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ABSTRACT

Members of the ribonuclease Il family are the
primary agents of double-stranded (ds) RNA proces-
sing in prokaryotic and eukaryotic cells. Bacterial
RNase Il orthologs cleave their substrates in a
highly site-specific manner, which is necessary for
optimal RNA function or proper decay rates. The
processing reactivities of Escherichia coli RNase Il
substrates are determined in part by the sequence
content of two discrete double-helical elements,
termed the distal box (db) and proximal box (pb).
A minimal substrate of E.coli RNase Ill, .R1.1 RNA,
was characterized and used to define the db and pb
sequence requirements for reactivity and their
involvement in cleavage site selection. The reactiv-
ities of nR1.1 RNA sequence variants were exam-
ined in assays of cleavage and binding in vitro. The
ability of all examined substitutions in the db to
inhibit cleavage by weakening RNase Il binding
indicates that the db is a positive determinant of
RNase Ill recognition, with the canonical UA/UG
sequence conferring optimal recognition. A similar
analysis showed that the pb also functions as a
positive recognition determinant. It also was shown
that the ability of the GC or CG bp substitution at a
specific position in the pb to inhibit RNase Il
binding is due to the purine 2-amino group, which
acts as a minor groove recognition antideterminant.
In contrast, a GC or CG bp at the pb position
adjacent to the scissile bond can suppress cleavage
without inhibiting binding, and thus act as a
catalytic antideterminant. It is shown that a single
pb+db ‘set’ is sufficient to specify a cleavage site,
supporting the primary function of the two boxes
as positive recognition determinants. The base
pair sequence control of reactivity is discussed
within the context of new structural information on a

post-catalytic complex of a bacterial RNase Il bound
to the cleaved minimal substrate.

INTRODUCTION

Ribonucleases are a structurally and mechanistically diverse
group of enzymes with essential roles in RNA maturation,
RNA decay, gene regulation and host defense (1). Ribonu-
cleases involved in RNA processing are highly selective
in vivo, and can function in a coordinated manner in multi-
step maturation and degradation pathways (2-6). The sub-
strate selectivity and cleavage site specificity are necessary
for the correct operation of RNA maturation and decay path-
ways, and to prevent inappropriate cleavage of other RNAs.
Double-stranded (ds) RNA structures are functionally impor-
tant targets of enzymatic cleavage, and are recognized by
members of the ribonuclease III family of endoribonucleases
(7-11). In bacterial cells, RNase III cleavage of dsRNA is a
key step in the maturation and degradation of coding and
noncoding RNAs, and can regulate gene expression by con-
trolling RNA stability and translational efficiency (3,7). In
eukaryotic cells the RNase III orthologs Dicer and Drosha
participate in the maturation of microRNAs—small noncod-
ing RNAs that regulate gene expression (12—16). Dicer also
initiates RNA interference and related gene silencing path-
ways by processing dsRNA structures to short interfering
(si) RNAs, that in turn target homologous RNA sequences
for enzymatic destruction (12,14,17,18). The action of
Dicer underscores the functional flexibility of RNase III
orthologs in their ability to cleave cellular substrates in a
highly site-specific manner, while processing dsRNAs of
broad sequence content to short products.

Bacterial RNase III orthologs are the structurally simplest
family members, and consist of a polypeptide of ~220 resi-
dues, containing an N-terminal nuclease domain and a
C-terminal dsRNA-binding domain (dsRBD) (3,7,9,19,20).
The latter domain consists of a single copy of the conserved
dsRNA-binding motif (dsRBM), which is present in many
other proteins that recognize dsRNA (21-24). Since bacterial
RNase III orthologs function as homodimers, the holoenzyme
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contains two dsRBDs. A typical target site in a bacterial
RNase III substrate is cleaved on both strands, creating 2 nt
3’-overhangs and 5’-phosphate, 3’-hydroxyl product termini
(25,26). In a proposed reaction pathway for bacterial RNase
IIT (20), one of the two dsRBDs recognizes a correctly-
sized substrate, which is then engaged by the nuclease
domain and the second dsRBD to create the catalytically
competent complex (20).

Cleavage sites of bacterial RNase III substrates are deter-
mined by specific RNA structural and sequence elements,
also referred to as reactivity epitopes. Helix length is a
primary reactivity epitope, with substrates of Escherichia
coli RNase III typically exhibiting two helical turns
(3,7,9,25,26). The coaxial stacking of short helices can pro-
vide a quasi-continuous helix of sufficient length to allow
cleavage (27). However, the shortest helix that confers
appreciable reactivity under standard conditions has not
been defined for any bacterial RNase III ortholog. Other
structure-based reactivity epitopes include internal loops or
bulges, which can limit cleavage of a target site to a single
phosphodiester (3,7,25-27). This pattern of cleavage provides
3’-hairpin stem-loop structures that can protect the processed
RNA from 3'-5" exonucleolytic digestion (3,7,28). A bulge-
helix-bulge motif has been identified that can permit binding
of E.coli RNase III, but inhibits cleavage (29). The existence
of an ‘uncoupling’ motif supports genetic (30) and structural
(20) evidence that E.coli RNase III can regulate gene expres-
sion as an RNA-binding protein.

Base pair sequence elements also participate in controlling
substrate reactivity, and may also be involved in target site
selection. While a sequence alignment analysis of E.coli
RNase III substrates (31) did not identify any conserved
sequences that could act as positive recognition determinants,
it was observed that specific base pair sequences are excluded
from two discrete double-helical segments, termed the prox-
imal box (pb) and distal box (db) (32). Introduction of one or
more of the excluded base pairs into either box within a
model substrate inhibited cleavage by E.coli RNase III,
with the inhibition due to an interference with enzyme bind-
ing (32). Based on these findings it was proposed (3,32) that
E.coli RNase III cleavage sites are determined by a default
mechanism, in which the reactive site is identified by the
absence of inhibitory base pairs within the pb and db, and
with the other phosphodiesters effectively protected by inhi-
bitory base pairs in the corresponding pb and db positions.
This mechanism served to rationalize the ability of bacterial
RNase III to degrade long dsRNAs of broad sequence content
to short duplex products in a largely base pair-sequence-
independent manner, while carrying out site-specific cleavage
of cellular substrates. This mechanism of cleavage site selec-
tion does not involve positive sequence recognition determi-
nants. Nonetheless, such elements may exist, and could be
nonobvious features of the diverse substrates for bacterial
RNases III. To more precisely define the role of base pair
sequence in controlling processing reactivity and target site
selection, we present here an analysis of a minimal substrate
of E.coli RNase III. We show that specific base pair sequence
elements function as positive recognition determinants. In
addition, two functional classes of negative determinants
(antideterminants) are defined that either inhibit recognition,
or suppress cleavage without affecting recognition. The RNA
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sequence-reactivity correlations are discussed in reference to
the recently-reported structure of a bacterial RNase III bound
to a cleaved minimal substrate.

MATERIALS AND METHODS
Materials

Water was deionized and distilled. Chemicals and reagents
were molecular biology grade and were purchased
from Sigma—Aldrich or Fisher Scientific. Ribonucleoside
5'-triphosphates were obtained from Amersham—Pharmacia
Biotech. About 3000 Ci/mmol of [7—32P]ATP was purchased
from Perkin-Elmer. E.coli bulk stripped tRNA was purcha-
sed from Sigma and was further purified by repeated phenol
extraction followed by ethanol precipitation. T4 polynucleo-
tide kinase was purchased from New England Biolabs, and
calf intestine alkaline phosphatase was obtained from
Roche Molecular Biochemicals. T7 RNA polymerase was
purified in-house as described (33). (His)s-RNase III
was purified as described (34). The catalytic behavior of
(His)s-RNase III (referred to in this study as RNase III) are
essentially the same as the native enzyme (34). Oligodeoxy-
nucleotide transcription templates were synthesized by
Invitrogen and were purified by denaturing gel electrophor-
esis, followed by chromatography on DEAE-Sepharose
(34,35). Purified DNAs were stored at —80° in Tris—-EDTA
buffer (pH 8).

Substrate preparation

RNAs were enzymatically synthesized in vitro using oligo-
deoxynucleotide templates and T7 RNA polymerase accord-
ing to an established protocol (36) with modifications as
described (34). The sequences of the DNA oligonucleotide
transcription templates are available upon request. For 5’
32P_labeling, enzymatically synthesized RNA (~300 pmol)
was treated with calf intestine alkaline phosphatase (6 U) at
37° for 30 min in buffer consisting of 50 mM Tris—HCI
(pH 8.5) and 0.1 mM EDTA. The RNA was purified by
phenol-chloroform extraction and ethanol precipitation.
Dephosphorylated RNA (40-65 pmol) was incubated at 37°C
for ~30 min with 5-10 pCi of [y-**PJATP (3000 Ci/mmol)
and T4 polynucleotide kinase (10 U), using the supplied
buffer. The radiolabeled RNA was purified by electrophoresis
in a 15% polyacrylamide gel containing TBE buffer and 7 M
urea, followed by final purification by DEAE-Sepharose
chromatography (35). RNA was stored at —20° in Tris—
EDTA (pH 7) buffer. RNAs also were synthesized by Dhar-
macon Research Inc., using 2'-ACE-protected phosphorami-
dites. Synthetic RNAs were deprotected using the supplied
reagents, and were further purified by denaturing gel electro-
phoresis followed by DEAE-Sepharose chromatography.
Chemically synthesized RNAs were 5" **P-labeled according
to the protocol described above, but omitting the phosphatase
step. The amount of RNA or DNA was determined by
ultraviolet (UV) absorbance, using reported (37) molar
extinction coefficients (260 nm, Mflcmfl) as follows: A,
15 400; G, 11500; C, 7400; U, 10 000; T, 8700; Inosine
(I, 11 000; 2-aminopurine (2AP), 1000 and 2,6-
diaminopurine (DAP), 10200.
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Substrate cleavage assay

Cleavage assays were carried out essentially as described (34)
with some modification. Reactions were performed using
5" 3?p-labeled substrate in buffer consisting of 160 mM
NaCl, 30 mM Tris-HCI (pH 8), 0.1 mM EDTA, 0.1 mM
DTT, tRNA (0.01 mg/ml) and 5% glycerol (v/v). Reactions
were initiated by adding MgCl, (10 mM final concentration)
and incubated at 37°C (see Figure legends and Table legends
for additional specific conditions). Short reaction times lim-
ited conversion of substrate to product. Reactions were
quenched by addition of excess EDTA (20 mM final concen-
tration) and the samples electrophoresed (25 V/cm) at room
temperature in a 15% polyacrylamide gel (29.2/0.8
acrylamide/bisacrylamide), containing TBE buffer and 7 M
urea. The gel assays were visualized by phosphorimaging
(Typhoon 9400 system) and analyzed by ImageQuant soft-
ware. Reactions were performed at least in duplicate, and
average values are reported. Figure and Table legends
provide additional details on specific assays.

Gel mobility shift assay

Gel shift assays were carried out essentiallzf as described (34).
In these assays Mg?* was replaced by Ca**, which promotes
substrate binding to RNase III while preventing substrate
cleavage (38). Briefly, 5’ *?P-labeled RNA was heated in a
boiling water bath for ~30 s, then snap-cooled on ice. The
RNA was incubated at 37°C for 10 min with RNase III in
buffer consisting of 160 mM NaCl, 10 mM CaCl,, 30 mM
Tris—HCI (pH 8), 0.1 mM EDTA, 0.1 mM DTT, 5 pg/ml
tRNA and 5% glycerol (v/v). The binding reactions were
placed on ice for ~20 min, then electrophoresed (6 V/cm) at
5-6°C in a 6% nondenaturing polyacrylamide gel (80:1 acry-
lamide:bisacrylamide) containing 0.5x TBE buffer and
10 mM CaCl,. Binding reactions were visualized by phos-
phorimaging and quantitated using Imagequant software
(34). Apparent dissociation constants (Kj, values) of the
RNA-protein complexes were determined as described
(38,39), and involved measurement of the amount of free
(unbound) substrate as a function of RNase III concentration.
This method provides Kp, values for RNA—protein complexes
that cannot be directly observed as discrete complexes in
nondenaturing polyacrylamide gels (39).

RESULTS

Characterization of p.R1.1 RNA: a minimal substrate
of E.coli RNase III

We sought to identify an E.coli RNase III substrate that
would contain the minimal set of sequence and structural ele-
ments needed for efficient binding and cleavage. A
minimally-sized substrate is expected to be sensitive to
changes in sequence or structure, thus facilitating the charac-
terization of reactivity epitopes. A time course for cleavage of
R1.I[WC] RNA (3,32) (structure shown in Figure 1A)
yielded two intermediates, with each species resulting from
cleavage of one of the two target site phosphodiesters (site
1 or site 2; Figure 1A). It was noted that the site-2-cleaved
intermediate in isolated form can be cleaved at site 1 at a
rate comparable to that of the parent substrate (3). Based

on this observation, substrates were prepared that were
based on the site-2-cleaved R1.1[WC] RNA intermediate,
and that contained either a shortened double-helical stem or
a shortened 5’ single-strand extension (Figure 1A). The clea-
vage reactivities of the RNAs were determined under stan-
dard conditions (see Materials and Methods). To allow
detection of any changes in reactivity due to either an altered
binding affinity or an altered catalytic rate, the enzyme and
substrate concentrations were significantly less than the K,
for uR1.1 RNA (see below). A high enzyme/substrate ratio
provided single-turnover kinetics, and the extent of cleavage
was measured at short times, in which only a limited amount
of substrate was converted to product. These conditions
allowed determination of the relative reactivity, defined as
the fraction of a variant that is cleaved divided by the fraction
cleaved of a reference substrate (UR1.1 RNA; see Figure 1A
and also below), determined under identical conditions.

Representative cleavage assays, shown in Figure 1A,
demonstrate that substrate reactivity is sensitive to helix
length. Thus, deletion of a single base pair from the top of
the stem (URI1.1[A1] RNA, Figure 1A) causes a 50-fold
drop in reactivity, while deletion of 2 bp (UR1.1[A2] RNA,
Figure 1A) essentially abolishes cleavage. Gel shift assays
of the two shortened pRI1.1 RNA variants (assays not
shown; see Figures 2B and 4 for representative experiments)
reveal that the diminished reactivities are due to a loss of
RNase III binding affinity. We conclude that an 11 bp helix
between the cleavage site and tetraloop represents the shortest
length that provides significant reactivity. Also, the comigra-
tion of the 5’ end-containing cleavage products of URI1.1
RNA and puR1.1[A1] RNA (Figure 1A, lanes 6 and 8), estab-
lish that the base pair deletions do not alter the site of clea-
vage. In this regard, the 15% denaturing polyacrylamide
gels used here can detect single-nucleotide differences in
lengths of short [(=~10 nt) cleavage products (32,40); data
not shown]. Shortening the sequence between the cleavage
site and the 5" end to 6 nt does not significantly affect clea-
vage reactivity (relative reactivities of uR1.1[5" + 2] RNA
and uR1.1 RNA are 1.26 and 1.0, respectively; Figure 1A).
However, a further reduction in length strongly reduces reac-
tivity (data not shown). The steady-state kinetic parameters
for uR1.1 RNA were determined by measuring the initial
rate as a function of substrate concentration. A best-fit
curve to a Michaelis—Menten kinetic scheme (Figure 2A)
yielded a K, of 148 nM and a k., of 2 min~'. Based on
these data we conclude that the 34 nt uR1.1 RNA represents
a minimal substrate for E.coli RNase III. A gel shift assay
(Figure 2B) reveals that uR1.1 RNA binds RNase III to
form a complex with a measured apparent dissociation con-
stant (Kp) of 205 nM (Figure 2C). Although the gel shift
assay cannot directly provide stoichiometric information,
the observation of a single shifted band is consistent with
the formation of a 1:1 protein—-RNA complex.

The scissile phosphodiester is not determined
by tetraloop position or sequence

UR1.1 RNA exhibits a GCAA tetraloop, which belongs to
the GNRA family of tetraloops that stabilize stem—loop struc-
tures (41). We sought to determine whether the tetraloop
sequence or position participates in cleavage site selection.
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Figure 1. Identification and characterization of a minimal substrate of E.coli RNase III. (A) Sequence and secondary structure of R1.1[WC] RNA and smaller
variants, including uR1.1 RNA. The scissile bonds in R1.1[WC] RNA are indicated ([1] and [2]), and the db and two pb are outlined. Time course assays of
cleavage were performed using ~2.5 nM 5’ *?P-labeled RNA, 10 nM RNase III and buffer containing 10 mM Mg?* (see Materials and Methods). In the gel
electropherogram shown on the right, lanes 1, 3, 5, 7 and 9 represent incubation of substrate for 4 min with RNase III in the absence of Mg2+, while lanes 2, 4, 6, 8
and 10 show complete reactions. ‘S’ and ‘5" refer to the uncleaved substrates and 5" end-containing cleavage products, respectively. The asterisks indicate minor
products of nonspecific, nonenzymatic cleavages. The relative reactivities are provided below the RNA structures, and represent the average of three or more
independent experiments, with the standard error of the mean of +9%. The cleavage of UR1.1[A2] RNA was not detectable (ND), so a relative reactivity could not
be determined. Since UR1.1 RNA is the reference substrate (see Results), its relative reactivity is 1.0. The uR1.1 RNA cleavage site was mapped by comparison
of the gel electrophoretic mobilities of the products of cleavage of internally **P-labeled pR1.1 RNA with the cleavage products of R1.1[WC] RNA (data not
shown). This experiment demonstrated the comigration of the 28 bp upper stem-loop products, created by cleavage at sites 1 and 2; see also (32).
(B) Examination of the involvement of the tetraloop as a reactivity epitope. In the gel electropherogram on the right, lanes 1, 3, 5, 7 and 9 represent incubation of
substrate for 4 min with RNase III in the absence of Mg2+, while lanes 2, 4, 6, 8 and 10 represent complete reactions. ‘S’ and ‘5’” refer to uncleaved substrate and
5" end-containing cleavage product, respectively. The asterisks indicate minor products of nonspecific, nonenzymatic cleavage. The relative reactivities are
provided below the RNA structures, and are the average of three or more independent experiments, with the average standard error of the mean of +9%.

In this regard, cleavage sites of hairpin substrates of the yeast
RNase III ortholog Rntlp are determined by their distance
(~14-16 bp) from a conserved RGNN tetraloop (8,9). A
nR1.1 RNA variant was prepared that contains a 4 bp inser-
tion between the db and the GCAA tetraloop (UR1.1[+4 bp]
RNA). This variant is cleaved at the canonical site, as indi-
cated by the comigration of the 5’ end-containing cleavage
product with that of uR1.1 RNA (Figure 1B, compare lanes
4 and 10). Thus, changing the position of the tetraloop does
not change the cleavage site. However, the reactivity of
(UR1.1[+4 bp] RNA is ~5-fold lower than the parent sub-
strate (see also below). To determine whether the tetraloop
sequence determines the cleavage site or affects reactivity,

two UR1.1 RNA variants were prepared that contained either
an AGAA tetraloop (which conforms to the RGNN motif of
yeast Rntlp substrates) or a UUUU tetraloop. A cleavage
assay (Figure 1B, compare lanes 6 and 8 with lane 4)
shows that the two variants retain comparable activity as
the parent substrate, and are cleaved at the canonical site.
Thus, there is no strict tetraloop sequence requirement for
reactivity.

The db functions as a positive recognition determinant

The cleavage reactivities were determined for a set of uR1.1
RNA variants that exhibited the full range of base pair
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Figure 2. Substrate behavior of ptR1.1 RNA. (A) Determination of steady-state kinetic parameters. The initial rate of cleavage of uR1.1 RNA was determined as
a function of substrate concentration. The best-fit curve to a Michaelis—Menten scheme is shown, with each point representing the average of at least three
experiments. The K, is 148 + 21 nM, and the k., is 2.1 min~". (B) Gel mobility shift assay of uR1.1 RNA-binding to RNase III. The assay was performed as
described in Materials and Methods, using 5’ **P-labeled RNA, and Ca®* (10 mM) in place of Mg?*. The RNase III concentrations in the reactions shown in lanes
1-9 are: 0, 20, 50, 100, 150, 200, 250, 350 and 500 nM, respectively. ‘F* and ‘B’ refer to free and bound uR1.1 RNA, respectively. The smear of radioactivity
between the free and bound RNA in lanes 4-9 represents partial dissociation of the complex during electrophoresis (39). (C) Determination of the apparent
dissociation constant, Kp,. The reciprocal of the fraction of substrate bound was plotted versus the reciprocal of the RNase III concentration. A simple bimolecular
equilibrium provides a linear relation (39,54), with a y-intercept of 1 and a slope corresponding to the Kp,, which is 205 nM (see also Results).

substitutions at each position in the helical stem. The mea-
sured relative reactivities reveal three discrete double-helical
regions, within which base pair substitution significantly
affects reactivity (Figure 3). One region corresponds to the
db, in which it is seen that all substitutions significantly
reduce (>~5-fold) cleavage reactivity (Figure 3). In particu-
lar, there is a stringent requirement for a UG pair in the sec-
ond position. Here, a UG—GU substitution causes a 50-fold
reduction in reactivity, while the UG—AU substitution
causes a >30-fold reduction in reactivity (Figure 3). The
effect of the latter substitution is consistent with the substrate
alignment analysis that revealed an exclusion of the AU pair
from this position (32). Based on the comigration of the 6 nt,
5" end-containing cleavage products (gel electropherograms
not shown), none of the db substitutions alter the cleavage
site. The binding affinities of the db variants were assessed
by gel shift assays. Figure 4A shows representative assays
and provides the K{, values for a subset of the uR1.1 RNA
variants, and Figure 4B demonstrates a correlation of clea-
vage reactivity with binding affinity. Based on this correla-
tion, and the stringent sequence requirement we conclude
that the db functions as a positive determinant of recognition,
with the canonical UA/UG sequence providing optimal func-
tion in binding RNase III.

The pb is a positive recognition determinant, and a site
of catalytic antideterminant action

The base pair substitution analysis (Figure 3) establishes the
pb as a 4 bp element, with each position exhibiting specific
sequence requirements for optimal cleavage reactivity. Gel
shift assays were performed and the K, values determined
(Table 1). The data shows that base pair substitutions at pb
positions 1, 2 and 3 inhibit RNase III binding. The particu-
larly strong inhibitory effect on binding of the CG or GC
bp at pb position 2 was examined further. Since Watson—
Crick base pairing is formally retained with either substitu-
tion, the decreased reactivity suggests an involvement of

one or more base functional groups. To assess this, the gua-
nine of the inhibitory CG bp was changed to inosine (I). The
CI pair lacks the purine C2 exocyclic amino group, but
retains two standard hydrogen bonds, and therefore is not
expected to disrupt secondary structure. A cleavage assay
(Figure 5A, middle panels) reveals that pR1.1[Co:139] RNA
has a relative reactivity of 0.33, which is ~5-fold greater
than that of URI1.1[Cy:G3p] RNA, but is only 3-fold less
than that of uR1.1 RNA. Thus, removal of the purine
2-amino group restores the majority of the cleavage reactiv-
ity. We also examined the consequences of introducing a
2-amino group into the functionally innocuous UA bp.
Thus, while uR1.1[Ug:A39] RNA exhibits a relative reactivity
of 0.8, substitution of Az, with DAP reduces the relative reac-
tivity by ~25-fold (Figure 5B, middle panels). A gel shift
assay (Figure 5B, lower panels) shows that the DAP-
containing variant exhibits a low affinity for RNase III, simi-
lar to UR1.1[C9:G30] RNA. Based on the analysis of the
inosine- and DAP-containing variants we conclude that the
purine 2-amino group at pb position 2 is primarily responsible
for inhibition of RNase III binding. Moreover, the low reac-
tivity of UR1.1[Go:C50] RNA (Figure 3) suggests that the pur-
ine 2-amino group does not need to occupy a precise position
in the minor groove in order to confer inhibition. To assess
the involvement of the guanine 6-keto group in inhibition,
2-aminopurine (2AP) was inserted in place of Gjp in
UR1.1[Cy:G39] RNA. The 2AP-containing variant has a rela-
tive reactivity (0.05) that is essentially unchanged with
respect to that of UR1.1[Cy:G39] RNA (relative reactivity
0.06) (gel electropherograms not shown). Thus, the guanine
6-keto group does not appear to contribute to the inhibitory
action of the CG bp at pb position 2. However, it should be
noted that removal of the 6-keto group would formally create
a wobble pair, which itself could cause inhibition through a
local structural effect.

Base pair substitutions at pb position 4 affect uR1.1 RNA
reactivity in a qualitatively different manner than substitu-
tions at pb positions 1-3. Thus, the AU—GC and AU—CG
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Figure 3. Base pair sequence effects on LR1.1 RNA cleavage reactivity. The diagram shows the sequence and proposed secondary structure of (R1.1 RNA. The
arrow indicates the RNase III cleavage site, and the pb and db are also indicated. The numbers (1-4) to the left of the two boxes refer to the specific subsites
within each box. On the right are shown the base pair substitutions. The relative reactivity is provided below each substitution, and represents the average of three

experiments, with a standard error of the mean of £15%.

substitutions cause 14- and 7-fold reductions in cleavage
reactivity, respectively (Figure 3), but do not inhibit substrate
binding, as indicated by the similar K’ values (Table 1). The
GC or CG bp therefore function as catalytic antideterminants,
which suppress cleavage without affecting substrate binding
(29). If the inhibition is due to the increased strength of the
GC or CG bp compared to the canonical AU (or UA) bp,
then reactivity should be restored upon substitution of gua-
nine by inosine, which would reduce the number of hydrogen
bonds from 3 to 2. In fact, the GC—IC substitution enhances
cleavage reactivity by ~3-fold (Table 2; cleavage assays not
shown), suggesting that base pair strength is a contributing
factor. However, the reactivity of the inosine-containing var-
iant is still ~4-fold lower than that of uR1.1 RNA (Table 2),
indicating that additional features of the CG or GC bp contri-
bute to inhibition of cleavage (see also Discussion).

A db+pb set is sufficient to specify a cleavage site

If the db and pb are positive recognition determinants, then
introduction of an additional db+pb ‘set’ into the minimal
substrate would specify a new target site. To test this we

prepared a substrate that contains two db+pb sets.
R1.1[dblpbl,db2pb2] RNA (Figure 6) is based on pRI.1
RNA[+4 bp] RNA (see Figure 1), but includes an extended
stem below the target sites in order to minimize any effects
of the helix terminus on reactivity. The dblpbl pair corre-
sponds to that of uR1.1 RNA, with dbl directly adjacent to
the tetraloop. Given the overlapping positions of the two
db+pb sets it is expected that there would be mutually exclu-
sive recognition by RNase III of the two sets. A cleavage
assay reveals that 5" **P-labeled R1.1[dblpbl,db2pb2] RNA
is cleaved at the site specified by dblpbl (site 1), and also
at the site specified by db2pb2 (site 2), albeit with lower effi-
ciency (Figure 6C, lane 2). Thus, the introduction of a second
db+pb site creates a new target site. Sequencing gel analysis
of the cleaved products (gel electropherogram not shown)
confirmed the positions of the cleavage sites determined by
each db+pb set. Given the lower reactivity of upRI.1
RNA[+4 bp] RNA (Figure 1), cleavage of the target site spe-
cified by db2pb2 (where db2 also is 4 bp from the tetraloop)
is expected to be less efficient than cleavage of the target site
specified by dblpbl. A significant reduction in cleavage at
site 1 is observed when an inhibitory base pair substitution
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Figure 4. Gel shift assays of db sequence variants of uR1.1 RNA. (A) Gel shift assays. Assays were performed as described in Materials and Methods. The Kf,
values are provided below each db sequence. The first lane in each panel shows a binding reaction in the absence of RNase III. Lanes 2—18 in the upper row
panels and lanes 2—15 in the lower row panels represent RNase III concentrations of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 650, 800, 950, 1500, 2000,
2500 and 3000 nM; and 50, 100, 150, 200, 250, 300, 400, 550, 700, 850, 1000, 1500, 2000 and 2500 nM, respectively. (B) Correlation between binding affinity
and cleavage reactivity of db sequence variants. The relative reactivities of five variants [denoted 1-5 in (A)] were plotted versus the reciprocal of the apparent
dissociation constants. The wild-type point is not shown on the graph, but has a 1/Kp, (Kp) of 4.9 x 10">nM ! and a relative reactivity of 1.0.

is introduced into dbl, or into both dbl and pbl. However,
the same substitutions in db2 and/or pb2 do not inhibit clea-
vage at site 1, and that mutations in all four boxes cause a
decrease in overall reactivity of the RNA (Figure 6C,
lane 8). We conclude that the two db+pb sets exhibit func-
tional independence, in that an inhibitory base pair in one
db+pb set does not adversely affect cleavage directed by
the second db+pb set. In this regard it should be noted that
an enhancement of cleavage at site 2 is observed when an
inhibitory mutation is placed in dbl (Figure 6C, lane 4).
This observation suggests that this mutation may cause an
equalization in affinity of the two sites for RNase III (see
also Discussion).

DISCUSSION

This study has characterized the effects of base pair sequence
on the cleavage reactivity and binding affinity of a minimal
substrate of E.coli RNase III. The properties of tR1.1 RNA
as a substrate are relevant in considering the basis for the

sequence control of reactivity. The K, of 148 nM is
~3-fold larger than that of the parent substrate, R1.1 RNA
(~50 nM) (40), and the Kp, for the pR1.1 RNA-RNase III
complex also is significantly larger than the K’p values of
complexes of RNase III with R1.1 RNA and variants
(32,38). The values indicate a relative weak binding affinity.
The reduced affinity is consistent with the recent structural
analysis of Aquifex aeolicus RNase III (D44N mutant),
bound to a cleaved RNA (RNA 6) that is identical to the
28 nt product of cleavage of pR1.1 RNA (42). Figure 7B
shows the sites of interaction of RNA 6 with specific regions
(RBMs) of A.aeolicus RNase III. Substrates that are shorter
than ~22 bp, such as uR1.1 RNA, would not be able to
engage in the full complement of protein contacts (see
Figure 7B), and therefore would be expected to have a
reduced binding affinity. The protein—-RNA contacts observed
in the A.aeolicus RNase III'RNA 6 cocrystal span ~11 bp
(42), which is consistent with the finding that an 11 bp
helix between the db and cleavage site is the minimal length
needed for significant reactivity. In this regard, the exhaustive
cleavage by E.coli RNase III of long dsRNAs in vitro yields



Table 1. Effect of proximal box substitutions on RNase III binding to uR1.1
RNA

GC CG AU UA
AU - - -
AU - - -
AU - - -
K'p 204 382 258 242
(nM)
UA GC cG
207 703 1,342
UA GC CG
259 767 430
UA GC CG
212 152 190

products ranging in size from ~11-15 bp, with negligible
amounts of products <~11 bp (7,25,26). The absence of
products shorter than 11 bp may in part reflect the low bind-
ing affinity of these products, effectively preventing further
cleavage.

Figure 7B summarizes the base pair sequence elements that
specify a target site for E.coli RNase III. The elements are
located within an 11 bp helix, and include: (i) the 2 bp db,
with a UA and UG pair at positions 1 and 2, respectively;
(i1) the 4 bp pb, with a GC pair at pb position 1; an AU or
UA pair at pb position 2; an AU pair at pb position 3; and
an AU or UA pair at pb position 4; and (iii) a 2 bp segment
between the db and pb, termed the middle box (mb), whose
sequence content can modulate reactivity (see also below).
That a single pb+db set is sufficient to specify an RNase III
cleavage site provides additional evidence that the two boxes
function as positive recognition determinants. The two target
sites in the substrate that contains two db+pb sets exhibit
unequal reactivity, with the less reactive site distal to the tet-
raloop terminus. Mutation of the db for the preferred site
yields comparable levels of cleavage at both target sites.
These results are consistent with mutually exclusive recogni-
tion by RNase III of two sites of unequal affinity. However,
further mutational and footprinting analyses are needed to
more precisely define the mode of interaction of RNase III
with substrates containing multiple overlapping recognition
sites.

Evidence that db structure, but not sequence, functions
as a positive recognition determinant

The pattern of inhibition by base pair substitutions in the db
does not indicate in any obvious manner a direct recognition
of sequence by RNase III. Instead, the canonical sequence
may provide a unique local structure that is optimally recog-
nized by RNase III. This proposal is supported by hydroxyl

Nucleic Acids Research, 2006, Vol. 34, No. 13 3715

radical footprinting and ethylation interference analyses of
RNase IlI-substrate complexes, which show protein contacts
with the sugar-phosphate backbone of the db (38). In addi-
tion, nucleotide analog interference mapping using substrates
containing 2’-deoxyribonucleotide phosphorothioates identi-
fied protein contacts with specific 2’-hydroxyl groups within
the db (A. Harmouch and A. W. Nicholson, unpublished
data). The crystal structure of an A.aeolicus RNase
[II(D44N)eRNA 6 complex (42) reveals the db minor groove
as a site of recognition by a segment of the RNase III poly-
peptide, termed RBM4, that connnects the o5 and 06 helices
of the nuclease domain (see Figures 7B and 8). One interac-
tion involves a hydrogen bond between the Arg97 side chain
and a ribose 2’-hydroxyl group (42). It is therefore possible
that the strong inhibitory effect of the UG—GU substitution
(as well as other substitutions) may reflect an alteration of
local structure, causing disruption of one or more hydrogen
bonds involving the sugar-phosphate backbone and RBM4.
In this regard, the UG pair seen in the A.aeolicus RNase
III(D44N)eRNA 6 cocrystal exhibits the canonical wobble
structure, with the attendant local distortion of the double-
helix (42).

Additional RNase III side chains may participate in db
recognition. The recently-reported crystal structure of
Mycobacterium tuberculosis RNase III, and molecular mod-
eling analyses (43) suggest a close proximity to the db of a
conserved glutamic acid (E100 in E.coli RNase III; see
Figure 8). It is known that the E100A mutation increases
the K, and k., for substrates of E.coli RNase III (44), and
that the EI00A mutation (44) as well as the rnc-97 (G97E)
mutation (45)—both of which map within RBM4—cause a
requirement for a higher Mg?* concentration for optimal
activity. This suggests that divalent metal ion may either be
directly involved in the db-RBM4 interaction, or that it res-
cues reactivity in an indirect manner. Since RBM4 sequence
and length vary among bacterial RNase III orthologs (e.g. see
Figure 8), the specific features of the db-RBM4 interaction
also may vary across phylogeny, and that the db sequences
in turn may be nonconserved. The availability of high-
resolution structural data on RNase IlI-substrate complexes
provides a basis to determine the source of specificity and
binding energy in db-mediated recognition of substrate.

On the function of the pb as a positive recognition
determinant, and as a site of action of catalytic
antideterminants

Pb positions 1-3 function as positive recognition determi-
nants for E.coli RNase III, with a preferred sequence at
each position. In contrast, pb position 4 is a site where speci-
fic base pair substitutions can suppress the catalytic step with-
out inhibiting binding. The structure of the A.aeolicus RNase
[ITeRNA 6 cocrystal reveals a cluster of hydrogen bonds
involving RNA functional groups at pb position 2 and speci-
fic side chains in the N-terminal portion of the o8 helix
(RBM1) in the dsRBD (Figures 7B and 8) (42). Specifically,
the uracil O2 atom in the canonical AU pair and a neighbor-
ing ribose 2'-hydroxyl group engage in hydrogen bonds with
the Q157 carboxamide group. This interaction suggests a
source for the sequence specificity, and also how a purine
2-amino group at pb position 2 could disrupt RNase III
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Figure 5. Identification of a minor groove antideterminant. (A) Inhibitory effect of the CG bp at the pb second position, and restoration of reactivity upon
removal of the 2-amino group (CG—CI bp substitution). The first row shows the sequences; the second row displays the cleavage assays; and the third row
displays the gel shift assays. (B) Inhibition by DAP substitution. The substrate cleavage assays shown in (A and B) were carried out as described in Materials and
Methods, using 5’ **P-labeled, chemically synthesized RNA. In the cleavage assay gels, lane 1 represents incubation of substrate with RNase III for 4 min in the
absence of Mg>". Lanes 24 represent complete reactions, with times of 1, 2.5 and 5 min, respectively. The relative reactivities are provided below the sequences,
and represent the averages of at least three independent experiments, with an average standard error of the mean +10%. ‘S’ and ‘5" indicate the positions of
substrate and the 5" end-containing cleavage product, respectively. The asterisk indicates a product of nonspecific cleavage. For the gel shift assays, lane 1 shows
the RNA mobility in the absence of added RNase III. Lanes 2—13 show reactions involving RNase III concentrations of 50, 100, 150, 200, 300, 400, 550, 700,
850, 1000, 1500 and 2500 nM, respectively. Lanes 14 and 15 in panels 2 and 3 involve RNase III concentrations of 3000 and 3500 nM, respectively. ‘F’ and ‘B’
indicate the positions of free and bound RNA, respectively. The Kf, values were determined as described in Materials and Methods, and are given below the
phosphorimages. The values represent the average of three independent experiments.

recognition. In the latter instance, the inhibitory CG pair
would place a 2-amino group (a hydrogen bond donor) adja-
cent to the Q157 carboxamide amino group (also a hydrogen
bond donor). This juxtaposition would not allow hydrogen
bond formation, and perhaps also disrupt the hydrogen
bond involving the adjacent 2'-hydroxyl group. Moreover,

the involvement of two hydrogen bonds rationalizes the abil-
ity of the CG—CI substitution to afford only a partial func-
tional rescue. Since the inosine base does not contain a
hydrogen bond acceptor group at the C2 position, the Q157
side chain would engage substrate with only a single hydro-
gen bond. The conservation of the glutamine residue in



RBMI1 (Figure 8; A. Pertzev and A. Nicholson, unpublished
data) suggests that the Q157 side chain-pb interaction is con-
served among RNase III orthologs. It is of interest that RBM 1
maps within the dsSRBD, whose RNA-binding ability has gen-
erally been assumed to be base pair sequence-nonspecific. Ji
and coworkers also noted the interaction of specific base
functional groups within a bound, non-cleavable dsRNA

Table 2. Effect of inosine substitution on the uncoupling of binding and
cleavage by the GC bp substitution at proximal box position 4
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with the side chains of Q157 and Q161 of A.aeolicus RNase
III, and the potential for this interaction to provide base pair
sequence specificity (20). The apparent ability of the RNase
IIT dsRBD to recognize Watson—Crick base pair sequence
at pb position 2 provides the first evidence for the base pair
sequence specificity for the dsRBD, and suggests a broadened
functional versatility of this motif in mediating dsRNA-
protein interactions.

Pb position 4 represents a separate locus of protein interac-
tion. Here, a ribose 2’-hydroxyl group and a non-bridging

phosphate oxygen engage in hydrogen bonds with the side
chains of specific residues in the o4 helix, termed RBM3

G-C - -

Pb A_U - . (42) (see Figures 7B and 8). No base-specific contacts are
A_U - - observed. The ability of the GC or CG substitution at pb posi-

A_U G_c - Fion 4 to suppress clegvage without inhibiting substrate binc.1-

Relative  [1.0] 0.09 024 ing formglly classifies . these sequences ~ as .cgt'zllyt{c
reactivity antideterminants (29). While the mechanism of inhibition is

not known, one possibility is that a substrate conformational
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Figure 6. RNase III cleavage of a substrate containing two pb+db sets. (A) Structure of R1.1[dblpbl,db2pb2) RNA. (B) Cleavage reactivities of
R1.1[dblpbl,db2pb2] RNA and several variants. The base pair substitutions in the proximal and/or dbs are indicated. Cleavage assays were performed using
5’ 32P-labeled RNA (~2.5 nM), in standard reaction buffer (see Materials and Methods). For each substrate, the first lane represents incubation of the RNA for
4 min with RNase III (10 nM dimer concentration) in the absence of Mg?*. The second lane represents the complete reaction (including 10 mM Mg?"), incubated
for 2.5 min. Reactions were analyzed by electrophoresis in a 15% polyacrylamide gel and visualized by phosphorimaging as described in Materials and Methods.
The positions of the 5 32p_labeled products [5' (1) and 5’ (2)], and the uncleaved substrate (S) are indicated. The asterisks indicate two fragments resulting from a
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experiments by comparison of product fragment migration with that of the cleavage products of R1.1[WC] RNA, and also by sequencing gel analysis, using a P1
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containing cleavage products, and internal fragments are not visible, since the RNAs are 5" **P-labeled. However, these species are observed when internally-
labeled (A,U) RNA is used as substrate (gel electropherograms not shown). The altered mobility of the uncleaved substrates reflects the differing GC bp content
of the variants, which affects electrophoretic mobility in the presence of 7 M urea. This mobility difference has been observed elsewhere (32).
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Figure 7. Consensus sequence elements of an E.coli RNase III substrate, and sites of interaction of the db, pb and mb with RNase III. (A) Consensus sequence
elements that specify an E.coli RNase III cleavage site. The consensus base pair sequence elements were established by excluding the base pair substitutions that
reduce cleavage reactivity by >2-fold (i.e. a relative reactivity <~0.5; see Figure 3). N, n: any nucleotide; N-N’ indicates a relatively strict requirement for
Watson—Crick base pairing, while n—n’ indicates a minimal requirement for base pairing. W-W’: AU or UA bp. The arrows indicate the scissile phosphodiesters.
The parentheses flanking the right arrow indicate that this cleavage site is not a required feature, but would be recognized if the 3’ end of the RNA were extended
beyond this site. (B) Diagram, based on Figure 5 in (42), showing contacts of the db, mb and pb with RBMs 14 of a bacterial (A.aeolicus) RNase III. The
location of each RBM in the RNase III holoenzyme is indicated by a specific color. The pink and red colors denote the motifs of one subunit, while the blue and
aqua colors denote the motifs of the other subunit. In each case, the lighter color indicates that the motif is located in the dsSRBD, while the darker color indicates
that the motif is located in the nuclease domain (see Figure 8). The position of bound uR1.1 RNA is indicated by the grey rectangles, with each rectangle
representing a nucleotide. The rectangles with dashed outlines indicate the positions of the nucleotides of a full-length substrate bound to RNase III. Note the
absence of two RBM contacts in the pR1.1 RNA-RNase III complex. The arrow indicates the RNase III cleavage site.

change required for cleavage may be hindered by the stronger
GC or CG bp. Consistent with this proposal, substitution of
guanine by inosine lessens the inhibition caused by the GC
bp substitution. However, since reactivity is not fully
restored, other features unique to the GC/CG bp apparently
participate in the uncoupling of binding and cleavage. It is
noteworthy that R1.1[CL3B] RNA—a cleavage-resistant,
but binding-competent R1.1 RNA variant identified by
in vitro selection (29)—contains a GC pair at pb position 4,
while the efficiently cleaved R1.1 RNA contains a nominally
stable UC pair at the same position (40,46). Catalytic anti-
determinants have been identified in substrates of the yeast
RNase III ortholog, Rntlp (47-49). It was shown in one of
the studies that a UA bp substitution at the tetraloop
closing position uncouples binding and cleavage, and that
the adenine 6 amino group is specifically responsible for

uncoupling (49). The ability of Watson—Crick base pairs to
function as catalytic antideterminants suggests that regular
double-helical structures can provide cleavage-resistant
binding sites for RNase III, with potential gene-regulatory
functions.

Modulation of reactivity by a double-helical element
between the pb and db

The sequence content of a 2 bp segment between the db and
pb modulates substrate reactivity. Here, the U;,:G,7;—GU or
GC substitution enhances cleavage reactivity (relative reac-
tivity of 1.4), while the C;5:G,—GC substitution decreases
reactivity (relative reactivity of 0.36) (Figure 3). The struc-
ture of the A.aeolicus RNase III-RNA complex reveals that
this segment, termed the middle box (mb) (42), is a site of
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Figure 8. Locations of RBMs 1-4 in bacterial RNase III polypeptides. Shown is a sequence alignment of four bacterial RNase III polypeptides, indicating the
locations of secondary structural elements (highlighted in green) as determined by X-ray crystallography, and also the positions of RBMs 1-4. Noted by each
motif is the site of interaction with the minimal substrate (pb, db or mb), as provided by the crystallographic analysis of A.aeolicus (Aa) RNase III bound to a
cleaved minimal substrate (42). The secondary structural elements for Aa RNase III and M.tuberculosis (Mt) RNase III were from (42,43), respectively. The
secondary structure of the dsSRBD of Mt RNase III is not shown, since the position of the dsRBD is disordered in the crystal (43). The secondary structural
elements of Thermotoga maritima (Tm) RNase III were provided by the Joint Center for Structural Genomics (San Diego) (PDB entry 100W). The secondary
structure of E.coli (Ec) RNase III is not known, since the structure of the protein has not been determined. The nuclease domain (NucD), dsRBD, and flexible
linker regions are noted. The asterisks indicate conserved residues within RBM1 and RBM4 that interact with the pb and db, respectively (see also Discussion).

protein contact. Specifically, a ribose 2’-hydroxyl group in the
mb engages in a hydrogen bond with the side chain of a His-
tidine (H180) residue within the segment, termed RBM2, that
connects the B1 and B2 strands of the dsRBD (42) (see
Figures 7B and 8). The lack of strong inhibition by Watson—
Crick base pair substitutions supports the absence of base-
specific contacts. However, it is possible that certain substitu-
tions (e.g. non-Watson—Crick base pairs) that alter local
structure could control reactivity by determining whether
the observed hydrogen bond is established, and thus serve
to ‘fine-tune’ substrate reactivity.

SUMMARY

It was originally proposed that E.coli RNase III cleavage
sites are identified by a default pathway, wherein specifically
positioned Watson—Crick base pair antideterminants mask
otherwise reactive phosphodiesters, thereby limiting cleavage
to a single target site (3,32). The model did not require the

involvement of positive recognition determinants. This study
has allowed a refinement of the model to include positive
recognition determinants in the form of specific base
pair sequences. Thus, both positive as well as negative
(i.e. antideterminant) elements cooperate to identify the clea-
vage site(s) and control reactivity of E.coli RNase III sub-
strates, and by extension other bacterial RNase III
substrates. The ability of base pair sequence to modulate
reactivity can serve to establish hierarchical reactivities
among the diverse array of cellular substrates. Thus, the bind-
ing affinity can determine cleavage efficiency, that in turn
can establish the RNA decay rate, if RNase III action repre-
sents the rate-limiting event in a multi-step pathway. Finally,
given the growing number of characterized substrates for
eukaryotic RNase III orthologs (50,51), and the identification
of functionally essential RNase III polypeptides in kineto-
plastid RNA editosomes (52,53) it can be anticipated
that base pair sequence control of RNase III action may
be operative in RNA processing and decay pathways in
eukaryotic cells.
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