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N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical
therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other
therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory
cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic
and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and
pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The
present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of
NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment
modalities in oral medicine.

1. Introduction

N-acetylcysteine (NAC) possesses therapeutic effects over a
wide range of disorders. These disorders include cystic
fibrosis, acetaminophen poisoning, chronic obstructive pul-
monary disease, chronic bronchitis, doxorubicin-induced
cardiotoxicity, human immunodeficiency virus infection,
heavy metal toxicity, and psychiatric/neurological disorders
[1]. Being a N-acetyl derivative of the amino acid L-cysteine,
NAC is a cysteine prodrug and glutathione (GSH) precursor
that helps scavenge free radicals and bind metal ions into
complexes [1] (Figure 1). Because NAC possesses anti-

inflammatory activity via inhibition of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB)
and modulation of proinflammatory cytokine synthesis [2],
it has been used for modulating oxidative stress- and
inflammation-related diseases [3]. Although NAC is not an
antibiotic, it possesses antimicrobial properties and breaks
down bacterial biofilms of medically relevant pathogens [4].
These characteristics render NAC a potential candidate for
managing oral diseases.

The oral cavity is the first point of entry for different
forms of environmental insults, including toxic chemicals,
microbial infections, and mechanical injury. These insults

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2018, Article ID 2835787, 14 pages
https://doi.org/10.1155/2018/2835787

http://orcid.org/0000-0002-1844-4246
http://orcid.org/0000-0003-3769-0626
http://orcid.org/0000-0002-1151-0693
https://doi.org/10.1155/2018/2835787


generate oxidative stress, induce inflammation, and may
even initiate cancer (Figure 2). Some dental materials such
as resins, metals, and ceramics are cytotoxic and have the
potential to induce oxidative stress, DNA damage, inflamma-
tory reactions, and cell death via apoptosis [5–7]. Distur-
bances in the regulation of the host inflammatory responses
to bacterial infection in the dental pulp and periodontal tis-
sues result in pulpitis and periodontitis [8]. Cigarette smok-
ing, alcohol consumption, and betel nut chewing increase
the risk of oral cancer [9]. Mechanical stresses produced dur-
ing physiological masticatory activities, orthodontic tooth
movement, or occlusal trauma, as well as heat stresses caused
by tooth cavity preparation, light-initiated resin polymeriza-
tion, or laser irradiation, may create oxidative stresses and
inflammatory reactions in the dental pulp, resulting in pulpal
necrosis [10, 11]. Hence, there is a need for oral cells and
tissues to efficiently detoxify xenobiotic toxicity, neutralize
oxidative stress, kill invading pathogens, and eliminate
inflammatory responses. In light of its potentially impor-
tant biological and pharmacological activities, NAC has
been advocated as a therapeutic agent in oral health care
[12]. The present review focuses on the biological activities
of NAC and its potential oral applications. The review also
explores the potential side effects of NAC and its medical
formulations. Understanding the actions of NAC and its
biological effects on oral pathological processes is helpful

in the design of future clinical trials and expedites clinical
translation of the use of this drug in oral medicine.

2. Antioxidation Activity

Intracellular oxidative stress occurs when reactive oxygen
species (ROS)/reactive nitrogen species (RNS) are produced
beyond the cell’s antioxidation capacity. Excessive oxidative
stress results in oxidative modification of proteins, lipids,
DNA, and subsequent cell death [13]. This process contrib-
utes to numerous pathological conditions including oral dis-
eases [14]. Antioxidants, either natural or synthetic, are
effective in diminishing the cumulative effects of oxidative
stress and NAC is of particular interest. N-Acetylcysteine
is a direct antioxidant that interacts with the electrophilic
groups of free radicals through its free thiol side-chain.
The rate constants of the reactions of NAC with various
substrates under experimental conditions are summarized
in Table 1. Because NAC reacts rapidly with hydroxyl rad-
ical (·OH), nitrogen dioxide (·NO2), and carbon trioxide
ion (CO3

·−), it detoxifies ROS produced by leukocytes
[15]. Although NAC does not react directly with nitric
oxide (NO), it reacts with its reduced and protonated
form, nitroxyl (HNO) [16]. In addition, NAC chelates
transition metal ions such as Cu2+ and Fe3+, as well as
heavy metal ions such as Cd2+, Hg2+, and Pb2+, through
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Figure 1: Chemical formula of N-acetyl cysteine and its conversion to glutathione.
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its thiol side-chain to produce complexes. This chelation
process facilitates removal of these metal ions from the
body [17].

Apart from its role as a direct antioxidant, NAC also
functions as an indirect antioxidant. The rate constants of
the reactions of NAC with superoxide (O2

·−), hydrogen
peroxide (H2O2), and peroxynitrite (ONOO−) are rela-
tively low under physiological conditions. The indirect
antioxidation action of NAC relies on replenishment of
intracellular GSH, the body’s major antioxidant with ver-
satile cellular functions (see [18] for review). Considering
the overwhelming antioxidation potential of GSH and
the very low concentrations of NAC inside cells, it is likely
that the predominant antioxidation effects of NAC are
associated with maintaining GSH levels in the intracellular
environment [19].

A plethora of in vitro and in vivo studies have demon-
strated the protective effectiveness of NAC against various
oxidative insults in the oral cavity. These insults include blue
light irradiation [20], exposure to fluoride [21], H2O2 [22]
and NO [23], and lipopolysaccharides [24], as well as dental
and implantable materials [25] (Table 2). Residual mono-
mers released from resin restorations due to incomplete
polymerization could cause adverse biological reactions in
oral tissues [26]. Based on in vitro studies of multiple tar-
get cells, resin monomers were detected to induce cyto-
toxic and genotoxic effects and specifically interfere with

Environmental insults to the oral cavity

Periodontitis
Oxidants

Pulptitis

Oral cancer
Microbial infections

Figure 2: The oral cavity is exposed to different forms of environmental insults, including toxic chemicals, microbial infections, and
mechanical injury. These insults generate oxidative stress, induce inflammation, and may even instigate cancer.

Table 1: Rate constants of N-acetylcysteine reactions with
representative compounds (adapted from [12]).

Compounds
Rate constant
(M−1 s−1)

Experimental
conditions

Reference

CO3
·− ≈1.0× 107

1.8× 108
pH= 7; RT
pH= 12; RT

[90]

HNO 5.0× 105 pH= 7.4; 37°C [91]

HOCl >107 pH≈ 7.4; 21–24°C [92]

HOSCN 7.7× 103 pH= 7.4; 22°C [93]

H2O2
0.16± 0.01
0.85± 0.09

pH= 7.4; 25°C
pH= 7.4; 37°C

[94]
[95]

·NO2
≈2.4× 108
≈1.0× 107

pH> pKa; RT
pH= 7.4; RT

[96]

O2
·− 68± 6

<103
pH= 7; RT

pH= 7.4; 25°C
[97]
[95]

·OH 1.36× 1010 pH= 7; RT [95]

ONOO− 415± 10 pH= 7.4; 37°C [98]

RT: room temperature.
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various vital cellular functions [27]. Although the exact
mechanism is still largely unknown, many prior reports
suggest that these adverse effects are associated with
monomer-induced oxidative stress as a consequence of
the formation of ROS and concomitant with depletion of
GSH [6]. Based on the findings that disturbance of intra-
cellular redox balance is involved in the cytotoxic effects
of resin monomers, NAC has been used and identified as
an effective molecule to reduce such cytotoxicity [28]. At
first, it was believed that NAC exerts protective effects
against monomer-related cytotoxicity mainly through its
antioxidative properties by directly scavenging over-
produced ROS, meanwhile replenishing the exhausted intra-
cellular GSH. However, very recently, some researchers have
suggested a further relevant protective mechanism by provid-
ing evidence showing that NAC can directly react with the
methacrylic group of resin monomers through Michael-
type addition reaction thus reducing the availability of free
dental resin monomers [29, 30]. Accordingly, NAC has been
incorporated into poly(methyl methacrylate) (PMMA) den-
tal resin. Addition of 0.15 weight percent (wt.%) NAC
remarkably improves the biocompatibility of PMMA resin
without exerting significant adverse influence on its mechan-
ical properties [31] (Figure 3). NAC has also been shown to
enhance differentiation of osteoblastic cells in vitro and accel-
erate bone healing when added to a collagenous sponge
implanted in rat femoral critical size defects [32, 33]. These
data highlight the potential of NAC for clinical application
as an osteogenic enhancer in bone regeneration therapies.
Significantly higher salivary ROS, lipid peroxidation, and

NO and nitrite levels are present in oral lichen planus
patients [34], suggesting antioxidants such as NAC have
therapeutic potential in managing this disease.

3. Anti-Inflammatory Activity

Another potential therapeutic application of NAC stems
from its anti-inflammatory activity (Figure 4). The transcrip-
tion factor NF-κB plays a critical role in many aspects of the
inflammation cascade and immune response by regulating
the expression of related genes [35]. The anti-inflammatory
effect of NAC is associated with the decrease of NF-κB activ-
ity; NAC suppresses ubiquitination and degradation of I-κB
(an inhibitor of NF-κB) and thereby blocks NF-κB nuclear
translocation and activation [36, 37]. As a direct antioxidant
and GSH precursor, NAC scavenges free radicals and inhibits
upstream NF-κB-activating events [38]. N-Acetylcysteine
also modulates transcription activities through several
pathways involving c-Fos/c-Jun, STAT, and cyclin inhibi-
tors [39]. In oral inflammation, NAC prevents expression
of lipopolysaccharide-induced proinflammatory cytokines
such as interleukin-1β (IL-1β), IL-6 and IL-8, tumor
necrosis factor-alpha (TNF-α), and transforming growth
factor β (TGF- β) in macrophages [40] and gingival fibro-
blasts [41]. Restorative resin materials may cause inflam-
matory responses by monocyte activation and changes in
the levels of released cytokines. This is demonstrated by
augmented proinflammatory cytokine levels in the gingival
crevicular fluid [42]. N-Acetylcysteine has been used to
prevent inflammation in cytotoxicity studies of resinous

Figure 3: Representative scanning electron microscopy images showing attachment and morphology of human dental pulp cells on the
surface of poly(methyl methacrylate) resin in the presence or absence of N-acetylcysteine (NAC). After culturing for 24 hours, human
dental pulp cells grew poorly with round or collapsed appearances in subgroup 0wt.% NAC and subgroup 0.15wt.% NAC (arrows). In
contrast, the cells attached and spread well with spindle or polygonal shapes in subgroups 0.3 wt.%, 0.6 wt.%, and 0.9 wt.% NAC. The
number of adhering cells increased as the concentration of NAC increased in the experimental poly(methyl methacrylate) resin. Similar to
the control, the resin surface of subgroup 0.9 wt.% NAC was almost fully covered by cells. Reprinted with permission [31].
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materials [43]. Oral administration of NAC decreases alve-
olar bone loss in a dose-dependent manner in a rat model
of experimental periodontitis [44]. Considering that NAC
acts as an osteogenesis-enhancing molecule [12], NAC-
loaded nanotube titanium dental implants have been
developed that are capable of enhancing bone regeneration
and osseointegration through sustained release of NAC
[45]. The loaded NAC increased the hydrophilicity of the
implant surface, thereby facilitating osteoblast adhesion and
proliferation. The NAC released from the loaded nanotubes
also inhibits lipopolysaccharide-induced oxidative stress and
inflammatory cytokines, as well as reduces expression of
receptor activator of nuclear factor kappa B ligand (RANKL).
These findings support the use of NAC-loaded nanotube tita-
nium dental implants in clinical applications, although their
immunomodulatory activities require further substantiation.
Nevertheless, it has been reported that long-term, low-dose
NACapplication increases the expression of proinflammatory

cytokines in lipopolysaccharide-stimulated macrophages
through enhancement of kinase phosphorylation [46].

4. Antimicrobial Activity

Although NAC is not an antibiotic, it possesses antimicrobial
properties. Since the initial demonstration of inactivation of
Staphylococcus epidermidis biofilm formation by NAC in
1997 [47], many studies have demonstrated the efficacy of
NAC in reducing biofilm formation induced by a broad array
of medically important microorganisms (Table 3). One of
those studies evaluated the antibacterial and biofilm eradica-
tion potential of NAC on Enterococcus faecalis [48], one of
the most important opportunistic pathogens responsible for
persistent root canal infections [49]. In that study, the
authors demonstrated that NAC was effective against both
the planktonic and biofilm forms of E. faecalis; antimicrobial
efficacy was not reduced by the presence of dentin powder for

TNF‑�훼 IL‑1�훽

TLR/cytokine

receptor

ER

Mitochondra

NACNF‑�휅B

NF‑�휅B

I�휅B I�휅B

NIK

IKK�훽

ROS

Expression of proinflammatory
cytokines (i.e. IL‑1�훽, IL‑6, IL‑8, TNF‑�훼)

Figure 4: Model of the anti-inflammatory activity of N-acetylcysteine. NF-κB is naturally bound to IκB that prevents its nuclear translocation.
Phosphorylation of IκB by IKKβ results in dissociation of IκB from NF-κB. This process facilitates nuclear translocation of NF-κB as well as
transcription of genes involved in the inflammation cascade and immune response. N-Acetylcysteine prevents activation of NF-κB by
removal of ROS, inhibition of IKKβ, and nuclear translocation of NF-κB. N-Acetylcysteine also inhibited the synthesis of
proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNFα. ER: endoplasmic reticulum; IκB: inhibitor of NF-κB; IKKβ: inhibitor of
κB kinase; IL: interleukin; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NIK: NF-κB-inducing kinase; ROS:
reactive oxygen species; TLR: toll-like receptor; TNF-α: tumor necrosis factor-α.
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up to 14 days. A more recent study reported that NAC has
potent antibacterial effects against planktonic endodontic
pathogens (Actinomyces naeslundii, Lactobacillus salivarius,
Streptococcus mutans, and E. faecalis) and effectively inhibits
biofilm formation by all the monospecies and multispecies
bacteria [50]. Eradication of mature multispecies biofilms
was also observed by scanning electron microscopy after a
10min treatment with NAC at concentrations of 25mg/mL
or higher. The biofilm disrupting activity of NAC is signifi-
cantly higher than that of saturated calcium hydroxide or
2% chlorhexidine.

During root canal treatment, it is essential to eradicate
residual bacterial infections from the root canal system with
intracanal medicaments such as chlorhexidine or calcium
hydroxide. Although chlorhexidine exhibits substantivity, it
is inactivated by dentin and has a limited ability to penetrate
the deep layer of biofilms [51]. Calcium hydroxide, on the
other hand, decreases the bond strength of resin-based end-
odontic sealer to dentin [52] and is less effective against E.
faecalis and Candida albicans [53]. Because NAC possesses
anti-inflammatory effect on lipopolysaccharide-induced
inflammatory responses [40] and analgesic property for
relieving postendodontic pain that is comparable to the
effect of ibuprofen [54], it has immense potential to be
used as an alternate intracanal medicament in root canal
treatment. Some research groups have combined addi-
tional components with NAC to achieve augmented or
broad-spectrum antimicrobial applications. These addi-
tional components include alexidine [55], chlorhexidine
[56], taurolidine [57], and other antibiotics [58]. Despite
the potent antimicrobial efficacy of NAC, when used alone
or in association with antibiotics in oral cavity infections,
few studies to date have evaluated the antimicrobial activ-
ity of NAC using animal models. In a murine experimen-
tal periodontitis model, a dose-dependent reduction was
observed in the invasion of Fusobacterium nucleatum in
immortalized human gingival epithelial cells by NAC
[59]. This is achieved by inhibition of F. nucleatum-
induced activation of Rac1, an important regulator of actin
cytoskeleton dynamics responsible for the bacterial inva-
sion of host cells [60]. Furthermore, NAC completely
eliminates experimental periodontitis induced in mice by the
periodontal pathogens Prevotella gingivalis and Treponema
denticola [59]. Although extensive efforts have been made in

Table 3: Representative studies on antimicrobial and antibiofilm
activities of N-acetylcysteine against various oral pathogenic
microorganisms.

Pathogens
examined

NAC
concentrations

(mg/mL)

Related
niche

Reference

Gram-positive bacteria

Actinomyces
naeslundii

1.56–25 C/E [50]

Enterococcus
faecalis

1.56–50 E [48]

1.56–25 E [50]

2.5–20 E [57]

Lactobacillus
salivarius

1.56–25 C [50]

Staphylococcus
aureus

20 C [106]

6–24 C [107]

80 C [108]

2–4 C [109]

80 C [110]

Staphylococcus
epidermidis

4–40 C [111]

0.03–2 C [112]

4–40 C [113]

80 C [108]

2–4 C [109]

0.5–32 C [114]

80 C [110]

0.003–8 C [47]

Streptococcus
mutans

0.78–6.25 C/E [50]

Gram-negative bacteria

Acinetobacter
baumannii

0.25–2 C/E [62]

Enterobacter
cloacae

80 E [108]

0.25–2 E [62]

Escherichia
coli

2–4 C/E/P [109]

0.007-8 C/E/P [115]

Klebsiella
pneumoniae

E [106]

E [108]

E [109]

E [110]

E [62]

Prevotella
intermedia

0.375–3 E/P [58]

Proteus spp. 2.5 C/E/P [106]

2–4 C/E/P [109]

Pseudomonas
aeruginosa

2.5 C/E/P [106]

12.5 C/E/P [116]

Table 3: Continued.

Pathogens
examined

NAC
concentrations

(mg/mL)

Related
niche

Reference

3–24 C/E/P [107]

80 C/E/P [108]

0.5–10 C/E/P [117]

Yeasts

Candida
albicans

0.5–32 C/E/P [114]

0.312–40 C/E/P [118]

C: caries; E: endodontic infections; P: periodontitis.
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this field, the exactmechanisms responsible for the antimicro-
bial and antibiofilm activities of NAC are still speculative.
These speculations include (1) inhibition of cysteine utiliza-
tion in bacteria, (2) reaction between the thiol group of NAC
andbacterial cell proteins, (3) reductionofbacterial extracellu-
lar polymeric substances that are responsible for bacterial
adhesion and pathogenicity, and (4) disturbance of intra-
cellular redox equilibrium with potential indirect effects
on cell metabolism and intracellular signal transduction
pathways [61, 62].

NAC also shows its therapeutic potential for wound
healing and tissue regeneration. It was shown that NAC
exerted the bacteriostatic effects on wound pathogens such
as Staphylococcus aureus and Streptococcus pyogenes both
in brain heart infusion (BHI) broth and on agar in vitro
[63]. Addition of NAC to the collagen scaffold was shown
to protect gingival fibroblasts and bone marrow-derived oste-
oblasts frombacterial infection by coincubationwith S. aureus
or S. pyogenes and preserve bacteria-induced impairment of
fibroblastic viability, attachment, adhesionbehavior, andoste-
oblastic differentiation. In addition,NACassists the cells’ abil-
ity to diminish the damaging effects of ROS and reduce
inflammation duringwound healing [64]. NACwas beneficial
for treating grave burn injuries in a rat comb burn model
when administered via the oral or intraperitoneal route
[65]. The effects on wound healing of nasal mucosa were
also confirmed, when NAC was intraperitoneally adminis-
tered to rats with nasal trauma [66]. Experimental rat skin
wounds were effectively treated with topical NAC, and the
efficacy of NAC in wound healing was comparable to dex-
panthenol, a molecule widely used to improve wound
healing [67]. NAC has also been functionalized as a scaf-
fold with anti-infective capabilities, thus assisting healing
of soft and hard tissues. Recently, a topically administered
eye drop (Lacrimera®) based on chitosan-N-acetylcysteine
(C-NAC) has been recently introduced and received CE
marking in Europe. This eye drop has been shown to
effectively improve corneal wound healing in a rabbit
model of corneal epithelial debridement [68].

5. Anticarcinogenic Activity

Since the first report on the anticarcinogenic function of
NAC in 1984 [69], modulation of genotoxicity, oncogenicity,
and tumor progression processes by NAC has been exten-
sively studied in cellular experiments, animal models, and
human clinical trials by independent researchers. It has
become apparent that NAC exerts its anticarcinogenic
actions by a broad array of mechanisms including the
attenuation of genotoxic ROS, modulation of metabolism
and mitochondrial pathways, induction of DNA repair,
inhibition of genotoxicity and cell transformation, modu-
lation of signal transduction pathways, regulation of cell
survival and apoptosis, anti-inflammatory activity, immu-
nological effects, influence on cell cycle progression,
antiangiogenetic activity, and inhibition of invasion and
metastasis [70].

Oral cancer is one of the most frequently diagnosed can-
cers worldwide. This type of cancer constitutes 90% of head

and neck cancers and involves squamous cell carcinomas
of several anatomical sites such as the lip and oral cavity,
pharynx, and larynx. According to the American Cancer
Society, approximately 30,000 new cases of oral cancer
are diagnosed in the United States alone in 2015, of which
5990 cases are fatal [71]. Despite technical advances in treat-
ment modalities such as surgery, radiotherapy, and chemo-
therapy, the prognosis of oral cancer remains inauspicious;
the estimated 5-year overall survival is only 56% [72]. Major
risk factors associated with the development of oral cancer
include smoking, tobacco chewing, alcohol consumption,
and betel nut chewing. Focusing on the potential positive
effects of NAC on smoke-related carcinogenesis, a phase
II trial (EUROSCAN) was conducted on 2592 patients suf-
fering from head and neck cancer or lung cancer, most of
whom were former or current smokers. No statistically
significant improvement in terms of survival, event-free
survival, or tumor remission was observed in those patients
after a 2-year supplement of NAC (600mg/day) [73]. By
contrast, several studies reported the ability of NAC to
exert protective effects against preneoplastic lesions, benign
tumors, and/or malignant tumors in animal tumorigenesis
models induced by individual cigarette smoke components
[74]. A randomized double-blind phase II chemoprevention
trial was conducted on 41 healthy smoking volunteers. After
6 months of oral NAC (2× 600mg/day), significant decrease
in the investigated biomarkers was observed, including the
levels of bulky DNA adducts and 8-hydroxy-2′-deoxyguano-
sine in bronchoalveolar lavage cells, as well as the fre-
quency of micronuclei in mouth floor and soft palate cells
[75]. The unfavorable clinical outcome of oral cancer is often
associated with aberrant activation of epidermal growth
factor receptor (EGFR) signaling [76]. Encouraged by the
observation that NAC suppressed EGFR-induced phos-
phorylation in an earlier study [77], the effects of NAC
in EGFR-overexpressing invasive oral cancer was con-
ducted on cancer cell growth in a murine xenograft model
[78]. The authors found that NAC suppresses growth of
cancer cells by mediating the EGFR/Akt/HMG box-
containing protein 1 signaling pathway in oral cancer cells,
as well as tumor growth. N-Acetylcysteine has also been
investigated as a potential agent to attenuate the side effects
of platinum-based chemotherapy. By suppressing oxidative
stress and oxidation-associated signals, NAC was found to
reduce cisplatin-induced acute renal failure in rats [79]. A
pilot randomized study with 13 head and neck cancer
patients reported that transtympanic injections with NAC
prior to cisplatin exposure appears to prevent cisplatin-
induced ototoxicity, although better delivery is required
to improve the efficacy of this treatment modality [80].
The protective effect of NAC is believed to be achieved
by binding directly to cisplatin molecules and acting as
free radical scavengers.

6. Potential Side Effects of NAC and
Its Formulations

Although NAC-based therapeutics has been advocated for
oral health care, proactive approximations are required to
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establish safety conditions and appropriate delivery formula-
tions. N-Acetylcysteine has a long-established safety record
in adults and children; the drug has been approved by the
US Food and Drug Administration since 1963. The adverse
effects experienced with the use of NAC are somewhat depen-
dent on the route of administration. The pharmacokinetics
and pharmacodynamics of NAC have been investigated in a
phase I clinical study of 26 volunteers with a 6-month oral
administration of NAC. The major reported side effects were
gastrointestinal symptoms including intestinal gas, diarrhea,
nausea, and fatigue with the highest nontoxic dose being
800mg/m2/day [81]. In another clinical trial, oral administra-
tion of NAC at doses up to 8000mg/day was reported to cause
no significant adverse reactions in patients infected with the
human immunodeficiency virus [82]. In contrast, severe ana-
phylactoid symptoms such as flushing, pruritus, angioedema,
bronchospasm, and hypotension have been reported after
intravenous administration of NAC. These symptoms are
likely to be attributed to the transient high plasma concentra-
tions of NAC and are most prevalent immediately after the
initial loading infusion; the symptoms subside rapidly after
administration is discontinued [1]. Nevertheless, severe sys-
temic reactions are uncommon. Considering the poor oral
absorption of dietaryGSH, orally administeredNAChas been
found to be more efficient than direct GSH administration
and is as effective as intravenously administered NAC [83].
Compared with cysteine, the acetyl moiety of NAC reduces
the reactivity of the thiol functionality, rendering NAC less
toxic and less susceptible to oxidation to disulfide and easier
for absorption and distribution [84]. N-Acetylcysteine is rap-
idly and almost completely absorbed after oral administration
in both animals and humans; only 3% of radioactive-labeled
NAC is excreted in the feces [85]. Thus, NAC is a better source
of cysteine compared with parenteral administration of cyste-
ine. Several in vitro studies demonstrated that extremely high
NAC concentrations (typically 10mM and sometimes as high
as 100mM) alter protein structure and function, such as
modulation of angiotensin II receptor binding [86] and
TNF-α blocking by reducing the affinity of its receptor
[87]. Collectively, the toxicity associated with NAC therapy
does not appear to be a negligible issue. Oral administration
is preferred despite some clinical situations where other drug
delivery routes are required. A number of orally adminis-
tered NAC formulations are commercially available, includ-
ing Mucomyst™ (Brisol-Myers Squibb Co., Princeton, NJ,
USA) as an antidote for acetaminophen overdose, Phar-
maNAC® (BioAdvantex Pharma Inc., Mississauga, ON,
Canada), and several formulations packaged in pill and tablet
forms in Europe. Several companies also manufacture and
sell NAC in combination with other daily nutritional supple-
ments such as multivitamins and antioxidants (e.g., Swanson
Health Products, Fargo, ND, USA). It is important to
note that the manufacture of NAC requires prevention of
NAC oxidation to the disulfide dimer N,N′-diacetylcystine.
Unlike NAC, the latter is pharmacologically active and causes
immunologic effects at very low concentrations [88].
According to the European Good Manufacturing Practice
standards, N,N′-diacetylcystine should constitute less than
0.1% of commercialized NAC formulations [89].

7. Conclusions and Prospects

The past decade has witnessed an explosion of data regarding
the multifaceted biological activities of NAC, including anti-
oxidant, anti-inflammatory, antimicrobial, and anticarcino-
genic activities. The oral cavity has continuously challenged
various environmental insults that are likely to generate oxi-
dative stress, induce inflammation, and even initiate cancer.
The biological and pharmacological activities of NAC and
its ability to circumvent the mechanisms of disease progres-
sion make it a potential therapeutic agent for intervention
in dental and oral disorders. Still, its clinical effectiveness
needs further investigations, since most of the results in this
area of research are derived from in vitro and in vivo studies.
The focus of future research should be the following: (i)
to develop novel dental and implantable materials with
improved biocompatibility by incorporating NAC, (ii) to
investigate whether NAC could be used alone or with other
drugs to treat oral lichen planus, (iii) to examine NAC clini-
cally to be used as an alternate intracanal medicament in root
canal treatment, (iv) to examine the clinical effectiveness of
NAC for the treatment of wound healing, and (v) to evaluate
the clinical application of NAC as an anticancer adjuvant for
oral cancer treatment.
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