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Robustness and rich clubs 
in collaborative learning groups: 
a learning analytics study using 
network science
Mohammed Saqr1,2*, Jalal Nouri2, Henriikka Vartiainen3 & Matti Tedre1

Productive and effective collaborative learning is rarely a spontaneous phenomenon but rather the 
result of meeting a set of conditions, orchestrating and scaffolding productive interactions. Several 
studies have demonstrated that conflicts can have detrimental effects on student collaboration. 
Through the application of network science, and social network analysis in particular, this learning 
analytics study investigates the concept of group robustness; that is, the capacity of collaborative 
groups to remain functional despite the withdrawal or absence of group members, and its relation to 
group performance in the frame of collaborative learning. Data on all student and teacher interactions 
were collected from two phases of a course in medical education that employed an online learning 
environment. Visual and mathematical analysis were conducted, simulating the removal of actors 
and its effect on the group’s robustness and network structure. In addition, the extracted network 
parameters were used as features in machine learning algorithms to predict student performance. 
The study contributes findings that demonstrate the use of network science to shed light on essential 
elements of collaborative learning and demonstrates how the concept and measures of group 
robustness can increase understanding of the conditions of productive collaborative learning. It also 
contributes to understanding how certain interaction patterns can help to promote the sustainability 
or robustness of groups, while other interaction patterns can make the group more vulnerable to 
withdrawal and dysfunction. The finding also indicate that teachers can be a driving factor behind 
the formation of rich clubs of well-connected few and less connected many in some cases and can 
contribute to a more collaborative and sustainable process where every student is included.

Collaborative learning is currently being implemented at all levels of education1. Collaborative learning is typi-
cally defined as two or more students working together toward a shared goal1,2. In collaborative learning, students 
are expected to explain their thoughts and actively communicate, discuss, and negotiate their perspectives with 
the other students1. The students also need to coordinate and regulate their interactions and contributions as 
well as share responsibility for both the learning process and the common product of it1. Accordingly, a wide 
spectrum of skills for communicating and collaborating effectively is considered to be an important aspect of 
collaborative learning2. While several studies have confirmed the potential benefits of collaborative learning, 
orchestrating and sustaining productive inter-subject interaction is often difficult to achieve3,4.

In a well-developed peer collaboration, the students pursue and contribute to a common goal, which requires, 
for example, shared epistemic agency as well as the equal distribution and organization of the workload5–7. 
The absence of one or more of these elements may fuel conflicts that can cause dysfunctional group dynamics, 
frustration, misunderstandings, withdrawal, decreased commitment, and even the withdrawal of one or more 
members3,8. Accordingly, the nature of the interactions and the mechanisms underlying them constitutes an 
important part of research into collaborative learning2.
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Several studies have investigated the emergence of conflicts and their detrimental effect on student 
collaboration3,9. Näykki et al. used in-depth face-to-face interaction analysis of a group of collaborators and 
found that conflicts led to the avoidance of interaction and lower engagement3. Curşeu et al. studied interper-
sonal conflicts in collaborative groups using network density and interaction patterns to determine how conflict 
influences group cognition, and concluded that the management of conflict requires teachers to institute and 
reinforce specific structures for interpersonal interaction9.

Similarly, studies of the role of social network analysis in studying collaborative groups have explored a wide 
range of topics such as computer supported collaborative learning (CSCL)10,11, the mapping of interactions to 
identify engaged or isolated students and improve learning design12,13, identifying gaps in collaborative learning 
and designing a relevant intervention13 and investigating collaboration as a proxy of performance in learning 
analytics studies14–17.

However, there is a marked lack of research on the applicability of network science methods for in depth 
analysis of the robustness of collaborative groups: that is, their capacity to remain functional despite withdrawal, 
a lack of activity, or the absence of group members. The aspect of robustness in general has so far been overlooked 
in research on collaborative learning. Given that sustained interactions are necessary for collaborative groups 
and to achieve the shared goals of collaboration, studying robustness becomes important for understanding how 
groups (1) are functioning, (2) can be expected to continue to function, (3) can function under stressful situations 
and unexpected changes in group dynamics, and (4) can tolerate the attrition of group members and changes 
in the dynamics of interaction. Studying group robustness can also facilitate the design of better collaborative 
learning environments that are more diverse, encouraging of interactions, less dependent on moderators, and 
consequently more robust18–21.

This study applies methods from network science to shed light on the nature of sustainable interactions and 
learner network structure in collaborative learning. More specifically, the study contributes to a better under-
standing of the robustness of collaborative groups and demonstrates the utility of network analysis. While the 
structure, function, and dynamics of collaborative learning are complex, dynamic, and self-organising by nature, 
the methods of network science can provide new ways to make visible, scaffold and regulate interactions and 
collaborative learning processes as they emerge.

This study is organized as follows; the “Background” section will review the concept of robustness, discuss 
the value of interactions in collaborative group and how robustness of the group is essential so that the group 
continues to serve its function as the backbone for co-construction of knowledge. We then discuss the differ-
ent dimensions of analysis of collaborative learning. In particular, we use learning theories and collaboration 
analysis frameworks to argue how a students’ contribution to the cohesion and robustness of the collaborative 
group correlates with quality of knowledge co-construction and learning gain. We then discuss the importance 
of robustness for the group and for the individual learner, a brief review of the rich club phenomena is then 
presented, followed by the aim and research questions. In the “Methods” section we describe the context, the 
methods, and statistical analysis, followed by the results and the discussion.

Background
Networks and robustness.  For the purposes of social network analysis, a network is a group of actors 
(nodes) connected by relationships or interactions (edges). Networks are used to capture the interactions among 
collaborators as well as other kinds of relationships between the actors. The wiring of the connections between 
collaborators can determine, for example, the dynamics of interactions, the spread of knowledge, the behaviours 
of actors, or the distribution of resources22–24. Network analysis has been used to study many different aspects of 
collaborative learning and collaborative groups. Typical applications include the study of the patterns of inter-
actions, the activity of collaborators, interactivity between groups, and predicting performance using learning 
analytics methods10,11.

The study of networks, or network science, offers far more possibilities beyond the study of interactions that 
is currently the most common. Network science offers rich, empirical, data-driven methods that have contrib-
uted to the understanding of, for instance, biological, social, and economic systems. Its methods have led to 
new findings in cell biology, disease mechanisms, drug discovery, and improved web searches, as well as many 
other applications25,26. Collaborative networks in learning can be interpreted as a complex, adaptive network, 
where the methods of network science can reveal interesting findings on collaboration, learning, interactions, 
and other relationships that can be modelled in network terms. According to László Barabási, “a key discovery 
of network science is that the architecture of networks emerging in various domains of science, nature, and 
technology are similar to each other […]. Consequently, we can use a common set of mathematical tools to 
explore these systems”21. The popularity and applications of network science to investigate various aspects of 
learning are rapidly increasing21.

One potential application of network science in the domain of education is to use it for studying how a 
collaborative group can maintain collaboration/remain functional when facing challenge. This study applies 
methods from network science to explore the robustness of collaborative groups in the face of the attrition of 
group members for whatever reason, such as conflicts or challenges, specifically by analysing the ability of the 
group to continue to function even when one or more actors are removed from the network. The study explores 
to what extent a robust group can sustain withdrawals, yet still continue to serve its intended function. The study 
approaches group robustness by looking at the effects of how the withdrawal of members from the group affects 
the potential interactions and group connectivity.

Research on robustness typically uses simulation to try and predict the ability of a system to carry out its 
intended functions and withstand challenges such as the loss of group members. The loss of group members or 
interactions in simulations can be one of two types: targeted or random18–21. For an example of targeted removal, 
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think of the effects of removing a central, active study group member (involved in many interactions), or remov-
ing a moderating teacher or a leader student. Due to the key role that those members play in networks, their 
withdrawal or sudden inactivity can be disastrous to the network; that phenomenon is known as vulnerability 
due to connectivity21.

To illustrate the concept of how targeted removal affects a network, Fig. 1 illustrates a network of nine actors 
(nodes) who can be, for instance, scientists collaborating on a research project. The scientists are all connected 
to each other either directly (within same organisation) or to one another, through collaboration networks. 
The removal of scientist 3 (the most connected and active researcher based on interactions) renders two others 
disconnected, the subsequent removal of scientist 8 renders three more scientists disconnected, after which 
removal of scientist 1 renders the network completely disconnected. The network in Fig. 1 has low robustness 
to the removal of actors (nodes).

However, the random removal of nodes does not typically lead to similarly dramatic results, and would, 
in most cases, take more steps to render the group of scientists in Fig. 1 disconnected. For example, removing 
scientists 10, 5, or 4 would have left all of the remaining scientists still connected. Figure 2 shows examples of 
three random node removals from the network in Fig. 1. The removal of scientists 4, 7, and 10 kept the network 
connected; the removal of scientists 1, 3, and 9 in Fig. 2B disconnected two scientists; and the removal of nodes 
5, 6, and 8 divided the network into two components. As demonstrated in the previous example, the removal 
of key nodes can have a large impact on networks, as they are often hubs (greatly exceed the average number 
of edges) or articulation points (their removal cuts the network into two or more disconnected components).

Robustness, collaboration and students’ learning.  There is a wide-ranging acceptance that student’s 
reciprocal interactions, interpersonal relationships and the roles that students’ play (e.g., leaders, moderators, 
isolates) facilitate productive knowledge co-construction. Several learning theories support this belief such as 
social cognitive theory27, the socio-cultural framework28, group cognitive models29, community of inquiry30, 
social capital theory31, connectivism learning theory32, and socially shared regulation framework33. In fact, a 
large volume of empirical research confirms the value of collaborative learning and interactive pedagogies; a 
recent meta-analysis of 425 studies analysed the role of collaboration in collaborative learning and estimated a 
combined effect size of 0.42 on knowledge gain and an effect size of 0.64 on skill acquisition34, similar results 
have been reported by other meta-analyses and large scale systemic reviews, e.g.,35–37.

Researchers contend that collaborative learning has a participatory, a social and an epistemic dimension38,39. 
The participatory dimension reflects the quantity of contributions as students’ externalize their ideas, respond to 
each other and integrate ideas by building on to contributions of others. The participatory dimension provides 
valuable information about students’ engagement (both static and continuous) and can be accurately captured 
by SNA degree centralities reflecting the quantitative aspects of students’ contributions. Research has shown that 
students out-posts (captured by outdegree) correlates with students’ efforts, and performance40–42, while replies 
to students’ contributions (captured by the indegree) mediates the value of contributions. In other words, some 
ideas and contributions in collaborative knowledge construction may be connected, elaborated and synthesized 
more intensively than others43. Similarly, outdegree has shown positive correlation with performance41,42,44. 
However, degree measures are local centralities, i.e., only captures the immediate interactions and do not capture 
the breadth or range of influence or relationships through the whole network45,46.

The social and relational dimension in collaborative learning reflect the processes through which norms, 
processes and rules develop in the groups dynamics and interaction. A sound social dimension leads to a cohesive 

Figure 1.   A simulation of a targeted attack, where the removal of the most connected nodes renders the 
network completely disconnected in 3 steps.

Figure 2.   A simulation of random removal of nodes, showing the removal of random nodes.
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group where learners build strong interpersonal relationships, successfully assume collaborative roles and grow a 
strong sense of community and relatedness. A strong social structure acts as a backbone for successful informa-
tion exchange and group learning success32,38,39. In other words, building strong, cohesive and sound interaction 
dynamics and relationships buttresses a robust social structure that serves as a catalyst for students’ cognitive 
gains and knowledge acquisition39. Members of a robust group help each other to participate in and contribute to 
collaborative work and knowledge building towards shared goals9,47,48. As Kreijns et al. postulates: “A performing 
group requires that the social space is sound. This is the case when the group structures manifest themselves 
by strong relationships, group cohesiveness, trust and respect, feelings of belonging, satisfaction, and a sense of 
community”. See Kreijns et al. for a detailed review39. Since the soundness, cohesion and strength of the social 
structure are essential elements of collaborative learning, identification of social dimension is critical for sup-
porting productive group work.

The social dimension of collaborative learning can be captured with Eigenvector centrality and related meas-
ures, i.e., hub and authority centralities (described in the “Methods” section). These measures not only reflect 
the number of connections (as degree centralities) but also their strength of influence of the connections as well. 
Another way quantify the role of a learner in a network is to measure the drop in interactions—by simulation-
that results from deletion of the learner’s interactions. For example, when an active contributor posts and get 
replied to, she/he engages others and stimulates the discussions, deleting these interactions—that the learner 
was involved in-would give an idea on the learner’s contributions and the contributions that she/he stimulated. 
In doing so, it reflects the role of the learners’ contributions in nurturing connections, contribution to network 
robustness and facilitating knowledge co-construction. An advantage of such method, is that it reflects not only 
the benefits one gets from the collaboration but also, how they facilitate the collaboration and their contribution 
to the network.

Robustness and group function.  As discussed in “Robustness, collaboration and students’ learning” 
section, a functioning collaborative group serves as the backbone of knowledge co-construction and informa-
tion exchange among collaborators. Collaborative and cooperative interactions, such as communication activity 
(density of links), as well as the inclusivity of group members in interactions (redundancy of links), contribute 
to the interconnectedness of the group and thus robustness to the attrition of group members11,49. As such, the 
pattern of interconnectedness may reflect how a the network of collaborators adjust to absence of members. In 
a decentralised network (a network with diverse participation), there are enough links between all members that 
the group could lose any single member and remain connected. In some networks, a central core with a sparser 
periphery may emerge, known as core-periphery organization50. Rich-club phenomena is one of such core-
periphery organizations where highly-connected nodes or hubs tend to interact among themselves more than 
they do with less connected nodes51–53. In a learning network, the rich club phenomena may indicate the domi-
nance of a small subset of students or an “oligarchy” over the collaborative process, making it less collaborative51,52. 
Students outside the rich club may be isolated, consumers (only read others’ contributions), free-riders or low 
achievers. Vaquero et al. reported that high achieving students tend to build a rich club early in the course where 
low-achievers barely interacted and were consequently excluded from the information exchange process54. Rec-
ognition of such patterns is important for the group function as well as for the students who may need support 
or scaffolding. Furthermore, it is important to study the influence of such network organisations on robustness.

We argue that using social networks to assess the robustness of collaborative networks would help ensure 
that a collaborative group is functioning and can be expected to function under challenging situations. It can 
further advance our understanding of collaborative group robustness in order to design better collaborative 
environments18–21.

Rational and aim.  This article explores the potential of network science for capturing the robustness of 
groups in collaborative learning environments. Furthermore, it explores ways to study the role of collaborators, 
especially from the perspective of contributing to the function of the group as a whole, such as interdepend-
ence, accountability, and group processing. This study contributes to research on collaborative learning in four 
ways: firstly, by exploring the utility of network analysis as a method for the study of withdrawal tolerance of 
collaborative groups; secondly, by comparing and demonstrating the structural differences between more and 
less collaborative networks regarding robustness; thirdly, by demonstrating the dynamics and timeline of events 
of member attrition, as simulated by network methods; and fourthly, by investigating the utility of robustness 
parameters and robustness measures as proxies for predicting performance. In doing this, we present a case 
study of a course in two distinct phases: a non-collaborative phase and a collaborative phase.

The research questions of this study are as follows:

•	 What is the difference in structure and robustness between more and less collaborative networks?
•	 What are the dynamics of group member attrition regarding actors and interactions?
•	 How predictive of performance are robustness structures and measures in collaborative learning?

Methods
Context.  The College of Medicine at Qassim University, has adopted an integrated problem-based curricu-
lum. During the first three years, students work in small groups with a tutor in each group. In the fourth year, 
students learn through the traditional lecture-based curriculum in a single group. Students are offered online 
clinical problems as a method to encourage collaborative learning and clinical reasoning. The online clinical 
problems are case scenarios where a patient vignette is presented that includes history, symptoms and signs, and 
investigations. Students are asked to offer clinical reasoning, describe their approach to the case, and provide 
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possible treatment options. The teacher posts one or two of these problems each week. The course analysed in 
this study, Internal Medicine, lasted for 4 months, and there were 20 case discussions. The course was divided to 
two midterms. In the first midterm, the course was run by the teacher as usual. The analysis of interactions in the 
first phase revealed three shortcomings (few interactions between students, a teacher-centric interaction pattern 
and the scant participation of students in information exchange). An intervention plan was developed that tried 
to address the issues found in the analysis. The plan included improving awareness, the training of collaborators, 
improving content and teacher training:

•	 Improving the participants’ awareness by showing them anonymous discussions and SNA visualisations of 
the first phase. Participants were asked to reflect upon and discuss the value of inclusive diverse interactions.

•	 Conducting a short training workshop for the students where group processing and social skills, interde-
pendence skills, and positive group attitude were explained and practiced in a test environment. Learners 
also practiced group evaluation and metacognitive skills.

•	 Improving the content (case vignettes) through a collaborative script with defined goals. Students were 
encouraged to contribute, debate, and reason in their replies, and argue for their contributions. The teacher 
was also trained to moderate online discussions and facilitate collaborative discourse.

•	 Training the teacher to moderate online discussions and facilitate collaborative discourse.

The first midterm would serve as the non-collaborative phase in our study, and the second midterm would 
serve as the collaborative phase. Both phases were attended by the same students and the same teacher, on the 
same course. The performance was measured by exam grades, where the exam was composed of multiple choice 
questions, short essay questions, and written clinical case problems. Students were classified according to the 
university ranking into high or low achievers according to their grades: high-achievers with distinction grades 
higher than 80% and low-achievers with lower results.

Data collection.  Data were extracted from the online learning management system (Moodle) using Struc-
tured Query Language (SQL) queries. The extracted data included the time stamp, subject and author (ID and 
name) of the post, replies to the post, the author of each reply, the text of the post, any modifications of the post, 
and the modification time. A social network was constructed using the post data, by considering an edge from 
the source author of the post to the target of the post it was directed to in the thread. A directed network was 
compiled from aggregating all of the edges in the course. The initial midterm data were aggregated as a separate 
network, which was identified as the “teaching network”, as it was a network dominated by the teacher. The sec-
ond set of midterm data was also aggregated, and identified as the “collaborative network” as it was participatory.

Network analysis.  The data from the interaction and the attributes of the collaborators were compiled and 
imported into the R statistical software environment. A network for each term was created (teaching network 
and collaborative network) using Igraph R library55. Two types of SNA analysis were performed: visual and 
mathematical analysis.

Visual analysis.  Visual analysis of social networks gives an idea about the topology of the network and the 
interactions between the actors. In learning networks, it can reveal the central, active, and isolated actors in the 
group. Most importantly, it summarises a large number of interactions in an informative visualisation22,24. The 
visualisation of each network was performed with Gephi using the Fruchterman Feingold layout algorithm56,57.

Mathematical network analysis.  A mathematical analysis of social networks gives a quantitative estimation of 
the network properties and individual centrality measures of its participants. Mathematical analysis was per-
formed on two levels: the network level and the individual actor level58.

Network level.  On the network level Because this study aimed to explore the utility of network analysis as a 
method for the study of withdrawal tolerance in collaborative groups, we used baseline (before node removal) 
and changes in the parameters (after node removal) that reflect: (i) the structural and participatory properties of 
the network (node and edge count, mean in-degree, and mean out-degree) to study how far the withdrawal of 
individual collaborators affects the structure of the network; (ii) the parameters that reflect the embeddedness 
of the group members and interactivity to study the impact on cohesion and embeddedness (density, clustering 
and reciprocity); (iii) the parameters that reflect the centralisation of the group and the diversity of participation 
(centralisation in-degree and out-degree) to study how diversity or the lack thereof contributes to robustness; 
and (iv) the parameters that reflect the efficiency of the network as a communication medium or the drop in 
efficacy after withdrawal (vulnerability and efficiency)59–61. (v) The parameters that reflect the signature of the 
rich club phenomena.

These parameters are explained in detail:

(i)	 Graph level measures represent the overall measures of actors and interactions between them62,63.

•	 Node count the count of actors (nodes) in each network.
•	 Edge count the count of interactions (edges) between actors in the network.
•	 Mean out-degree average number of interactions per group member (out-edges); the higher the average 

out-degree, the more interactions the group member has with others.
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•	 Mean in-degree the average number of incoming interactions per group member (in-edges). It is calcu-
lated as the total number of interactions by the entire group compared to the total number of members 
of the group. Similar to the indegree, it is expected to be higher in groups with high interactivity.

(ii)	 Embedding gives a view of the overall social structure and how nodes are linked together, and embedded 
in their group, as well as the overall interactivity. Embeddedness can be used be a proxy for robustness: the 
higher the values, the more robust the network45,46,63,64.

•	 Network density refers to the proportion of actual interactions to the potentially possible maximum ratio 
among all participants (when every member has interacted with all others). Network density is useful as 
a measure of group interactivity and distribution of interactions among a diverse group of collaborators.

•	 Clustering or transitivity is the tendency of two actors who have a common connection; a structural 
network property that manifest as triangles of nodes. Network clustering is a sign of robustness as the 
number of alternative links grow with the number of such triangles45,46,63,64.

•	 Reciprocity measures the ratio of reciprocated edges, when two individuals exchange replies. Reciprocity 
is higher in decentralised groups, where members value the contributions of each other and exchange 
replies45,46,63–65.

(iii)	 Centralisation measures the distribution of centrality measures within the group, and is usually calculated 
as variation of the centrality measures of each node compared to the maximum possible. Centralisation 
measures are of particular importance in a collaborative context, since they measure the diversity of the 
centrality measures between group members. A network with high centralisation has few important nodes, 
such as very actively communicating students. The following measures of centralisation were considered66:

•	 In-degree centralisation reflects the degree to which different actors receive interactions. A network with 
high in-degree centralisation is dominated by one or some participants who receive most interactions.

•	 Out-degree centralisation measures the diversity of outgoing interactions. A network with high out-degree 
centralisation is dominated by one or a number of participants who initiate the most interactions. Highly 
centralised networks may be vulnerable to the withdrawal of central members.

(iv)	 Efficiency in addition to the previous measures, the measures chosen below reflect the ability of the group 
to function as a medium of information exchange, and resist stress or the removal of nodes:

•	 Efficiency is calculated as the inverse average of the reciprocal distances of all node paths. It offers a good 
estimate of the information flow through a network. Efficiency can be a useful measure of robustness 
and the resistance of a network to limited failure, or the removal of a limited number of actors67,68.

•	 Vulnerability is calculated as the relative decrease of efficiency when the actor is removed. As such, it is 
a measure of graph vulnerability to the disruption of information flow20,46,59,60,69.

(v)	 Rich club organization.

Rich club coefficient (Ø) The extent to which well-connected nodes connect to each other than what would be 
expected by chance. It is computed as the fraction of existing number of connections to the maximum possible 
among the subset of highly connected nodes (rich nodes)51. Since higher degree nodes in random networks 
may also be connected to each other by chance, the normalized rich-club coefficient (Ønorm) was proposed as 
the relative value of the Rich club coefficient compared to the average value across a null model of a group of 
random networks of the same size and same node degrees as in the examined networks (1,000 in our case)53,70. 
Values over 1 indicates the presence of the rich club phenomena in the studied network53. The boundary and 
size were calculated based on the method of decreasing rank ordering of nodes71. For each network we report 
the size of the rich club as the ratio of the size of the rich club core to the network size as well as the node degree 
corresponding to the degree of node at the periphery of the core.

Perturbation In addition to the above-mentioned parameters, the simulation of perturbation (actor removal) 
was also performed for both networks and network structural properties were compared. Perturbation was 
performed to study the impact of the simulated removal of members.

Single perturbations This simulation looks at the effect of the removal of a single actor from a network. To test 
the effect of single perturbation, we removed the teacher to test the effects of removing the teacher interactions 
on the network, or how structural changes in the network affect other interactions and centrality measures21,60.
Grouped perturbations In this simulation, a group of actors is removed and the properties of the graph is 
recalculated to analyse the effect. Removing five actors is a common method for testing the robustness of a 
network. The method simulates the influence of removal of an important group of significant collaborators. 
To investigate this effect, we removed the five most connected actors in each network and compared the 
structural properties of both networks before and after the grouped removal21,60,72,73.
Sequential perturbation In this simulation, we removed nodes one by one, in the order of the most connected 
nodes, to analyse the effects of this removal on the connected cluster size and connectivity. Two types of 
sequential removals were performed: the first was based on the highest degree of connectivity, and the second 
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was based on the highest betweenness centrality. To be able to compare the results, we also performed random 
node removals. Since random node removal can result in different results, we repeated the random removal 
simulation 1,000 times and averaged the results21,60,72,73.

Student level.  Centralities important to an educational context10,13 were calculated for each student (actor), 
including measures that reflect participatory efforts and quantity of interactions (in-degree and outdegree), 
measures that reflect involvement in information exchange and mediation (betweenness and closeness centrali-
ties), measures that reflect the position and importance of connections (authority and hub values), and Lapla-
cian centrality, which reflects the importance of a student role in robustness. All parameters were calculated for 
teaching and collaborative networks and all actors before and after perturbation and compared to assess the 
impact of the simulated removal of actors on collaborators. The calculated parameters are as follows46,61,62,74–76.

In-strength The number of incoming posts or replies or student’s in-degree multiplied by the weight of edges 
(number of duplicated edges in this study)46,69,74,77.

Out-strength The number of outgoing posts by a student, or the student’s out-degree in multiplied by the 
weight of edges46,69,74,77.

Closeness centrality While the sum of distances (lengths of paths) from the student to every other student in 
the network is called farness, the reciprocal of farness is closeness centrality. This is a measure of reachability, 
involvement, and inclusion in interactions with other students. There are two modes: in-closeness, which consid-
ers the incoming posts, and out-closeness, which considers the outgoing links46,69,74,77.

Betweenness centrality measures how many instances there are where the student is a bridge between two 
other unconnected nodes (lied between nodes). Betweenness centrality can be interpreted in a number of ways 
in learning, such as a proxy for brokerage, mediation, and helping to bring others in46,69,74,77, but more research 
is needed to make it visible and establish empirical facts on its role in collaborative learning.

Page rank is a variant of eigenvector centrality that has been used across a wide variety of disciplines and 
proved to be sensitive to structural and robustness testing. The centrality measure considers the quantity of node 
connections and their quality. A node may have a high page rank, not only if it has a wealth of connections, but 
also if the connections themselves are highly connected46,69.

Laplacian centrality quantifies the drop of sum of squared eigenvalues when an actor is removed. It carries 
more relational information about the actor local connectivity and density compared to other centrality measures 
mentioned here, and is considered a good and sensitive measure of node removal61,76,78.

Authority in contrast to in-degree, which counts the incoming interactions, authority score is an indication 
of highly connected nodes pointing to the actor. In other words, it values the number as well as the value of the 
incoming connections. A high hub score is an indication that the node has links to other high authority nodes45.

Target entropy is a centrality measure that considers the importance of a network based on the flow of infor-
mation though the node; a node is more important when a message passes through a node. As such, the diversity 
of interactions with multiple actors increases the target entropy value76,78.

Clustering coefficient is an indication of the density of the ego network of an actor, and the degree of cluster-
ing and connection of his connected friends together. The more friends are connected to each other, the higher 
the clustering coefficient20,65.

Statistical analysis.  The data were analysed using R statistical software environment and R! Programming 
language version 3.5279. Igraph, BrainGraph and Centriserv libraries were used to calculate network structural 
properties and centrality values55,80,81. As data violated the normality assumption, Spearman’s correlation test 
was performed to calculate the correlation between variables. Significance levels were calculated by comparing 
the resulting values to a null model of 1,000 randomly generated networks matched for size, number of interac-
tions and degree distribution70.

Performance prediction and feature ranking was performed using Orange toolbox. The classification was 
performed using five common algorithms: Random Forest, Decision Tree, Naive Bayes, Neural Network and 
logistic regression with tenfold cross-validation to classify students according to achievement levels (high versus 
low-achievers). Features were standardised (mean subtracted and divided by the standard deviation). Five rank-
ing methods were applied to select the most relevant feature to the variable (high vs low achievers): information 
gain (reduction of entropy), Gini coefficient (the inequality of variables of a frequency distribution), Chi square, 
Anova and relief (the ability of a variable to distinguish between the tested classes)82.

Ethics.  The study followed the institutional and national guidelines, and was approved from the institutional 
College of Medicine Research centre and national regulating bodies (Qassim Regional research ethics commit-
tee). The study protocol, consent documents and the consent procedure were approved by the College of Medi-
cine research centre and the Ethics regional committee which issued an approval of the study and that the study 
follows an online privacy policy that details possible use of data for research and guarantees user protection. The 
online privacy policy was signed by all participants and reviewed by the ethical committee. All personal data in 
this study were anonymised, and personal information was removed. It is also important to mention that all stu-
dents were enrolled in the course and were able to complete it regardless of signing the agreement and were able 
to opt out of participation in this research. The researchers did not participate in teaching, grading or organising 
any of the courses in this study.
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Results

RQ1	� What is the difference in structure and robustness between more and less collaborative networks?

There were 34 students in the course and one teacher. Thirty-four students participated in the first midterm 
and 33 participated in the second. The course generated 972 posts: 708 posts in the first midterm and 264 in 
the second. The mean degree in the teaching network was 5.20, while it was 10.76 in the collaborative network. 
The mean indegree was 2.60 in the teaching network compared to 5.38 in the collaborative network. While the 
teaching network showed more posts, they were mostly directed to the teacher. That is, all degree measures were 
much higher in the collaborative network.

The attributes of each network showed that the collaborative network was more interactive (the total edges 
(unique connections) was 183 vs. 91). The collaborative network had higher density of interactions between 
participants (0.16 vs. 0.08). Degree centralisation was higher in the teaching network, especially in the indegree 
network, where it was 0.95 with the teacher as the highest centrality value, indicating a teacher-dominated 
environment. Only 2% of the interactions in the teaching network were reciprocal, in contrast to 15% in the 
collaborative network. Furthermore, the efficiency was higher in the collaborative network (0.64 vs. 0.58). Vul-
nerability (a measure of drop of efficiency on removal of the important actors) was far higher in the teaching 
network, reaching 0.35 compared to 0.02 in the collaborative network. In brief, the teaching network showed 
fewer interactions between participants, was more centralised around the teacher, and was less efficient as a 
communication exchange medium and more vulnerable to the absence of active collaborators. Detailed statistics 
are listed in Table 1.

Rich club phenomena.  The teaching network exhibited the rich club phenomena, where a group of well-
connected students had more connections to each other, than their connections to less connected students. The 
rich-club coefficient (Ø = 0.24, Ønorm = 1.19) was statistically significant and higher compared to a the average of 
0.2 of the random networks (Null model). These values are indicative of a few select group (n = 10) dominating 
the teaching network, while they maintain the interactivity among themselves, they collaborate the least with 
the less interactive students. The collaborative network showed a significant and slightly lower normalized rich 
club coefficient (0.93), indicating a good mixing between users of different connectivity levels, see Table 2 for 
full details.

Figure 3 is a visual plot of both networks, the plot shows that the teaching network has a rich club of strongly 
connected 10 nodes (in blue) mostly centralised around the teacher, and few interactions could be seen between 
the rich club and the peripheral students (in yellow). In the collaborative network, the interactions are distrib-
uted among students, and there are several interconnections between students. The diversity and multiplicity of 

Table 1.   Comparison of the properties of teaching and collaborative networks. T teaching network, 
C collaborative network.

Variables

Baseline Removed teacher Removed 5 members

T C T C T C

Actor count 35 34 30 33 16 29

Edge count 91 183 56 167 17 107

Network density 0.08 0.16 0.05 0.16 0.07 0.13

Mean in-degree/outdegree 2.60 ± 5.60 5.38 ± 3.96 1.65 ± 1.2 5.06 ± 3.54 1.06 + 0.68 3.69 + 2.21

Centralization in-degree 0.95 0.33 0.07 0.35 0.07 0.16

Centralization out-degree 0.28 0.08 0.29 0.09 0.49 0.12

Efficiency 0.58 0.64 0.38 0.63 0.46 0.59

Transitivity 0.21 0.36 0.14 0.34 0.12 0.31

Reciprocity 0.02 0.15 0.00 0.17 0.00 0.15

Vulnerability 0.35 0.03 0.14 0.04 0.52 0.02

Table 2.   Comparison both networks regarding rich club metrics. T. teaching network, C. collaborative 
network. *Statically significant, Ø rich club coefficient, Ønorm normalized rich club coefficient.

Variables

Baseline Removed teacher

T. C. T. C.

Ø (Ønorm) 0.24 (1.19)* 0.33 (0.93)* 0.25 (0.97) 0.32 (0.94)*

Core size 0.29 0.76 0.26 0.67

Rank 10 26 9 22

Degree at the periphery 5 8 4 8
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interconnections among students point to a wider diverse participation, a sign of healthy inter-subjective interac-
tions that encouraged participation. The rich club in the collaborative network includes the majority of students.

RQ2	� What are the dynamics of group member attrition regarding actors and interactions?

A common way to study the sustainability of a social system is to measure the impact of actor withdrawal, 
or sequentially removing important actors (perturbation). This was studied through three steps: firstly by inves-
tigating the effect of teacher absence; secondly by removing the five most active actors (in terms of degree) in 
each network to see how much it impacts each network’s structure and properties; and thirdly, by sequentially 
removing the actors from the most connected to the least connected until all edges are disconnected.

Impact of teacher absence.  Unsurprisingly, the removal of the teacher in the teaching network resulted 
in a marked drop in interactions (− 38%), compared to around (− 6.5%) in the collaborative network. It also 
resulted in four actors getting disconnected, while none were disconnected in the collaborative network. Obvi-
ously, the four disconnected students were interacting with the teacher only. Furthermore, the degree measures 
of interactivity fell markedly in the teaching network. Figure 4 shows a plot of both networks, and reveals a 
marked loss of interaction on the teaching network compared to the collaborative network after removal of the 
teacher (further details are presented in Table 1).

Regarding the rich club property, interestingly, the simulation of removal of the teacher has rendered the 
teaching network not significantly different from what is expected at random. The normalized rich club coeffi-
cient was 0.97; such change may indicate that the rich club phenomena was driven by connections to the teacher. 
Removal of the teacher from the collaborative network did not result in significant differences, the network has 
lower and statistically significant normalized rich club coefficient of 0.94 close to the null model value.

Impact of absence of the most active actors.  Removal of the 5 most connected actors resulted in 
disconnection of 9 others (they were only connected to these 5) and dropped the size of the teaching network 
by 14 actors (− 46.6%) the interactions dropped to just 17 (− 81.32%). In the collaborative network, removal of 
the most connected actors did not lead to the disconnection of any others, and the count of the remaining edges 
was 107 (− 41.53%). The removal impacted the teaching network more in terms of all degree measures, which 
dropped by 59% compared to 31% in the collaborative network. Centralisation measures (which measure how 
centralised the networks are) increased after perturbation in the teaching network, except for in-degree, which 
decreased in both but more markedly in the teaching network due to the previous very high index that was reli-
ant on the teacher who was removed. The transitivity and reciprocity measures were also markedly decreased 
in the teaching network compared to the collaborative network. Interestingly, reciprocity dropped by 2% in the 
collaborative network, while it dropped by 100% in the teaching network. The efficiency of the teaching network 
decreased while its vulnerability increased, compared to a mild decrease in efficiency and decrease in vulner-

Figure 3.   A visual plot of both networks: the teaching network on the left side with a centralised teacher as well 
as a rich club of collaborators (in blue). The collaborative network on the right side showing a more collaborative 
diverse participatory pattern, the rich club (in blue) includes the majority of students. Each circle represents a 
member of the group, blue colour points to members of the rich club, arrows represent direction of interactions, 
the node size is proportional to the degree centrality.
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ability in the collaborative network, reflecting higher robustness of the collaborative network versus the dramatic 
impact on the function and interaction in the teaching network. In brief, the removal of five of the most active 
actors affected the collaborative network much less than it affected the teaching network; in fact, the removal of 
the most active actors resulted in 0% loss of other connected actors, and had only a mild impact on the interac-
tions, keeping the network functioning and interactive. Figure 5 shows the networks after removal of the most 
active actors, and Table 1 shows the full statistics.

Sequential removal.  Sequential removal of most connected users was performed based on two centrality 
measures—degree centrality and betweenness centrality. The teaching network was completely disconnected 
after the removal of 9 actors based on degree of connectivity, in contrast to 27 in the collaborative network. The 
removal of most connected users based on betweenness centrality measures resulted in similar results: an early 
disconnection in the teaching network, while the collaborative network remained active until 80% of actors were 
removed. The two networks were similarly robust to random removal of users, indicating that networks with 
rich clubs may be potentially vulnerable to removal of hubs while robust against random absence of members.

Figure 4.   Removal of the teacher disconnected four students from the teaching network (left), while no 
students were disconnected in the collaborative network (right). Note the drop of interactivity in the teaching 
network.

Figure 5.   The teaching network on the left after removal of the most active students, showing 14 disconnected 
students and very few interactions remaining, in contrast to the collaborative network on the right which shows 
marked interactivity.
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Figure 6 shows the effect of the sequential removal of active actors in both networks; on the left side, the 
connected network size drops to 0 after the removal of 25% of most connected actors, while in the collaborative 
network, the removal of most connected actors was comparable to the random removal of actors (blue line). 

Supplementary Video S1 (left) shows the a time-lapse simulation of sequential removal of most active actors, 
as the video shows, the removal of node 2, makes 4 others disconnected, with the exit of the next actor, other 
actors are consequently disconnected. The network gets completely disconnected in 9 steps. In contrast, in Sup-
plementary Video S2 (right), the removal of the most active actor does not impact the network, and the network 
continues to be connected until the 27th exit of the most active actor.

RQ3	� How predictive of performance are robustness structures and measures in collaborative learning 
environments?

To examine the relationship between social dynamics and performance, we calculated the Spearman’s cor-
relation coefficient between grades and centrality measures. Our findings indicate that there was no statistically 
significant correlation among the grades and the thirteen centrality measures studied in the teaching network. In 
the collaborative network, we found a positive and significant correlation among grades and in-Strength (indegree 
with weight considered in the calculation) r(31) = 0.47, p = 0.01, in-closeness (using interactions towards the 
actor) r(31) = 0.43, p = 0.01, and authority score r(31) = 0.49, p < 0.01. The correlation was moderate in the four 
cases. As these measures are proxy indicators of incoming interactions, they highlight the value of receiving a 
reply from peers: a student receives an incoming connection when she/he contributes a post that stirs discussion, 
debate or value to be replied to. It can be interpreted as a vote by other participants who replied to these posts 
and emphasises quality over quantity in the teaching network. The total laplacian centrality which measures the 
importance in sustaining the structure of the network (or how the network communications will be impacted 
if the user was removed), was positively correlated with better performance rs(31) = 0.37, p = 0.04; this suggests 
that a student’s active role in promoting interactions and linking between group members is also important. In 
the same way, the target entropy centrality, which is a measure of the diversity of neighbours and collaborators, 
was also moderately statistically and positively significant rs(31) = 0.38, p = 0.03. The highest correlation with 
performance was the authority centrality, a measure of the structural importance and the strength of incoming 
connections rs(31) = 0.49, p < 0.01.

Removal of the teacher did not result in significant changes in how network indices predict performance. 
None of the teaching network parameters became correlated with performance and the strength of correla-
tion in the collaborative network remained almost the same or has subtle changes. As such, connections in the 
collaborative network are robust to changes, and continue to predictive of performance even after removal of 
important actors.

See Table 3 for full statistics. In summary, although there are indications that improvements of the network 
structure affects the predictability of performance, the results warrant more research.

Can robustness structures and measures be used to predict performance?.  This step was per-
formed to test whether robustness measures would facilitate the prediction of performance (classify high and 

Figure 6.   Shows the effect of sequential removal of active actors in both networks based on the highest degree 
(green) and highest betweenness centrality (red) compared to random removal (blue). On the left side, the 
connected network size dropped to 0 after the removal of 25% of actors, while in the collaborative network, the 
removal of the most connected actors was comparable to the random removal of actors. The simulation videos 
of the dynamics of sequential removal of the most active actors shows the interactions in each network after 
each removal.
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low achievers) and to assess which predictors are the most significant. We compared the predictive accuracy 
of five common predictive models fed with the quantitative network measures as features. The features were 
ranked using Information gain, Gini coefficient, ANOVA, Chi square, and relief. According to the ranking, 
the robustness-related centrality measures (Laplacian centrality, Page rank, target entropy) were among the top 
predictors of performance, which confirms the results of the correlation tests—that robustness measures could 
be used for predicting performance. These predictors can be added to the predictors that are commonly used 
in learning analytics settings. In the teaching network, the top predictors were clustering coefficient, page rank, 
Out-Strength, closeness in, closeness out, and In-Strength. The full results of ranking are tabulated in Table 4.

The results of the predictive models in Table 5 clearly show that the collaborative network gained a much 
better predictive accuracy of students’ grades. The averaged precision ranged from 0.69 to 0.79 in comparison 
to 0.24 to 0.38; the AUC ranged from 0.69 to 0.76, compared to 0.17 to 0.37.

Discussion
Although the issue of robustness has been extensively studied in other fields21 and social groups83, few studies 
have investigated the role of network methods in analysing the structure and dynamics of robustness in collabo-
rative learning groups11. Understanding the structure or topology of the collaborative group is fundamental for 
understanding collaboration dynamics and interpersonal relationships that that underlies for students’ cognitive 
gains (Kreijns et al. 2013). Networks help to capture the dynamics of interactions within a complex system such 
as a group of people, organisations, and collaborative groups21,49. The study of the robustness of the networks is 
usually performed to improve the function of the current systems, and to design future environments that are 
more sustainable21,61. Collaborative learning networks are no exception; studying and understanding which struc-
ture is more robust against attrition and inactivity would help designers of learning environments, teachers and 

Table 3.   Correlation among grades and centrality measures in both networks at baseline and after the removal 
of the teacher. Bold values are statistically significant at the level of 0.05.

Variables Baseline Removed teacher

Parameter

Teaching Collaborative Teaching Collaborative

rs p rs p rs p rs p

In-strength 0.07 0.67 0.47 0.01 0.09 0.64 0.47  < 0.01

Out-strength 0.20 0.27 0.44 0.07 0.23 0.15 0.45 0.46

In-closeness − 0.34 0.06 0.43 0.01 − 0.30 0.09 0.43 0.04

Out-closeness 0.22 0.23 − 0.12 0.51 0.22 0.19 − 0.09 0.60

Betweenness 0.01 0.95 0.18 0.3 0.03 0.85 0.18 0.31

Authority score − 0.17 0.37 0.49  < 0.01 0.28 0.88 0.46 0.01

Hub score − 0.14 0.42 − 0.004 0.98 0.15 0.37 0.09 0.64

Laplacian centrality 0.21 0.24 0.37 0.04 0.21 0.22 0.36 0.04

Page rank 0.04 0.83 0.48  < 0.01 − 0.13 0.44 0.48  < 0.01

Target entropy 0.07 0.68 0.38 0.03 0.07 0.69 0.38 0.03

Transitivity − 0.34 0.06 − 0.24 0.18 − 0.29 0.20 − 0.06 0.76

Table 4.   Comparison of feature ranking in both networks according to the ranking algorithms (Information 
gain, Gini, ANOVA, χ2 and ReliefF).

Information gain Gini ANOVA χ2 ReliefF

Ranking of features in the collaborative network

Out-strength 0.35 0.19 0.69 2.76 0.03

Page rank 0.31 0.19 1.77 3.63 0.04

In-strength 0.19 0.12 0.98 2.38 0.03

closeness in 0.19 0.11 1.41 4.10 0.02

Laplacian centrality 0.14 0.08 0.28 2.05 0.01

Target entropy 0.09 0.05 2.15 1.75 0.05

Ranking of features in the teaching network

Transitivity 0.07 0.05 0.35 0.01 0.02

Page Rank 0.06 0.04 1.53 0.01  − 0.01

Out-Strength 0.04 0.03 0.01 0.06 − 0.01

Closeness In 0.03 0.02 1.56 0.23 0.00

Closeness Out 0.03 0.02 1.72 0.42 0.03

In-Strength 0.03 0.02 0.02 0.00 − 0.01
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tutors in collaborative learning settings to orchestrate collaborative learning more effectively. Previous research 
on collaborative learning has shown the importance of co-regulating and coordinating collaborative actions and 
relationships in terms of shared goals6,7, however, the problem has been that the inter-subjective processes at the 
foundation of collaborative learning are invisible and dynamic by nature and thus very challenging for teachers 
to facilitate with current instrumentation.

The results of the study shed the light on how certain interaction patterns would help to promote the sus-
tainability of the group, while other interaction patterns would make the group more vulnerable to withdrawal 
and inactivity. A collaborative group where all participants contribute has diversity of interactions and few hubs 
would sustain absence or withdrawal. Similarly, groups that have a few dominant participants or rich clubs who 
maintain the cohesive structure may not be sustainable. Since the teacher and the students were the same in both 
networks, this experiment emphasize that teachers can play different roles, a role that encourages the emergence 
of an interactive few and a segregated others (rich club), and another role where the teacher promotes the forma-
tion of a participatory group that is inclusive to all collaborators and therefore, robust to withdrawal or absence.

While previous studies have shown the importance of collaboration and communications skills2,33, the cur-
rent study takes one step further by simulating the dynamics that make collaborative learning more robust when 
facing withdrawal or lack of activity for any reason, such as conflicts or challenging situations. In the case of the 
two examined groups, the analysis shows the difference of teacher-centred (rich club) network and decentralised 
network structures in collaborative settings. While the rich club group had more interactions and an active mod-
erator who kept students engaged with the task, the network was centralised, and was consequently less robust. 
In terms of developing more robust collaborative structures, the results of the study illustrate the importance 
of equal team member participation, reciprocal relationships and mutual contribution highlighted in previous 
studies concerning collaborative learning and problem solving2,7,33,84. In this context, it appears crucial for the 
teachers to orchestrate, scaffold and encourage shared epistemic agency that fuels and sustains inter-subjective 
interaction and participation. As such, our findings corroborate Curşeu et al. (2012) who emphasise that the 
management of conflicts or withdrawal of peers requires teachers to institute and reinforce specific structures 
for interpersonal interaction. This study points to one such specific structure which is characterised by the 
robustness of the group9.

Another contribution of this study concerns methodological elaborations on current research on collabora-
tive learning and problem solving. Most studies in the education context have looked at a limited number of 
centrality measures; the centrality measures used were mostly those that represent the activity of the learner with 
little relation to the role in the group. For example, degree measures count the direct interactions with peers, 
while ignoring the activity of the group and most importantly the diversity and importance of the collaborator 
in contributing to the diversity of interactions or promoting the group interactivity. Other measures such as 
betweenness and closeness rely on being on the shortest path or the distance to other collaborators45. As such, 
the existing commonly used centrality measures do not capture the role of collaborators in bringing diversity, 
group processing and functioning. The results of this study have shown that Laplacian centrality—which is a 
measure of importance based on the impact on group function upon actor removal—is correlated with better 
performance and among the top features in the performance prediction algorithm. Moreover, target entropy, a 
measure of diversity was correlated and predictive of performance. These findings extend the existing centralities 
to measures that may show a different side of interactivity, and role in group cohesion.

The present study has also visually and mathematically demonstrated the impact and dynamics of absence of 
important actors. Furthermore, it has shown how the seemingly active group could be vulnerable to dysfunction 
if an important actor was removed. The methods used in this study could be implemented in learning manage-
ment systems as part of a visual dashboard. The mathematical properties could also be used to give an accurate 
view of the interaction in collaborating group. Properties such as efficiency, vulnerability and centralization may 
be of great value for teachers and educators, scaffolding the emerging interactions in collaborative group work. 
Moreover, the insights of this study could inform students in the co-regulation of joint efforts in a manner that 
encourage shared responsibility for collaborative efforts while valuing individual contributions. Consequently, 

Table 5.   Comparison of classification and predictive accuracy of predictive algorithms.

Model AUC​ CA F1 Precision Recall

The collaborative network

Naive Bayes 0.76 0.64 0.64 0.69 0.64

Neural network 0.69 0.76 0.75 0.75 0.76

Random forest 0.72 0.76 0.75 0.75 0.76

Tree 0.74 0.79 0.78 0.79 0.79

Logistic regression 0.68 0.67 0.66 0.66 0.67

The teaching network

Naive Bayes 0.29 0.37 0.37 0.37 0.37

Neural network 0.17 0.23 0.24 0.24 0.23

Random forest 0.23 0.33 0.32 0.31 0.33

Tree 0.35 0.40 0.37 0.35 0.40

Logistic regression 0.32 0.43 0.39 0.37 0.43
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the collaborative activities and interactions could be distributed in a less centralised way and create a more 
sustainable learning environment.

Limitations and future directions.  The main limitation of the present study is that simulation is used 
to study the dynamics of withdrawal. However, the use of simulation is well justified as it would ethically prob-
lematic to remove students in collaborative groups in order to investigate the research questions posed. Conse-
quently, in real-life learning situations students may fill the gaps of the absentees or adapt to changes in the group 
dynamics, which this study does not capture.

For future studies, robustness can be studied in terms of how a communication breakdown between two 
members affects the group connectivity. An example of the former is a case of group member leaving; the latter 
is a case of a conflict situation between two group members or a sudden drop in one group member’s activity 
levels. As this paper has studied the removal of nodes (member withdrawal), another approach would be to study 
the withdrawal of edges (members stopping communicating with other). More studies may be needed to test the 
generalisability of the findings of this study in other contexts.

Received: 7 December 2019; Accepted: 17 August 2020

References
	 1.	 Jeong, H. & Hmelo-Silver, C. E. Seven affordances of computer-supported collaborative learning: How to support collaborative 

learning? How can technologies help?. Educ. Psychol. 51, 247–265 (2016).
	 2.	 Dillenbourg, P. What do you mean by collaborative leraning? In Collaborative Learning: Cognitive and Computational Approaches 

(ed. Dillenbourg, P.) 1–19 (Elsevier, Oxford, 1999).
	 3.	 Näykki, P., Järvelä, S., Kirschner, P. A. & Järvenoja, H. Socio-emotional conflict in collaborative learning-A process-oriented case 

study in a higher education context. Int. J. Educ. Res. 68, 1–14 (2014).
	 4.	 Stahl, G., Koschmann, T. & Suthers, D. Computer-supported collaborative learning: An historical perspective. Camb. Handb. 

Learn. Sci. https​://doi.org/10.1145/11247​72.11248​55 (2014).
	 5.	 Prichard, J. S., Bizo, L. A. & Stratford, R. J. The educational impact of team-skills training: Preparing students to work in groups. 

Br. J. Educ. Psychol. 76, 119–140 (2006).
	 6.	 Seitamaa-Hakkarainen, P., Viilo, M. & Hakkarainen, K. Learning by collaborative designing: technology-enhanced knowledge 

practices. Int. J. Technol. Des. Educ. 20, 109–136 (2010).
	 7.	 Damşa, C. I. The multi-layered nature of small-group learning: Productive interactions in object-oriented collaboration. Int. J. 

Comput. Collab. Learn. 9, 247–281 (2014).
	 8.	 Kreijns, K., Kirschner, P. A. & Jochems, W. Identifying the pitfalls for social interaction in computer-supported collaborative 

learning environments: A review of the research. Comput. Hum. Behav. 19, 335–353 (2003).
	 9.	 Curşeu, P. L., Janssen, S. E. A. & Raab, J. Connecting the dots: Social network structure, conflict, and group cognitive complexity. 

High. Educ. 63, 621–629 (2012).
	10.	 Cela, K. L., Sicilia, M. Á & Sánchez, S. Social network analysis in E-learning environments: A preliminary systematic review. Educ. 

Psychol. Rev. 27, 219–246 (2014).
	11.	 Dado, M. & Bodemer, D. A review of methodological applications of social network analysis in computer-supported collaborative 

learning. Educ. Res. Rev. 22, 159–180 (2017).
	12.	 Haya, P. A., Daems, O., Malzahn, N., Castellanos, J. & Hoppe, H. U. Analysing content and patterns of interaction for improving 

the learning design of networked learning environments. Br. J. Educ. Technol. 46, 300–316 (2015).
	13.	 Saqr, M., Fors, U., Tedre, M. & Nouri, J. How social network analysis can be used to monitor online collaborative learning and 

guide an informed intervention. PLoS ONE 13, 1–22 (2018).
	14.	 Kovanovic, V., Joksimovic, S., Gašević, D. & Hatala, M. What is the source of social capital? The association between social network 

position and social presence in communities of inquiry. Proc. Work. Graph-based Educ. Data Min. Educ. Data Min. Conf. 1183, 
1–8 (2014).

	15.	 Saqr, M., Nouri, J. & Jormanainen, I. A Learning Analytics Study of the Effect of Group Size on Social Dynamics and Performance 
in Online Collaborative Learning. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics) (eds. Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A. & Schneider, J.) 11722 LNCS, 
466–479 (Springer International Publishing, 2019).

	16.	 Saqr, M. A literature review of empirical research on learning analytics in medical education. Int. J. Health Sci. (Qassim.) 12, 80 
(2018).

	17.	 Saqr, M., Nouri, J., Fors, U., Nouri, J. & Fors, U. Time to focus on the temporal dimension of learning: A learning analytics study 
of the temporal patterns of students’ interactions and self-regulation. Int. J. Technol. Enhanc. Learn. 11, 398 (2019).

	18.	 Callaway, D. S., Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Network robustness and fragility: Percolation on random graphs. 
Phys. Rev. Lett. 85, 5468–5471 (2000).

	19.	 Tanizawa, T., Paul, G., Cohen, R., Havlin, S. & Stanley, H. E. Optimization of network robustness to waves of targeted and random 
attacks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 3–6 (2005).

	20.	 Iyer, S., Killingback, T., Sundaram, B. & Wang, Z. Attack robustness and centrality of complex networks. PLoS ONE https​://doi.
org/10.1371/journ​al.pone.00596​13 (2013).

	21.	 Barabási, A.-L. Network robustness. Netw. Sci. https​://doi.org/10.1098/rsta.2012.0375 (2015).
	22.	 Borgatti, S. P., Mahra, A., Brass, D. J. & Labianca, G. Network analysis in the social sciences. Science 323, 892–895 (2009).
	23.	 Burt, R. S., Kilduff, M. & Tasselli, S. Social network analysis: Foundations and frontiers on advantage. Annu. Rev. Psychol. 64, 

527–547 (2013).
	24.	 Otte, E. & Ronald, R. SNA A powerful strategy also for the information sciences. J. Inf. Sci. 28, 441–453 (2002).
	25.	 Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
	26.	 Estrada, E., Fox, M., Higham, D. J. & Oppo, G. L. Network science: Complexity in nature and technology. Netw. Sci. Complex. Nat. 

Technol. https​://doi.org/10.1007/978-1-84996​-396-1 (2010).
	27.	 Schunk, D. H. Social cognitive theory and self-regulated learning. In Self-regulated Learning and Academic Achievement (eds 

Zimmerman, B. & Schunk, D. H.) 83–110 (Springer, New York, 1989).
	28.	 John-Steiner, V. & Mahn, H. Sociocultural approaches to learning and development: A Vygotskian framework. Educ. Psychol. 31, 

191–206 (1996).
	29.	 Stahl, G. Group cognition in computer-assisted collaborative learning. J. Comput. Assist. Learn. 21, 79–90 (2005).

https://doi.org/10.1145/1124772.1124855
https://doi.org/10.1371/journal.pone.0059613
https://doi.org/10.1371/journal.pone.0059613
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1007/978-1-84996-396-1


15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14445  | https://doi.org/10.1038/s41598-020-71483-z

www.nature.com/scientificreports/

	30.	 Garrison, D. R. Online community of inquiry review: Social, cognitive, and teaching presence issues. J. Asynchronous Learn. Netw. 
11, 61–72 (2007).

	31.	 Lin, N. Building a network theory of social capital. Connections 22, 28–51 (1999).
	32.	 Siemens, G. Connectivism: A learning theory for the digital age. Int. J. Instrum. Technol. Distance Learn. 1, 1–8 (2014).
	33.	 Järvelä, S. et al. Enhancing socially shared regulation in collaborative learning groups: Designing for CSCL regulation tools. Educ. 

Technol. Res. Dev. 63, 125–142 (2014).
	34.	 Chen, J., Wang, M., Kirschner, P. A. & Tsai, C. C. The role of collaboration, computer use, learning environments, and supporting 

strategies in CSCL: A meta-analysis. Rev. Educ. Res. 88, 799–843 (2018).
	35.	 Bernard, R. M. et al. A meta-analysis of three types of interaction treatments in distance education. Rev. Educ. Res. 79, 1243–1289 

(2009).
	36.	 Borokhovski, E., Bernard, R. M., Tamim, R. M., Schmid, R. F. & Sokolovskaya, A. Technology-supported student interaction in 

post-secondary education: A meta-analysis of designed versus contextual treatments. Comput. Educ. 96, 15–28 (2016).
	37.	 Wecker, C. & Fischer, F. Where is the evidence? A meta-analysis on the role of argumentation for the acquisition of domain-specific 

knowledge in computer-supported collaborative learning. Comput. Educ. 75, 218–228 (2014).
	38.	 Weinberger, A. & Fischer, F. A framework to analyze argumentative knowledge construction in computer-supported collaborative 

learning. Comput. Educ. 46, 71–95 (2006).
	39.	 Kreijns, K., Kirschner, P. A. & Vermeulen, M. Social aspects of CSCL environments: A research framework. Educ. Psychol. 48, 

229–242 (2013).
	40.	 Saqr, M. & Alamro, A. The role of social network analysis as a learning analytics tool in online problem based learning. BMC Med. 

Educ. 19, 1–11 (2019).
	41.	 Saqr, M., Fors, U. & Nouri, J. Using social network analysis to understand online problem-based learning and predict performance. 

PLoS ONE 13, e0203590 (2018).
	42.	 Hernández-García, Á, González-González, I., Jiménez-Zarco, A. I. & Chaparro-Peláez, J. Applying social learning analytics to 

message boards in online distance learning: A case study. Comput. Hum. Behav. 47, 68–80 (2015).
	43.	 Hong, H.-Y., Scardamalia, M. & Zhang, J. Knowledge society network: Toward a dynamic, sustained network for building knowl-

edge. Can. J. Learn. Technol. Rev. https​://doi.org/10.21432​/T2MG6​P (2010).
	44.	 Liu, Z., Kang, L., Su, Z., Liu, S. & Sun, J. Investigate the relationship between learners’ social characteristics and academic achieve-

ments. in Journal of Physics: Conference Series, Vol. 1113, (Institute of Physics Publishing, 2018).
	45.	 Liao, H., Mariani, M. S., Medo, M., Zhang, Y. C. & Zhou, M. Y. Ranking in evolving complex networks. Phys. Rep. 689, 1–54 (2017).
	46.	 Lü, L. et al. Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016).
	47.	 Mennin, S. Small-group problem-based learning as a complex adaptive system. Teach. Teach. Educ. 23, 303–313 (2007).
	48.	 Malmberg, J., Järvelä, S., Järvenoja, H. & Panadero, E. Promoting socially shared regulation of learning in CSCL: Progress of socially 

shared regulation among high- and low-performing groups. Comput. Hum. Behav. 52, 562–572 (2015).
	49.	 Rogers, E. M., Medina, U. E., Rivera, M. A. & Wiley, C. J. Complex adaptative systems and the diffusion of innovations. Innov. J. 

Public Sect. Innov. J. 10, 1–26 (2005).
	50.	 Borgatti, S. P. & Everett, M. G. Models of corerperiphery structures. Soc. Netw. 21, 375–395 (2000).
	51.	 Zhou, S. & Mondragón, R. J. The rich-club phenomenon in the internet topology. IEEE Commun. Lett. 8, 180–182 (2004).
	52.	 Colizza, V., Flammini, A., Serrano, M. A. & Vespignani, A. Detecting rich-club ordering in complex networks. Nat. Phys. 2, 110–115 

(2006).
	53.	 Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in science. Proc. Natl. Acad. Sci. U.S.A. 112, 14760–14765 

(2015).
	54.	 Vaquero, L. M. & Cebrian, M. The rich club phenomenon in the classroom. Sci. Rep. 3, 1174 (2013).
	55.	 Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Compl. Syst. 1695, 1 (2006).
	56.	 Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991).
	57.	 Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Third Inter-

national AAAI Conference on Weblogs and Social Media (2009).
	58.	 Borgatti, S. P. & Halgin, D. S. On network theory. Organ. Sci. 22, 1168–1181 (2011).
	59.	 Boldi, P., Rosa, M. & Vigna, S. Robustness of social networks: Comparative results based on distance distributions. Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6984, 8–21 (2011).
	60.	 Gunasekara, R. C., Mehrotra, K. & Mohan, C. K. Robustness Measures for Social Networks. 3–9 (2012).
	61.	 Ellens, W. & Kooij, R. E. Graph measures and network robustness. (2013).
	62.	 Salter-Townshend, M., White, A., Gollini, I. & Murphy, T. B. Review of statistical network analysis: Models, algorithms, and 

software. Stat. Anal. Data Min. 5, 243–264 (2012).
	63.	 Borgatti, S. P. & Everett, M. G. A graph-theoretic perspective on centrality. Soc. Netw. 28, 466–484 (2006).
	64.	 Musiał, K., Kazienko, P. & Bródka, P. User position measures in social networks. 3rd SNA-KDD Work. 09, 1–9 (2009). https​://doi.

org/10.1145/17310​11.17310​17
	65.	 Block, P. Reciprocity, transitivity, and the mysterious. Soc. Netw. 40, 163–173 (2015).
	66.	 Ergün, E. & Usluel, Y. K. An analysis of density and degree-centrality according to the social networking structure formed in an 

online learning environment. Educ. Technol. Soc. 19, 34–46 (2016).
	67.	 Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. https​://doi.org/10.1103/PhysR​evLet​

t.87.19870​1 (2001).
	68.	 Latora, V. L. & Marchiori, M. A measure of centrality based on network efficiency. New J. Phys. 9, 188 (2007).
	69.	 Bian, T., Hu, J. & Deng, Y. Identifying influential nodes in complex networks based on AHP. Phys. A Stat. Mech. Appl. 479, 422–436 

(2017).
	70.	 Maslov, S., Sneppen, K. & Zaliznyak, A. Detection of topological patterns in complex networks: Correlation profile of the internet. 

Phys. A Stat. Mech. Appl. 333, 529–540 (2004).
	71.	 Ma, A. & Mondragón, R. J. Rich-cores in networks. PLoS ONE 10, 1–13 (2015).
	72.	 Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of layered complex networks. Phys. Rev. E Stat. Nonlinear Soft 

Matter Phys. 76, 378–381 (2007).
	73.	 Moore, C., Grewar, J. & Cumming, G. S. Quantifying network resilience: Comparison before and after a major perturbation shows 

strengths and limitations of network metrics. J. Appl. Ecol. 53, 636–645 (2016).
	74.	 Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71 (2005).
	75.	 Qi, X., Fuller, E., Wu, Q., Wu, Y. & Zhang, C. Q. Laplacian centrality: A new centrality measure for weighted networks. Inf. Sci. 

(N.Y.) 194, 240–253 (2012).
	76.	 Sneppen, K., Trusina, A. & Rosvall, M. Hide-and-seek on complex networks. Europhys. Lett. 69, 853–859 (2005).
	77.	 Borgatti, S. P. & Jones, C. Network measures of social capital. Connections 21, 27–36 (1998).
	78.	 Bruun, J., Brewe, E., Bruun, J. & Brewe, E. Talking and learning physics: Predicting future grades from network measures and force 

concept inventory pretest scores. Phys. Rev. Spec. Top. Phys. Educ. Res. 9, 020109 (2013).
	79.	 R Core Team. R: A Language and Environment for Statistical Computing (2018).
	80.	 Jalili, M. et al. CentiServer: A comprehensive resource, web-based application and r package for centrality analysis. PLoS ONE 10, 

e0143111 (2015).

https://doi.org/10.21432/T2MG6P
https://doi.org/10.1145/1731011.1731017
https://doi.org/10.1145/1731011.1731017
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1103/PhysRevLett.87.198701


16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:14445  | https://doi.org/10.1038/s41598-020-71483-z

www.nature.com/scientificreports/

	81.	 Watson, C. G. brainGraph: Graph Theory Analysis of Brain MRI Data. (2018).
	82.	 Demšar, J. et al. Orange: Data mining toolbox in Python. J. Mach. Learn. Res. 14, 23492353 (2013).
	83.	 Mertens, F., Saint-Charles, J., Lucotte, M. & Mergler, D. Emergence and robustness of a community discussion network on mercury 

contamination and health in the Brazilian Amazon. Health Educ. Behav. 35, 509–521 (2008).
	84.	 Hung, W., Jonassen, D. H. & Liu, R. Problem-based learning. Handb. Res. Educ. Commun. Technol. 3, 485–506 (2008).

Author contributions
M.S. and J.N. conceptualized the paper, M.S., J.N., M.T. and H.V. authors contributed to design, writing and 
revising the manuscript, M.S. and J.N. did reported the results, and M.S. prepared the figures and the tables.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-71483​-z.

Correspondence and requests for materials should be addressed to M.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-71483-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Robustness and rich clubs in collaborative learning groups: a learning analytics study using network science
	Anchor 2
	Anchor 3
	Background
	Networks and robustness. 
	Robustness, collaboration and students’ learning. 
	Robustness and group function. 
	Rational and aim. 

	Methods
	Context. 
	Data collection. 
	Network analysis. 
	Visual analysis. 
	Mathematical network analysis. 
	Network level. 
	Student level. 


	Statistical analysis. 
	Ethics. 

	Results
	Rich club phenomena. 
	Impact of teacher absence. 
	Impact of absence of the most active actors. 
	Sequential removal. 
	Can robustness structures and measures be used to predict performance?. 

	Discussion
	Limitations and future directions. 

	References


