI in SPM12 (Wellcome Trust Centre for Neuroimaging,
London, UK; http://www.fil.ion.ucl.ac.uk) was used to investi-
gate effective connectivity among established nodes in the
tremor-related cerebello-thalamo-cortical loop. BOLD time
series data from within a 6-mm sphere centred on the group
peak voxel of activation for sensorimotor cortex, thalamus, and
contralateral cerebellum (Fig. 2) were included in the analysis. A
model representing the established loop, in which VIM thalamus
connects reciprocally with motor cortex and contralateral cere-
bellum, with DBS driving thalamic output, was defined. In one
state dynamic causal modelling, connections between brain re-
gions are modelled as excitatory projections, while each region
is endowed with inhibitory self-connectivity (Friston et al.,
2003). The parameters that represent the strength of between-
region (excitatory) and within-region (inhibitory) connections,
as well as the driving effect of DBS on the thalamus, are esti-
mated using a posterior density analysis scheme under Gaussian
assumptions (Friston et al., 2002). The estimated between- and
within-region parameters, given in per second units, or Hertz,
describe the degree to which activity in one area is sensitive to
changes in activity in another, and has been likened to the con-
cept of electronic gain (Kahan et al., 2012). Inter-regional and
within-region connectivity parameters were computed for each
subject for each run (40 runs total). Parameter values deter-
mined to be significantly different from zero (one sample t-
test, P5 0.05) are reported as 95% confidence intervals (CI).
Finally, to determine whether within- or between-region con-
nectivity, as estimated by dynamic causal modelling, correlated
with the clinical response, Pearson correlations were assessed
between significant between- and with-region connectivity par-
ameters and per cent reduction in contralateral FTM scores.

Results

Therapeutic and adverse effects of
deep brain stimulation

At 3 months, patients experienced a significant reduction in

tremor severity, both bilaterally (P = 0.0098, Wilcoxon

signed rank) and contralateral to the DBS lead that was

active during the functional MRI experiment (P = 0.002,

Wilcoxon signed rank) (Fig. 1A). Contralateral reductions

in tremor severity ranged from 40 to 100% (median: 65%).

Median stimulation parameters for the studied DBS lead at

3 months were 60 ms 130 Hz 1.75 V (Table 1). Of the 40

stimulation localizations that were tested, 23 were asso-

ciated with stimulation-evoked paraesthesias. These

occurred at a median amplitude of 2.0 V (range: 0.6 V

to 3 V) (Fig. 1B), and affected the contralateral face (18

settings), contralateral upper extremity and hand (11 set-

tings), and tongue (nine settings) (Fig. 1C). Paraesthesias

were most commonly reported at contact 0 (in 9/10 pa-

tients), and least commonly reported at contact 3 (in 2/10

patients). Other adverse effects included contraction of

facial muscles (two settings) and dysarthria (four settings).

Deep brain stimulation-evoked acti-
vation of cerebello-thalamo-cortical
circuit correlates with therapeutic
effectiveness

The general effect of DBS resulted in three clusters of sig-

nificant BOLD activation, located in ipsilateral sensorimotor

cortex (Fig. 2A), thalamus (Fig. 2B), and contralateral cere-

bellum (Fig. 2C). Region of interest-level correlation analysis

revealed significant positive correlations between therapeutic

effectiveness and the extent of BOLD activation in sensori-

motor cortex (P = 0.040, r = 0.33), thalamus (P = 0.032,

r = 0.34), and contralateral cerebellum (P = 0.0007,

r = 0.52) (Fig. 2). Analysis with reference to the Eickhoff-

Zilles atlas (Eickhoff et al., 2007) showed that the cerebellar

region of interest spanned deep cerebellar nuclei, and lobules

V, VI, VIIIa, and IX (Supplementary Fig. 3). Significant

voxel-wise correlations were also observed in sensorimotor

cortex, thalamus, and contralateral cerebellum, as well as in

supplementary motor area, brainstem, and contralateral in-

ferior frontal gyrus (Fig. 3). Finally, a significant region of

interest-level correlation between BOLD activation and per

Figure 1 Therapeutic and adverse effects of DBS. (A) Bilateral and contralateral FTM scores, before (blue) and 3 months after surgery

(red) (*P5 0.05, Wilcoxon signed rank). (B) Maximum DBS amplitudes tolerated without the presence of adverse effects during clinical evalu-

ation. When no adverse effects were present, stimulator amplitude was increased to 3 V. (C) Body areas affected by DBS-evoked paraesthesias,

for each stimulation localization (UE = upper extremity).
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cent change in contralateral FTM subscores related to pos-

tural tremor was observed in sensorimotor cortex (P = 0.017,

r = 0.39), while no kinetic tremor-related region of interest-

level correlations were observed (Supplementary Fig. 4).

Intrinsic cerebellar connectivity
correlates with therapeutic response

DBS exerted an excitatory driving effect (95% CI: 0.06–

0.23 Hz, P = 0.0013) on the thalamus, which displayed

significant excitatory effective connectivity with ipsilateral

sensorimotor cortex (95% CI: 0.08–0.24 Hz, P = 0.0004)

and contralateral cerebellum (95% CI: 0.04–0.12 Hz,

P = 0.0004) (Fig. 4A and B). In addition, significant inhibi-

tory within-region connectivity was observed in cerebellum

(95% CI: �0.033–�0.007 Hz, P = 0.0027] (Fig. 4A and B).

Attenuated inhibitory within-region connectivity in cerebel-

lum correlated with improved contralateral reduction in

tremor severity at 3 months (r = 0.34, P = 0.03) (Fig. 4C).

Deep brain stimulation-evoked
activation of subregions of pre- and
postcentral gyri correlate with the
presence of paraesthesia

A single region of interest was identified within sensori-

motor cortex in which increased BOLD activation was

associated with the presence of DBS-evoked paraesthesia

(Fig. 5). This region of interest overlapped with a larger

region representing the general effect of DBS-evoked

Figure 3 Voxel-level correlations with therapeutic effect. Regions of interest (ROIs) defined in Fig. 2 are shown in red, and regions where

voxel-level correlations overlapped with these regions of interest (yellow) and regions in which voxel-level correlations but no significant

activation across the group was observed (blue) are shown. Monte Carlo simulation indicated that an initial, voxel-wise threshold of P5 0.01 and

a minimum cluster size of 654 voxels gave a corrected P-value of 0.01 (� = 0.01; two-tailed P5 0.01; Pearson r4 0.403; cluster size5 654

voxels). Region of interest-level correlations in the motor circuit (A–C) were robust, indicating that the region of interest-level analyses (Fig. 2)

are sufficient to capture the major brain–behaviour correlations present in this study. SMC = sensorimotor cortex; IFG = inferior frontal gyrus.

Figure 2 Group activation map evoked by VIM DBS and region of interest-level correlations. DBS resulted in significant BOLD

activation (FDR q5 0.05; P5 0.002, t4 3.41) in (A) ipsilateral sensorimotor cortex, (B) ipsilateral thalamus, and (C) contralateral cerebellum.

Significant correlations between region of interest-averaged beta values and contralateral per cent reduction in contralateral FTM score were

observed (P5 0.05) in all three areas.
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activation, which spanned pre-, postcentral gyri and sulci,

as well as the subcentral area (Fig. 5). The region of interest

associated with DBS-evoked paraesthesia included sub-

regions of lateral precentral gyrus, central sulcus, postcen-

tral gyrus, and postcentral sulcus (Fig. 5).

Discussion
Our central finding was that the extent of functional acti-

vation in all of the established nodes of the tremor circuit

(sensorimotor cortex, SMA, thalamus, cerebellum, and

Figure 4 Dynamic causal modelling results. (A) Excitatory interregional (blue arrows) and inhibitory within-region (red arrows) con-

nections between sensorimotor cortex (SMC), motor thalamus (VIM), and contralateral cerebellum (CC), and the driving effect of DBS on VIM

yellow are shown overlaid on the group DBS-evoked activation map. Connectivity parameters significantly different from zero are shown in A,

and the estimated values for all connectivity parameters are shown in B (*P5 0.05, **P5 0.001). (C) A significant correlation (P5 0.05) was

observed between within-region inhibitory connectivity in contralateral cerebellum and percent reduction in contralateral tremor score.

Figure 5 Subregions of sensorimotor cortex associated with the presence of DBS-evoked paraesthesia. These subregions (col-

oured in purple) are shown with reference to the sensorimotor region of interest corresponding to the general effect of DBS (coloured in pink)

overlaid on N27 human brain template (left) and its inflated cortical surface (right). The area boundaries were mapped from the FreeSurfer cortical

parcellation map (Fischl, 2012), and the deepest points of central sulcus are represented by the dashed line.
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brainstem) correlated with the long-term therapeutic effect-

iveness of DBS. According to current theory, essential

tremor is likely driven by multiple central oscillatory gen-

erators throughout the cerebello-thalamo-cortical circuit

that dynamically entrain with one another to produce

symptoms of essential tremor (Raethjen et al., 2007;

Schnitzler et al., 2009; Raethjen and Deuschl, 2012). The

VIM projects to motor and premotor cortices, and is func-

tionally subdivided into a posterior circuit that receives af-

ferents from the cerebellar dentate nucleus (Asanuma et al.,

1983), and an anterior circuit that primarily receives affer-

ents from the basal ganglia (Kultas-Ilinsky and Ilinsky,

1991). Therefore, while VIM is situated to modulate all

components of the tremor-related cerebello-thalamo-

cortical network, our results suggest that network-wide

modulation, as opposed to activation of a single brain

region or fibre tract, may mediate the therapeutic effects.

The VIM was originally selected as a target for lesioning

(Hirai et al., 1983), and later DBS (Benabid et al., 1991),

primarily due to its established connectivity with olivocer-

ebellar circuits. The cerebellum has long been thought to

play a role in the emergence of essential tremor, due to

human neuroimaging (Colebatch, 1990; Jenkins et al.,

1993) and animal model electrophysiology data (Llinás

and Yarom, 1981, 1986). However, more recent experi-

ments have begun to also implicate motor-related thalamo-

cortical circuits in the mechanism of tremor generation.

Studies combining EEG or MEG with EMG recordings

have identified tremor-coherent oscillations in motor and

premotor cortex (Hellwig et al., 2001; Raethjen et al.,

2007; Schnitzler et al., 2009), and coherence and time

delay analyses between EEG/MEG recordings and EMG

signals have revealed that these oscillations likely reflect

cortical output rather than simply sensory feedback

(Govindan et al., 2006; Schelter et al., 2009). In addition,

single-pulse suprathreshold transcranial magnetic stimula-

tion (TMS) of motor cortex has a known ability to reset

tremor (Britton et al., 1993; Pascual-Leone et al., 1994),

and continuous TMS can reduce tremor amplitude in pa-

tients (Hellriegel et al., 2012). Intraoperative recordings

have demonstrated that tremor-related thalamic oscillatory

activity is much more likely to occur during movement

(Hua and Lenz, 2005), and local field potentials in the

thalamus are coherent with electromyography data during

muscle contraction but not at rest (Marsden et al., 2000).

Together, these results suggest that sensorimotor cortex

plays an active role in the production of tremor-related

oscillations, rather than simply receiving constant tremor-

related olivocerebellar input. Accordingly, our results sug-

gest that DBS brings about its therapeutic effects in part by

modulating motor cortex. This hypothesis is also supported

by a recent diffusion tensor imaging study, which found

that therapeutically effective thalamic DBS preferentially

targets thalamic subregions that display enhanced structural

connectivity with primary motor cortex (Klein et al., 2012).

While our results implicate thalamocortical afferents in

the therapeutic effect, the strongest correlation between

DBS-evoked BOLD activation and clinical response was

observed in the contralateral cerebellum. Clinical and ex-

perimental evidence has consistently implicated cerebellar

dysfunction in the pathophysiology of essential tremor.

Patients can present with signs of cerebellar dysfunction,

including intention tremor (Deuschl and Elble, 2000),

balance and gait impairment (Stolze et al., 2001;

Kronenbuerger et al., 2009), motor speech impairment

(Kronenbuerger et al., 2009), and eye movement abnorm-

alities (Helmchen et al., 2003). Numerous functional neu-

roimaging studies have reported cerebellar hyperactivity

(Colebatch, 1990; Jenkins et al., 1993; Wills et al., 1994,

1995; Bucher et al., 1997; Boecker and Brooks, 1998) and

metabolic abnormalities (Louis et al., 2002; Pagan et al.,

2003) in essential tremor, and structural changes including

atrophy (Quattrone et al., 2008; Cerasa et al., 2009) and

reduced fractional anisotropy (Nicoletti et al., 2010). While

the origin of these abnormalities remains incompletely

understood, Purkinje cells, which provide GABAergic in-

nervation to the dentate nucleus from cerebellar cortex,

may play a central role. Post-mortem histological studies

have identified axonal and dendritic swelling (Louis et al.,

2007, 2011; Yu et al., 2012) and heterotopic displacement

in Purkinje cells in essential tremor (Kuo et al., 2011), and

some studies have associated reduced Purkinje cell numbers

with the disease (Louis et al., 2007; Axelrad et al., 2008;

Shill et al., 2008). The correlation reported in this study

spanned a region of interest that included deep cerebellar

nuclei, as well as cerebellar cortex. The activated region of

cerebellar cortex primarily involved a region (lobule VI)

displaying connectivity with motor and premotor cortices.

Our result therefore suggests that DBS-evoked modulation

of motor-related cerebellar outflow, mediated by Purkinje

cells, may play an important role in the mechanism of VIM

DBS.

In further support of this hypothesis, our effective con-

nectivity analysis revealed a correlation between attenuated

within-region inhibitory cerebellar connectivity and the

therapeutic effectiveness. Previous reports have suggested

that essential tremor is in fact a heterogeneous disease,

and degeneration of deep cerebellar nuclei is only seen in

a subset of patients (Louis et al., 2006, 2007). Therefore, it

is possible that VIM DBS yields greater therapeutic re-

sponses (i) in patients in whom Purkinje dysfunction

plays a more prominent role in the disease state; or (ii) in

patients who received DBS that more effectively targets

cerebellar outflow neurons of the dentato-rubro-thalamic

tract. In line with the latter hypothesis, efficient targeting

of the dentato-rubro-thalamic tract has been correlated

with improved outcomes in tremor patients receiving sub-

thalamic nucleus DBS (Groppa et al., 2014). It has been

hypothesized that GABAergic deficiency in the dentate nu-

cleus may drive tremor-associated oscillations through dis-

inhibition of cerebellar efferents (Paris-Robidas et al.,

2012). We therefore speculate that DBS-evoked activation

in deep cerebellar nuclei may be accompanied by an in-

crease in GABAergic tone in the dentate. Indeed, the ability
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of DBS to result in GABA release distal to the site of stimu-

lation has been previously demonstrated (Windels et al.,

2000, 2003). It has also been shown that activation of

thalamic A1 receptors can result in therapeutic effects on

tremor, suggesting that the effects of DBS on cerebellar

inhibition may also be mediated by adenosine release

(Bekar et al., 2008). Further work will be needed to eluci-

date the precise mechanisms by which VIM DBS modulates

tremor-related neurotransmitter concentrations and neural

activity in the cerebellum.

Although DBS did not result in significant activation in

the brainstem across the subjects studied, a voxel-level cor-

relation between brainstem activation and therapeutic ef-

fectiveness was observed (Fig. 3). This result may in part

represent DBS-evoked modulation of the inferior olivary

nucleus. The neurons of the inferior olivary nucleus send

climbing fibre afferents to communicate with Purkinje cells

by way of the inferior cerebellar peduncle (Desclin, 1974),

which then synapse on GABAergic dentato-olivary projec-

tions in the deep cerebellar nuclei (Angaut and Sotelo,

1989). This dentato-olivary loop has been shown to influ-

ence cerebellar output during motor tasks (Welsh et al.,

1995), and this circuit has been proposed to drive syn-

chrony among Purkinje cells (Hansel, 2009), leading

tremor activity to propagate throughout the cerebello-tha-

lamo-cortical circuit. Functional imaging studies have not

identified a consistent metabolic alteration in the inferior

olivary nucleus in essential tremor patients (Hallett and

Dubinsky, 1993; Wills et al., 1994; Bucher et al., 1997).

However, ethanol-induced tremor reduction is associated

with inferior olivary nucleus activation (Boecker et al.,

1996), and the harmaline-induced animal model of essen-

tial tremor is known to be mediated by drug-induced burst-

ing activity in the inferior olivary nucleus (Llinás and

Yarom, 1981, 1986). The observed correlation provides

evidence that the effects of DBS may extend beyond the

dentate nucleus to affect the entire olivocerebellar circuit.

A voxel-wise correlation was also observed in the ipsilat-

eral SMA. Several lines of evidence suggest that the SMA

may represent another important node in the tremor cir-

cuit. Increased grey matter volume in SMA and reduced

functional connectivity between SMA and motor cortex

has been shown to correlate with tremor severity in patients

with essential tremor (Gallea et al., 2015). In addition,

tremor-coherent activity has been detected by MEG in pre-

motor areas (Schnitzler et al., 2009), and abnormal activa-

tion in SMA has been observed during motor tasks in

tremor patients (Neely et al., 2015). It is difficult to specu-

late regarding the mechanism by which VIM DBS may

modulate SMA, since this region displays connectivity

with both motor cortex (Dum and Strick, 2005) and cere-

bellum (Akkal et al., 2007; Bostan et al., 2013), and re-

ceives thalamocortical projections from the anterior portion

of VIM (Schell and Strick, 1984). Repetitive non-invasive

cerebellar stimulation has been shown to alter connectivity

between cerebellum and SMA (Popa et al., 2013), poten-

tially implicating modulation of long-range fibres. Our

results suggest that thalamic DBS may also modulate

these connections.

The only correlation observed outside of the cerebello-

thalamo-cortical circuit was located in the contralateral in-

ferior frontal gyrus. As the group activation map mainly

represents the effects of right-sided stimulation (8/10 elec-

trodes), this brain region likely represents the left inferior

frontal gyrus. Also known as Broca’s area (Broca, 1861), it

is thought to play a critical role in processing both the

phonological aspects and meanings of words (Gabrieli

et al., 1998; Indefrey and Levelt, 2000), and therefore is

essential for language production and comprehension.

Interestingly, high frequency thalamic stimulation for

tremor has been shown to cause impairments in verbal flu-

ency, while low frequency stimulation enhances fluency

(Pedrosa et al., 2014). Stimulation-evoked fluency impair-

ments have also been observed following subthalamic nu-

cleus DBS in patients with Parkinson’s disease, and PET

studies in these patients have correlated this effect with

decreased activation in prefrontal regions that include

Broca’s area (Schroeder et al., 2003; Cilia et al., 2007;

Kalbe et al., 2009). These findings, coupled with the obser-

vation that thalamic DBS induces prefrontal activation in

animal models (Paek et al., 2015), suggest that thalamic

DBS may exert unexplored effects on prefrontal circuits,

particularly those involved in language. While the effect

of DBS on verbal fluency was not assessed in this study,

our result suggests that prefrontal BOLD correlates of the

effects of stimulation on fluency may exist. However, as

this correlation (as well as those in SMA in brainstem)

was observed in an area that did not exhibit significant

activation across the group, and it occurs in a region

contralateral to the stimulated nucleus, it must be inter-

preted with caution.

Our analysis revealed specific subregions of sensorimotor

cortex in which DBS-evoked activation correlated with the

presence of paraesthesias. While a few case reports have

shown differences in functional activation patterns at DBS

settings that evoke cognitive and mood-related adverse ef-

fects (Schroeder et al., 2003; Stefurak et al., 2003; Cilia

et al., 2007; Kalbe et al. 2009) the hypothesis that func-

tional MRI could identify cortical regions that mediate sen-

sorimotor adverse effects has not been tested to our

knowledge. To investigate this question, we chose the

most common adverse effect induced by thalamic DBS, par-

aesthesia, which results from inappropriate stimulation of

neurons in the ventralis caudalis nucleus (Vc), the somato-

sensory relay nucleus of the thalamus that resides immedi-

ately posterior to VIM. The use of intraoperative imaging

in anaesthetized patients allowed us to investigate the net-

work-level effects of paraesthesia-inducing DBS without

causing patients any discomfort. Our analysis revealed

that DBS-evoked paraesthesias were associated with

increased activation in a region of the lateral sensorimotor

cortex that spanned precentral gyrus, central sulcus, and

postcentral sulcus (Fig. 5). This result is supported by

human intraoperative cortical mapping experiments,
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which have shown that both sensory and motor responses

can be elicited by stimulation on either side of the central

sulcus (Penfield and Boldrey, 1937; Nii et al., 1996), sug-

gesting that the traditional nomenclature (precentral gyr-

us = ‘motor’ and postcentral gyrus = ‘sensory’) represents

an oversimplification. In addition, it is known that cutane-

ous stimulation can evoke responses in both pre- and post-

central gyri (Fetz et al., 1980). We note that the lateral

location of the region of interest associated with paraesthe-

sias corresponds roughly to the face/hand areas of the hom-

unculus, in line with our observation that DBS-evoked

paraesthesias were most commonly evoked in the contra-

lateral face, followed by the hand and upper extremity

(Fig. 1).

Some limitations and technical points must be con-

sidered. First, our DBS-functional MRI experiments were

conducted while patients were under general anaesthesia.

While this approach allowed us to assess the BOLD effects

associated with paraesthesia-inducing stimulation, we note

that anaesthesia may influence the DBS-evoked BOLD

signal. Patients received both inhaled halogenated ether an-

aesthetic and intravenous fentanyl during functional MRI

acquisition. These drugs have a known ability to depress

neuronal activity and metabolism (Ruskin et al., 2013), and

can also influence cerebral blood flow and neurovascular

coupling (McPherson et al., 1984; Safo et al., 1985; Matta

et al., 1999). While the effects of these agents on the BOLD

signal remain incompletely characterized, several studies

have correlated the presence of anaesthesia with decreases

in the magnitude and activation area of stimulus-evoked

BOLD responses (Kerssens et al., 2005; Plourde et al.,

2006; Aksenov et al., 2015). We previously compared the

DBS-evoked BOLD signal in awake versus anaesthetized

subjects (Knight et al., 2015), and found that while similar

activation areas were observed in both groups, anaesthesia

was associated with reduced BOLD signal magnitude. It is

therefore possible that the presence of anaesthesia resulted

in an underestimation the DBS-evoked BOLD effect. The

impact of anaesthesia on the correlations presented here is

uncertain, and future studies will be needed to clarify this

relationship. Second, the DBS electrode created a suscepti-

bility artefact that reduced the strength of the BOLD signal

along the electrode trajectory (Supplementary Fig. 5).

Despite this artefact, DBS-evoked BOLD signal at the

group level was still observed in the motor thalamus. It is

likely, however, that the artefact led to an underestimation

of DBS-evoked BOLD in the immediate vicinity of the elec-

trodes, which may have affected the results of our correl-

ation and effective connectivity analyses. We also note that

a correlation between BOLD activation and postural, but

not kinetic, tremor subscores was observed in sensorimotor

cortex (Supplementary Fig. 4). One possible explanation of

this result is that preferential targeting of thalamocortical

projections may play a more important role in suppression

of postural than kinetic tremors in essential tremor.

However, we must emphasize that this result is preliminary,

as our clinical evaluation of kinetic tremor did not

quantitatively differentiate simple kinetic tremor from in-

tention tremor, both of which may be modulated by differ-

ent mechanisms (Deuschl et al., 2000). In addition, our

study may be underpowered to detect correlations between

BOLD activation and individual tremor subtypes, and a

larger sample size may be necessary to address this ques-

tion. Finally, the DBS settings used during functional MRI

were not identical to those applied chronically. However,

this study was designed to test whether BOLD activation

patterns obtained intraoperatively, before optimal stimula-

tion parameters had been selected, exhibited correlations

with future therapeutic efficacy. We note that this design

precludes us from establishing a causal relationship be-

tween increased network activation and clinical effects.

However, it did allow us to assess whether network acti-

vation in response to a standard set of parameters, applied

prior to DBS programming, would correlate with improved

future therapeutic response. As DBS expands to treat other

neurological and psychiatric disorders where obvious clin-

ical signs of efficacy cannot be immediately observed during

DBS programming, there will be an increasing need for

measures of brain activity, obtained prior to chronic stimu-

lation that could be used to guide this process. While tech-

nical hurdles still exist, our results indicate that DBS-

evoked BOLD activation patterns may hold untapped po-

tential to fill this unmet need.
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suivies d’une observation d’aphémie (perte de la parole). Bulletin
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