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Abstract

Background: The effect of heat stress on livestock production is a worldwide issue. Animal performance is
influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment
interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to
(1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental
temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify
genomic regions associated with heifer fertility and heat tolerance in Holstein cattle.

Results: Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service,
and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15
herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative
humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30
days before the first service for age at first calving and interval from first to last service, or 10 days before and less
than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected
for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and
minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1,
KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC,
and GUCY1B1 are strong candidates for association with heat tolerance.
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Conclusions: The critical periods in which the reproductive performance of heifers is more sensitive to heat stress
are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other
fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in
dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive
efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat
stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle.
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Background
In modern dairy cattle farms, female fertility is of great
importance, due to its close relationship with reproduct-
ive management, veterinary treatments, involuntary cul-
ling and, consequently, the farm profitability [1].
However, as widely emphasized in previous studies [2–
4], the low heritability estimates for fertility traits and
unfavorable genetic correlations with milk production
traits have led to reduced genetic progress in female fer-
tility. Moreover, the increase of joint genetic evaluation
(and breeding) across farms located in various geograph-
ical regions emphasizes the role that genotype-by-
environment interactions (G × E) [5] might play, and
consequently, selection of animals (especially bulls) that
have progeny with high performance even in challenging
environments. Significant G × E for female fertility traits
have been detected in several Holstein populations
around the world, where the “E” were the production
system and grass ratio of feed [6], and herd reproduction
level [7]. However, the investigation of other important
environmental indicators such as climatic variables re-
main scarce.
With global warming and climatic change, heat stress

has become an issue for livestock production in many
countries around the world [8]. The temperature and
humidity index (THI) is often used as an environmental
indicator to assess heat stress conditions in dairy cattle
[9]. It is widely accepted that dairy cows start to experi-
ence mild heat stress when THI surpasses 72 [10]. Stud-
ies of the North American Holstein population have
shown that heat conditions can lead to 165 kg loss of
milk yield annually and 0.4% reduction in milk fat per-
centage [11, 12], 0.85 kg decrease in feed intake with one
unit increase in air temperature [13], and about 15% de-
crease in conception rate when THI surpasses 72 [14].
The average daily THI in many regions of the world

exceed 72 throughout most summer period days, indi-
cating that dairy cattle located in these regions may suf-
fer from mild to severe heat stress [15]. For instance, in
Beijing (China), THI fluctuates substantially within a
day, that is, extremely high THI in the afternoon and
dramatically falls to a thermoneutral level in the evening.
The difference in hourly THI within a day can be up to

30 THI units during the late summer, but the daily aver-
age is usually only relatively “mild” (Suppl. File 1). In this
case, simply using the daily average of THI may lead to
the underestimation of the impact of heat stress. In
addition to the timing of the day, for dairy cows, the
time of its reproductive period may also influence the
response to heat stress. Fertility performance may be
compromised when an animal experiences heat stress in
certain physiological stages. Several studies have demon-
strated that the conception rate of dairy cows decreased
when they experienced heat stress before and after in-
semination [16–18], which highlights the role of the crit-
ical period of exposure to heat conditions. To the best of
our knowledge, no studies have identified the most influ-
ential (critical) period for fertility traits due to their com-
plex characteristics. However, this is of utmost value for
incorporating G × E models in genetic and genomic eval-
uations for improved fertility.
Reaction norm models (RNM) are widely used to detect

G × E when the differences in environments can be mea-
sured by a continuous environmental gradient (EG) [5]. In
RNM, the breeding value of an animal is partitioned into
an environment-independent part (intercept) and an
environment-dependent part (slope). The relationship
matrix of the RNM can be structured either by pedigree
and using the pedigree-based Best Linear Unbiased Pre-
diction (BLUP), or by combining both pedigree and gen-
omic information and using the single-step genomic
BLUP (ssGBLUP) method [19, 20]. On the basis of
ssGBLUP, Wang et al. [21] proposed a method termed
single-step GWAS (ssGWAS) to obtain genomic marker
effects from genomic estimated breeding values (GEBV).
Markers related to the intercept and slope of the reaction
norms can be mapped by applying ssGWAS procedures.
The main objectives of this study were to: (1) explore

the most heat-sensitive periods for three heifer fertility
traits: age at first calving – AFC, interval from first to
last service – IFL, and conception rate of first service –
CR; (2) detect G × E for heifer fertility traits using RNM
with pedigree-genomic combined relationship matrix;
and (3) unravel genomic regions contributing to heat
tolerance and heifer fertility traits in high-producing
Holstein cattle.
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Results
Descriptive statistics
The summary statistics for heifer fertility traits are
shown in Table 1. Large phenotypic variation was de-
tected, especially for IFL (coefficient of variation equals
to 1.89) and CR (coefficient of variation equals to 0.83).
The genetic parameters estimated using the conven-
tional animal model, which were relatively low, are also
provided in Table 1.

Critical period selection for each environmental gradient
scenario
Two heat related EGs were used in the current study: 1)
the number of days that exceeded the THI threshold in
the evaluated critical period (prop-EG); 2) the minimum
THI for each day of the candidate period (mTHI-EG).
To avoid the underestimation of the heat stress effect,
the days in which the hourly THI was higher than 72 for
six continuous hours were considered as heat-stress days
for prop-EG. The Akaike Information Criterion (AIC)
[22] was obtained for various time combinations to se-
lect the best fit period for each trait.
The critical periods (Fig. 1) selected for each trait and

EG under scenario one (S1) and scenario two (S2) are
listed in Table 2. The same 60 days, from 30 days before
the first insemination to 30 days after the first insemin-
ation, were chosen as the control period for S1. For S2,
critical periods ranged from 30 to 70 days, of which only
the period (− 90, − 30) for IFL was the same for both
EGs. Only the critical periods of CR end after the first
service (60 or 30 days). The detailed results of the AIC
values for the 19 tested combinations are presented in
Supp. File 2.
The definitions of two types of EGs had some overlaps.

For example, prop-EG would be recorded as 1 if mini-
mum THI of all the days in critical period were above
67.02 (Table 3). To calculate the overlap rate between
prop-EG and mTHI-EG, top animals sorted by genomic
estimated breeding values (gEBV), with estimation ac-
curacy greater than 0.4 (average accuracy for the three
traits), were chosen for each trait with regards to each
EG. When using the H matrix (hybrid pedigree-genomic
relationship matrix), approximately 75% of the heifers
were the same in both scenarios for AFC and IFL, but
relatively low (29.63% ~ 65.82%) overlap rates were

observed in CR (Table 3). Similar results were found
when using the (pedigree-based) A matrix (Supp. File 3).

(co) variance components and G × E
The estimates of (co) variance components obtained
from RNMs with different kinship matrices (A or H)
were similar for all traits analyzed. The correlation coef-
ficients between the intercept and slope for each trait
were all negative and ranged from − 0.25 (IFL in S1 of
prop-EG) to − 0.98 (CR in both S1 and S2 of mTHI-EG)
when using the H matrix (Table 4). Furthermore, the ab-
solute value of coefficients estimated using prop-EG
were relatively smaller than those using mTHI-EG, espe-
cially for AFC and IFL. The genetic parameters esti-
mated based on the A matrix are shown in Supp. File 4.
Heritabilities estimated from genomic RNM using

prop-EG and mTHI-EG are presented in Fig. 2. Gener-
ally, AFC had the highest heritability estimates, whereas
CR was the least heritable across all EGs. The pattern of
the heritability curves were similar when using different
relationship matrices but differed across EGs. The curve
patterns were quadratic for mTHI-EG, indicating that
the highest heritabilities were generally observed in ei-
ther cold (mTHI-EG < 20) or heat-stress environments
(mTHI-EG > 72). However, the patterns were flatter
when prop-EG was used, and the highest heritabilities
only appeared in heat stress conditions. Similar curve
patterns were observed when using the A matrix (Suppl
File 5).
As shown in Table 4, the variance of the slope for all

traits was significantly different from zero based on a
one-tailed test (P < 0.01), indicating the existence of G ×
E. Genetic correlations between different EGs, from
RNM with the H matrix, are shown in Fig. 3. In general,
the more divergent EGs were less correlated. More nega-
tive coefficients of correlation were obtained for AFC
and IFL when the mTHI-EG was used in comparison to
prop-EG. This is consistent with much stronger correl-
ation between the intercept and slope being observed
when using mTHI-EG as EG compared to using prop-
EG as EG. Similar patterns were also observed when fit-
ting the A matrix (Suppl File 6).
Among the top sires with more than 20 daughters with

phenotypes, the number of sires overlapping across the
two EGs, reflecting the magnitude of the re-ranking of
sires, are listed in Table 5. The number of common sires

Table 1 Descriptive statistics of heifer fertility traits and genetic parameters estimated using pedigree-based animal models

Traita N Mean SD CV Min Max σ2a(SE) σ2e (SE) h2(SE)

AFC (days) 56,998 769.05 74.06 0.10 505 1100 794.40 (54.27) 4035.00 (46.35) 0.16 (0.011)

IFL (days) 56,998 29.25 55.17 1.89 0 365 190.42 (22.33) 2740.10 (23.82) 0.06 (0.007)

CR (0 or 1 scale) 56,998 0.59 0.49 0.83 0 1 6.61e-3 (1.11e-3) 2.16e-1 (1.57e-3) 0.03 (0.005)
a AFC Age at first calving, IFL Interval from first to last service, CR Conception rate of first service
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decreased as the EGs became more divergent, especially
for CR (e.g., from 11 to 1 in S2 of prop-EG). The magni-
tude of re-ranking increased when using mTHI-EG (only
3 common sires across all environmental combinations).
We further visualized breeding value re-ranking by

plotting gEBV of sires with the most preferential inter-
cepts (gEBV less than average minus two times standard
deviation for AFC and IFL; gEBV greater than average
plus two times standard deviation for CR) in Fig. 4. The
top 5 sires with the flattest slopes (more climatic resili-
ent) were drawn in red, while the top 5 sires with the
steepest slopes (more climatic sensitive) were drawn in
blue. In this case, sires that are sensitive to the environ-
ments (blue lines), would perform worse than those with
flat slopes (red lines) under heat stress conditions. For
instance, the gEBV of CR is 0.10 when prop-EG is 0, but

the gEBVs for blue lines decreased to around − 0.15
when prop-EG is 1. Meanwhile, the gEBVs of the red
lines were stable along the whole prop-EG (Fig. 4a). This
further verified the existence of G × E regarding the
change of mTHI-EG and/or prop-EG. Larger changes
were observed for gEBVs when using mTHI-EG. Imple-
menting mTHI-EG, gEBVs of IFL for two bulls increased
from around − 50 day in thermoneutral condition to 0
day in heat stress condition (Fig. 4c-d), which is nearly
twice the change as gEBVs using prop-EG.

Single-step genome-wide association analyses
Overall, similar genomic regions were detected to be as-
sociated with the same trait when using two scenarios of
prop-EG, especially for CR (Figs. 5 and 6). For S1, nine
regions were shared for both the intercept and the slope
for AFC, among which two (from 26,669,442 to 26,802,
092 and from 26,803,676 to 26,880,091 bp) were located
in BTA14 and three regions (from 24,762,252 to 25,487,
353 bp, from 106,901,044 to 106,946,812 bp, and from
106,948,226 to 106,980,536 bp) in BTA5, respectively.
The overlapping region that explained the highest aver-
age variance (0.92% for the intercept and 2.30% for the
slope) was in BTA14 (from 26,803,676 to 26,927,342 bp).
Similarly, the same region (from 26,821,555 to 26,899,
089 bp), which is one of the four shared genomic win-
dows, explained 1.12 and 0.91% genetic variance for the
intercept and slope of IFL, respectively. For CR, 17 re-
gions were in common when using THI or prop-EG var-
iables in RNM, and a narrower region (from 26,819,709
to 26,888,221 bp) in BTA14, which explained 1.83 and
1.72% genetic variance for the intercept and slope, re-
spectively, was located in the same region detected in
AFC and IFL.
The genomic windows explaining the highest variance

were not connected for AFC and IFL under S2. How-
ever, the genomic region from 26,819,709 to 26,887,021
bp that explained the highest proportion of the total
additive genetic variance (2.38 and 2.29% for the inter-
cept and slope, respectively) for CR, was still located in
BTA14. We detected 21 overlapping genomic windows

Fig. 1 Reproductive events and the definition of critical period in heifers. The red rectangle represents the critical period, defined as the time
period for which heifers are likely to suffer from heat stress. AFC = age at first calving, IFL = interval from first to last service, CR = conception rate
of first service

Table 2 The critical periods selected for each fertility trait and
environmental gradient (EG) scenario

EGa Traitb Scenarioc Number of days Periodd

Prop-EG AFC S1 60 (−30, 30)

S2 60 (−90, −30)

IFL S1 60 (−30, 30)

S2 60 (−90, −30)

CR S1 60 (−30, 30)

S2 70 (−10, 60)

mTHI-EG AFC S1 60 (−30, 30)

S2 30 (−90, −60)

IFL S1 60 (−30, 30)

S2 60 (−90, −30)

CR S1 60 (−30, 30)

S2 40 (−10, 30)
a prop-EG The number of days that exceeded the threshold temperature
humidity index in the period, mTHI-EG Minimum temperature-humidity index
for each day of the period
b AFC Age at first calving, IFL Interval from the first to last service, CR
Conception rate of first service
c S1 control critical period, S2 periods selected based on the Akaike’s
information criterion
d Periods were counted based on the first service day; minus means before
and plus means after
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for CR between two variables, which is more than de-
tected for AFC and IFL (4 and 13, respectively).
More shared genomic regions were detected when the

same variables (the intercept or slope) of the two scenar-
ios were tested. For AFC and IFL, more than 10 genomic
areas were connected, although they did not explain the
largest amount of the total additive genetic variance.
However, the longest shared region in BTA14 was still
detected for both the intercept (from 26,819,709 to 26,
887,021 bp) and the slope (from 26,821,555 to 26,888,
221 bp) for CR. Similarly, more than 25 overlapping gen-
omic regions were mapped for each variable of CR.
The Manhattan plots of mTHI-EG are provided in

Supp. Files 7 and 8. Basically, more shared regions were
mapped when using mTHI-EG compared to prop-EG,
but the most associated genomic regions for each trait

were found to be distributed across different chromo-
somes. Detailed information for genomic regions is listed
in Supp. Files 9 and 10.
The mapped positional candidate genes are shown in

Table 6 and Supp. Files 9 and 10. Candidate genomic re-
gions of the intercept term were previously linked to
several types of quantitative trait loci (QTL) such as milk
kappa-casein percentage, metabolic body weight, average
daily gain, length of productive life, dry-matter intake,
conception rate, and pregnancy rate (Supp. Files 9 and
10). Most of the mapped QTLs are associated with pro-
duction traits, and the rest are associated with
reproduction, health, and meat/carcass traits. The identi-
fied biological processes (P < 0.05) related to heifer
reproduction were: developmental process involved in
reproduction, oocyte maturation, oocyte development,

Table 3 The proportion of overlapped top 1% heifersa when using prop-EG and mTHL-EG as environmental gradients (EGs) in
reaction norm models (RNM) with the H matrix in Holstein cattle

EGb AFCc IFL CR

Prop-EG mTHI-EG S1d S2 S1 S2 S1 S2

0.2 43.03 76.47% 82.69% 72.92% 64.37% 29.63% 36.63%

0.4 48.29 84.57% 87.35% 81.24% 77.69% 59.60% 51.50%

0.6 52.34 88.24% 82.02% 85.68% 78.91% 65.82% 60.93%

0.8 55.54 83.02% 75.47% 80.69% 75.47% 65.70% 62.93%

1 67.02 82.24% 76.03% 79.69% 74.92% 64.04% 60.27%
a Heifers were selected based on gEBV and accuracy of estimation (> 0.4)
b prop-EG using the number of days that exceeding the threshold temperature humidity index in the period as EG, mTHI-EG using the minimum temperature
humidity index of a day of the critical period as EG
c AFC Age at first calving, IFL Interval from the first to last service, CR Conception rate of first service
d S1 reference period, S2 periods selected based on the Akaike’s information criterion

Table 4 Variances of the intercept (σ2a0 ) and slope (σ2a1 ), the covariance between the intercept and slope (σa0a1 ), residual variance (σ2e

), and genetic correlation between the intercept and slope (ra0a1 ), with their standard errors in parentheses, estimated using reaction

norm models with H matrix in Holstein cattle

EGa Traitb Scenarioc σ2a0 σ2a1 σa0a1 σ2e ra0a1

Prop-EG AFC S1 971.97 (62.74) 0.53 (0.05) −9.62 (1.41) 3413.70 (45.80) −0.43 (0.02)

S2 963.72 (60.99) 0.96 (0.06) −14.05 (1.62) 3203.00 (44.60) −0.46 (0.01)

IFL S1 218.16 (26.82) 0.25 (0.03) −1.80 (0.68) 2456.90 (25.14) −0.25 (0.03)

S2 236.35 (27.59) 0.51 (0.03) −4.98 (0.87) 2323.10 (24.76) −0.46 (0.02)

CR S1 1.01e-2 (1.60e−3) 1.60e-5 (2.00e-6) -3.35e-4 (5.20e-5) 1.99e-1 (1.61e-03) −0.83 (0.05)

S2 1.12e-2 (1.71e−3) 1.30e-5 (2.00e-6) -3.23e-4 (4.70e-5) 1.98e-1 (1.62e-3) −0.84 (0.05)

mTHI-EG AFC S1 2735.10 (233.57) 1.37 (0.12) −51.60 (5.10) 3396.80 (45.06) −0.84 (0.03)

S2 3950.90 (271.77) 2.06 (0.12) − 81.46 (5.69) 3194.70 (43.73) −0.90 (0.03)

IFL S1 1073.60 (126.34) 0.78 (0.07) −26.15 (2.92) 2417.70 (25.10) −0.90 (0.04)

S2 1591.40 (143.27) 1.24 (0.08) −41.85 (3.35) 2309.10 (24.37) −0.94 (0.03)

CR S1 7.78e-2 (9.60e-3) 4.30e-5 (5.00e-6) −1.81e-3 (2.14e-4) 1.99e-1 (1.58e-3) −0.98 (0.06)

S2 8.90e-2 (1.03e-2) 4.50e-5 (5.00e-6) −1.96e-3 (2.19e-4) 1.98e-1 (1.59e-3) −0.98 (0.05)
a prop-EG the number of days that exceeding the threshold temperature humidity index in the period, mTHI-EG Minimum temperature humidity index for each
day of the period
b AFC Age at first calving, IFL Interval from the first to last service, CR Conception rate of first service
c S1 reference period, S2 periods selected based on the Akaike’s information criterion
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Fig. 2 Heritabilities estimated based on reaction norm models with the matrix H for different traits using a prop-EG or b mTHI-EG as
environmental gradient. For a, the x-axis is the proportion of days exceeding the threshold with a range of 0 to 1; while for b, the x-axis is the
minimum THI with a range of 15 to 75

Fig. 3 Genetic correlations estimated by reaction norm models (RNMs) with the matrix H. The color indicates the magnitude of the genetic
correlation. a Correlations between different levels of prop-EG estimated from RNM under S1. The x-axis and y-axis are the proportion of days
exceeding the threshold, ranging from 0 to 1. b Correlations between different levels of prop-EG estimated from RNM under S2. The x-axis and y-
axis are the proportion of days exceeding the threshold, ranging from 0 to 1. c Correlations between different levels of mTHI-EG estimated from
RNM under S1. The x-axis and y-axis are the minimum THI, ranging from 15 to 75. d Correlations between different levels of mTHI-EG estimated
from RNM under S2. The x-axis and y-axis are the minimum THI, ranging from 15 to 75
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Table 5 The number of common animals among the top 50 sires between 2 levels of environmental gradients (EGs)

EGa Traitb Scenarioc 1 vs. 99%d 5 vs. 95% 10 vs. 90% 25 vs. 75%

Prop-EG AFC S1 18 20 21 28

S2 13 14 17 28

IFL S1 18 20 21 29

S2 12 14 17 27

CR S1 0 0 1 7

S2 1 1 3 11

mTHI-EG AFC S1 5 8 15 25

S2 3 4 9 24

IFL S1 3 5 6 22

S2 0 0 2 22

CR S1 0 0 0 3

S2 0 0 0 3
a prop-EG the number of days that exceeding the threshold temperature humidity index in the period, mTHI-EG minimum temperature humidity index for each
day of the period
b AFC Age at first calving, IFL Interval from the first to last service, CR Conception rate of first service
c S1 Reference period, S2 periods selected based on the Akaike’s information criterion
d the number of overlapping animals in the top sires in the 1 and 99%, 5 and 95%, 10 and 90%, and 25 and 75% quantiles of EGs

Fig. 4 The re-ranking plots for gEBVs of sires. The blue and red lines represent sensitive and resilient sires, respectively. a Re-ranking plots for three traits
estimated using prop-EG under S1. The x-axis is the proportion of days exceeding the threshold with a range of 0 to 1 and y-axis is gEBV of sire. b Re-
ranking plots for three traits estimated using prop-EG under S2. The x-axis is the proportion of days exceeding the threshold with a range of 0 to 1 and y-
axis is gEBV. c Re-ranking plots for three traits estimated using mTHI-EG under S1. The x-axis is the minimum THI with a range of 15 to 75 and y-axis is
gEBV. d Re-ranking plots for three traits estimated using mTHI-EG under S2. The x-axis is the minimum THI with a range of 15 to 75 and y-axis is gEBV
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oocyte differentiation, oogenesis, placenta blood vessel
development, and embryo development. Two identified
pathways were related to stress response: regulation of
response to stress and response to oxidative stress.
Other pathways included muscle and body development.
Candidate genomic regions of the slope term have

been previously linked to a variety of trait groups, in-
cluding luteal activity, body weight, stillbirth, and
many milk-related QTLs. Similarly, most of the QTLs
identified were associated with milk production traits
as most of the QTLs overlapped between the two
genetic terms. The reproductive biological processes

identified (P < 0.05) using the slope term were: repro-
ductive processes, fertilization, sexual reproduction,
granulosa cell differentiation, oocyte development, ac-
rosome reaction, oocyte differentiation, and regulation
of luteinizing hormone secretion (Supp. Files 9 and
10). Additionally, more potential stress-related path-
ways were identified such as response to abiotic
stimulus, detection of stimulus involved in sensory
perception, response to temperature stimulus, re-
sponse to radiation, negative regulation of saliva se-
cretion, aerobic respiration, and energy derivation by
oxidation of organic compounds.

Fig. 5 Percentage of the intercept and slope genetic variances explained by a sliding window of 20 SNPs for three fertility traits, which were
estimated under scenario one of prop-EG. The x-axis is autosome segments; the y-axis represents the proportion of explained variances; the grey
horizontal lines are thresholds (top 0.5%) for candidate genomic regions; and different color sets for the less relevant genomic markers indicate
different traits
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Cluster analysis for SNP effect trajectories
The pattern of SNP effects over different EGs of each
trait, scenario, and cluster (C1, C2 or C3) are shown in
Fig. 7. The SNP effects remained at a specific level
within each trait, and the effects for CR were almost 100
times less than those for AFC and IFL. The magnitude
of SNP effects changes were higher for S2 (red lines) in
all traits and EGs in C1 and C2, whereas the SNP effects
in C3 were similar in each trait and scenario. The cross
point of different clusters appeared later when mTHI-

EG was used. Furthermore, lower standard deviations
were observed for CR in different scenarios and clusters.
Approximately 50 common genes were identified in

C1 and C2, whereas 10 or 17 shared genes were detected
in C3. However, over 330 positional genes were detected
for each trait in C3, which is nearly twice the number of
genes mapped in C1 and C2 (Fig. 8). Additionally, the
number of common genes between AFC and IFL was
found to be higher than those shared with CR in C1 and
C2. A total of 149 common genes were identified in

Fig. 6 Percentages of the intercept and slope genetic variances explained by a sliding window of 20 SNPs for three traits, which were estimated
under scenario two of prop-EG. The x-axis is autosome segments; the y-axis represents the proportion of explained variances; the grey horizontal
lines are thresholds (top 0.5%) for candidate genomic regions; and different color sets for the less relevant genomic markers indicate
different traits
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different clusters, among which 50 genes overlapped be-
tween prop-EG and mTHI-EG.

Discussion
Heritabilities estimated from the conventional animal
model
The heritability estimates (SE) were 0.03 (0.005) for CR,
0.06 (0.007) for IFL, and 0.16 (0.011) for AFC (Table 1).
These results indicate that fertility can be improved
through direct genetic and genomic selection. The AFC
heritability estimate is in agreement with the literature
(0.07–0.24) [23]. For heifer IFL and CR, the heritabilities
observed agree with earlier studies in Irish Holstein [23]
and in the same Chinese Holstein populations [4]. The
current study showed that heritability estimates for
interval traits (AFC and IFL) were generally higher than
for the binary trait (CR), which is also consistent with
several studies [7, 24, 25].

The influence of heat stress on heifer fertility traits
Several studies have demonstrated that heat stress may
have adverse effects on heifer fertility in two aspects
[26]: (1) follicular development or estrus, and (2) preg-
nancy. The percentage of Holstein heifers having two
follicular waves in the heat-stressed group (33 °C, 60%
relative humidity) and thermoneutral group (21 °C, 60%
relative humidity) have been shown to be 18 and 91%,
respectively; the day of functional luteolysis was delayed
for almost 9 days in the heat-stressed group compared
to the controlled group [27]. Sakatani et al. [28] found
that the estrus detection rate of non-lactating Japanese
Black cows was significantly lower in summer, whereas
another study of lactating Holsteins [14] also illustrated
that the estrus detection rate decreased when THI

exceeded 72. Follicular development and estrus detec-
tion are negatively affected by heat stress, which extends
AFC and IFL. Another analysis of 20,606 cows also
showed that pregnancy rates declined when THI was
greater than 72, with a decrease in pregnancy rate of
1.03% per unit increase of THI [29]. In the current
study, a dramatic decrease in the month of July was ob-
served for the CR phenotypes (Suppl. File 11), which is
consistent with the results of previous studies.
The critical periods found under S2 of CR, on the

basis of first insemination day, were (− 10, 60) and (− 10,
30) for prop-EG and mTHI-EG, respectively, which are
similar to the values reported in previous studies. Khan
et al. [17] explored the effects of heat stress on the preg-
nancy rate using 1100 crossbred dairy cows in India and
reported that pregnancy rates decreased significantly
when cows experienced high THI (> 72) within a period
of at least 30 days before and after the insemination day.
For AFC and IFL, the critical period was earlier before
the first service: (− 90, − 30) or (− 90, − 60). This may be
partly due to the delay of first insemination; that is, fol-
licular development or estrus detection may be compro-
mised by heat stress. A study evaluating the whole cycle
of estrus showed that heat stress inhibits the develop-
ment of the dominant follicle during preovulatory period
in heifers [27]. Thus, the onset of estrus for heifers
would be delayed to the next circle due to the delayed
development of follicles, and heat stress actually impacts
the heifers earlier before the first insemination. Another
possible explanation is that heat stress may affect heifer
puberty. The age at puberty is generally around 13
months, and the average age at first service in this study
was 491.95 days (around 16months) with a standard
error of 72.48 days. This may explain the reason that the

Table 6 Candidate genes and QTLs for the top genomic regions of two environmental gradients (EG)

EGa Traitb Parameter Chromosome Genes Var% #QTL QTL traits

Prop-EG AFC slope BTA14 CLVS1 2.30 1 Milk unglycosylated kappa-casein percentage

CR intercept BTA14 CLVS1 2.29 3 Milk kappa-casein percentage

CR slope BTA14 CLVS1 1.83 1 Milk kappa-casein percentage

CR intercept BTA14 CLVS1 1.72 2 Milk kappa-casein percentage

AFC slope BTA14 LOC112449637 1.49 1 Milk unglycosylated kappa-casein percentage

CR slope BTA5 FKBP4, DDX11 1.20 3 Bovine tuberculosis susceptibility, Milk kappa-casein percentage

mTHI-EG AFC intercept BTA14 CLVS1 2.27 1 Milk glycosylated kappa-casein percentage

AFC slope BTA14 CLVS1 2.03 1 Milk unglycosylated kappa-casein percentage

AFC slope BTA14 LOC112449637 1.80 1 Milk unglycosylated kappa-casein percentage

CR intercept BTA14 CLVS1 1.39 3 Milk kappa-casein percentage

CR slope BTA5 FKBP4, DDX11 1.35 2 Milk kappa-casein percentage

CR slope BTA14 CLVS1 1.34 3 Milk kappa-casein percentage
a prop-EG the number of days that exceeding the threshold temperature humidity index in the period, mTHI-EG Minimum temperature humidity index for each
day of the period
b AFC Age at first calving, IFL Interval from the first to last service, CR Conception rate of first service
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boundary of the critical periods for AFC and IFL was
found to be 90 days (3 months) before the first insemin-
ation. However, additional studies are needed to validate
this relationship.
To the best of our knowledge, the critical periods of

heat stress for heifer reproduction traits have not been
well defined, and most studies focused solely on preg-
nancy rate or CR. Amundson et al. [30] detected nega-
tive associations of THI with pregnancy rate for Bos
taurus crossbred cows in all three breeding periods: (0,
21), (0, 42), and (0, 60). Another study indicated that a
high heat load 3–5 weeks before and 1 week after service
was associated with reduced CR in cattle [16]. In Schül-
ler et al. [18], the CR of lactating dairy cows was

negatively affected by heat stress in both before and after
the day of insemination (− 42, 31), with the greatest
negative impact in (− 21, − 1). Li et al. [31] proposed a
window search algorithm to detect critical photothermal
time for flowering in plants, which is assessed by the
Pearson correlation coefficients of average photothermal
time and the population means of flowering time. How-
ever, all the time combinations are not significantly (with
the absolute value of coefficients less than 0.05) corre-
lated with target traits when this approach is utilized in
the current study. This may be due to the low heritable
feature of female fertility traits in cattle, indicating that
the phenotypes are influenced by complex factors. Thus,
the impact of THI on fertility phenotypes could be

Fig. 7 Trajectories of SNP effects changing over EGs. The x-axis is environmental gradient; the y-axis represents the SNP effects; the vertical bar is
the standard deviations of SNP effects at each level of EG; the blue lines indicate scenario one; red lines indicate scenario two; and, different color
sets indicate different clusters. a Trajectories of SNP effects changing over prop-EG. The x-axis is the proportion of days exceeding the threshold
with a range of 0 to 1. b Trajectories of SNP effects changing over mTHI-EG. The x-axis is the minimum THI with a range of 15 to 75
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nonlinear or relatively smaller. The results of the current
research indicated that the critical period of heat stress is
trait-related, and the periods we identified for CR are
within the range reported in previous studies, which pro-
vides substantial support for the results of AFC and IFL.
The overlapping test of the two EGs under two scenar-

ios (Table 3) indicated that prop-EG and mTHI-EG cap-
ture different mechanisms. For instance, prop-EG
equaled 0.5 in a period of 60 days when the THI of any
30 days in this period exceeded the threshold. However,
the average daily THI of these 30 days may be 73 or 78
(more severe heat stress). Similarly, prop-EG equaled 0
when THI did not exceed the threshold for all the days
in a period, but these days may occur in autumn or win-
ter (cold stress). Consequently, prop-EG could not assess
cold or severe heat conditions as mTHI-EG; it repre-
sents the average heat load of heifers, i.e., the proportion

of days experiencing heat stress conditions, which would
not include all the climatic variation due to the use of a
THI threshold. CR may be more sensitive to climatic
changes in comparison to AFC and IFL as it resulted in
fewer common animals selected across the two EGs.

Variance components estimated from RNMs and G × E
We estimated variance components using RNMs with
the matrices A and H (Table 4 and Supp. File 4). The
genetic variances obtained from conventional RNMs and
those from genomic RNMs were similar for all traits and
agree with the results of previous studies (e.g., [7, 32]).
Heritabilities estimated from RNMs were generally at
similar levels, compared with those estimated from con-
ventional animal models (Fig. 2). Zhang et al. [7] de-
tected heterogeneities in heritabilities across different
EGs for fertility traits based on both matrices, which is

Fig. 8 Number of shared candidate genes for each EG in different traits and clusters. C1 = SNP effects changes in preferential ways (decrease for
AFC and IFL; increase for CR); C2 = SNP effects changes in the opposite ways (increase for AFC and IFL; decrease for CR); C3 = constant SNP
effects over time
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consistent with our study. A recent study found the gen-
etic variances of production traits varied at different THI
levels, and a quadratic curve was observed in the herita-
bilities of protein yield [8]. In Danish Holstein popula-
tions, heterogeneities of heritabilities of several fertility
traits were observed across different production levels or
grass ratio in feed [6, 33]. Although heritabilities vary
across EGs in different analyses, patterns of heritabilities
with changes in the environment are predictable. Vari-
ous environmental indicators and analyzed traits could
account for this result. Heterogeneities in heritabilities
provide the insight that future genetic evaluations should
consider different environmental variances to obtain ac-
curate results. Incorporating heat stress into breeding
objectives could be helpful for the correct selection of
animals in different environments, especially in countries
where climatic conditions are highly variable.
Based on the t-test for the variance of the slope, a sta-

tistically significant G × E was observed for all traits in
this study [5]. Moderate to strong negative correlations
were detected between the intercept and slope for each
trait. This negative relationship was also found by other
researchers who estimated the variance components of
cow fertility traits using RNM [6, 7]. Previous studies
have suggested that a low correlation between the inter-
cept and slope could indicate re-ranking of animals
across different environments [34, 35]. In addition, Liu
et al. [6] illustrated that this negative correlation could
increase the magnitude of G × E. Collectively, robust ani-
mals with preferential intercepts and flat slopes are able
to perform well across various environments [36]. Based
on RNMs, individual breeding values for each THI con-
dition can be appropriately estimated to enable selection
of heat tolerant cows. These estimates could be more ac-
curate for bulls whose daughters have different records
under different environments. Genetic correlations be-
tween different EGs estimated using conventional and
genomic RNMs were similar (Fig. 3 and Supp. File 5).
The more divergent EGs were less correlated, which is
consistent with studies using different EGs [6, 7, 37].
This indicates that the re-ranking of sires may occur in
different EGs, as indicated in Table 5. The re-ranking
was more obvious for CR, in comparison to the other
two traits, indicating that CR has a higher sensitivity
under different THI. As mentioned in the previous sec-
tion, heat stress has adverse effects on follicular develop-
ment, which is directly associated with conception.
Furthermore, we observed that the re-ranking was stron-
ger when using mTHI-EG for AFC and IFL, which vali-
dates the hypothesis that mTHI-EG captured more
variation in environments than prop-EG.
In a breeding scheme for improving heat tolerance,

the best approach could involve selecting the best-
performing individuals in heat stress conditions,

provided that they are not underperforming in thermo-
neutral conditions. These robust animals can be pre-
sented graphically as shown in Fig. 4. For these traits, all
animals have consistent intercepts, whereas the gEBVs
of heat-tolerant heifers (red lines) did not change dra-
matically along all environmental conditions. Lower
AFC and IFL are linked to greater farm profit, and thus,
are more desirable. All the robust heifers performed bet-
ter in higher THI conditions. Adverse trends were ob-
served for CR because a higher CR is preferential. The
magnitude of re-ranking was higher when using mTHI-
EG. This is additional evidence that mTHI-EG is more
sensitive than prop-EG. The use of genomic selection is
a promising route for implementing selection schemes
for improve heat tolerance.

Candidate genomic regions for the intercepts and slopes
We performed ssGWAS to detect candidate genomic re-
gions associated with heifer fertility and heat sensitivity
(Figs. 5 and 6, Supp. Files 7 and 8). Some identified gen-
omic regions are common between two traits or two
variables in the same trait (Supp. Files 9 and 10). In gen-
eral, most of these genomic regions explained a small (<
1%) proportion of the total additive genetic variance, in-
dicating that fertility and heat tolerance are largely poly-
genic traits. However, the functional analysis confirmed
that the fertility traits are influenced by heat stress. For
example, some of the genomic regions were previously
reported to be associated with pathways such as re-
sponse to abiotic stimulus, detection of stimulus in-
volved in sensory perception, response to temperature
stimulus, response to radiation, negative regulation of
saliva secretion, and aerobic respiration and energy.
As expected, the genomic regions associated with the

intercept (average performance in thermoneutral condi-
tions) were linked with several reproductive genes. For
example, the overlaps of genomic windows between the
intercept of AFC and IFL contained genes such as
AMHR2, SP1, KRT8, and KRT18. Ilha et al. [38] found
that the mRNA expression levels of AMHR2 decreased
in the follicles during follicular deviation, whereas an-
other study also indicated that AMHR2 plays a role in
follicular development by regulating granulosa cells [39].
KRT18 may be a molecular marker for bovine microfold
cells in the follicle-associated epithelium [40]. Together
with KRT8, these two keratin family genes influence the
bovine estrous cycle with regards to luteal cells [41]. SP1
has been demonstrated to co-express with other regula-
tors to control early placental differentiation [42].
PLAG1, which was mapped in the most evident region
of BTA14 for AFC and IFL, has been often reported to
be associated with growth and reproduction traits in cat-
tle [43–45]. The overlapping genomic regions between
AFC and CR contained other growth-related genes such
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as SDC3 [46] and FABP3 [47]. One possible explanation
is that most heifers are physiologically immature at the
time of first insemination.
Various candidate genes associated with heat tolerance

(slope term) were also reported in the literature. Several
candidate genes are related to cow reproduction such as
GPER1, which has been reported to induce the non-
genomic suppression luteinizing hormone secretion in
cattle [48] and was mapped in both AFC and IFL in the
genomic region of BTA25. RAD51 has been reported to
be associated with bovine oocytes meiosis progress [49,
50]. Some candidate genes (e.g., LAP3, GLYCAM1,
PDE1B, MICALL2, NPC1) are related with other
economically-important traits in cattle such as milk pro-
duction, carcass traits, body weight, body height, and
body length [51–55]. Additionally, several genes were
annotated to be associated with stress response in cattle.
HCRTR1, which regulates orexin receptor type 1, has
been suggested to participate in negative feedback regu-
lation in the adrenal gland [56]. Several studies exam-
ined cultured bovine adrenal cells and indicated that the
products of AGRP would inhibit the cortisol production
of adrenal gland [57, 58]. The stress reaction of animals
activates the hypothalamic-pituitary-adrenal axis, to-
gether with an increase in the cortisol concentration
[59]. Thus, HCRTR1 and AGRP may play vital roles in
the cattle stress reaction process. White et al. [60] re-
ported that endogenous PC expression in bovine pri-
mary hepatocytes and kidney epithelial was significantly
higher in thermal stress conditions, which indicate that
PC may contribute to the physiological response to ther-
mal stress. PC has been reported to be associated with
fatty acids regulations while feeding and thus affect the
feed intake of cattle [60, 61].
The biological processes identified in functional ana-

lyses were mainly reproduction- and stress response-
related, which corroborates with our findings. The QTLs
identified in this study are mainly related to milk pro-
duction traits (Supp. Files 9 and 10), indicating that
these economic traits may change as the climate condi-
tions become more extreme. Most of the QTLs over-
lapped when using different EGs, and many were located
in BTA14. Costa et al. [62] reported that the QTLs in
BTA14 (24.3 Mb) and BTA24 (23.4 Mb) are associated
with AFC in Nellore. The genomic regions detected
from 23 to 26Mb in BTA14 and BTA24 were most evi-
dent in the Manhattan plots among the different traits
and EGs. Mota et al. [45] supported that the region of
BTA14 plays a key role in heifer puberty through growth
hormone signaling and may be regulated by PLAG1. An-
other genomic region with high genetic variance is lo-
cated in BTA29 (from 44.3 to 44.9Mb), which includes
the heat stress-related gene PC. Most of the QTLs were
shared by the intercept and slope, which is consistent

with the strong negative genetic correlations between
them. The fertility-related QTLs would be evident in
heat stress conditions as well because the change in en-
vironments may alter the genetic expression of these re-
gions when a strong G × E exists.

Clustered SNP effects and genes
The trajectory of SNP effects over EGs (Fig. 7) suggests
substantial SNP by environment interactions, which has
also been reported for reproduction traits in pigs [32]
and cattle [45]. The dramatic changes in C1 and C2 in
S2 indicates that the critical periods, which were chosen
through AIC, may capture more genetic variation. As for
CR, half of the periods overlapped in S1 (− 30, 30) and
S2 (− 10, 30 or 60), which may explain the similarity in
the trajectories between the two scenarios. For C1 and
C2, the variation in SNP effects was greater at high levels
of prop-EG (Fig. 7a) than at low or middle levels, which
was expected due to the higher genetic variance detected
at high prop-EG levels compared to low and middle
prop-EG levels (Fig. 2a). Similarly, this explains the
greater SNP effects at both high and low levels of
mTHI-EG and the late “cross point”, which represents
the lowest genetic variance at middle mTHI-EG levels
(Fig. 2b). These findings agree with those of Silva et al.
[32]. The effects of top SNPs were more constant (lower
standard deviation) in CR compared with AFC and IFL.
This finding may be due to the relatively low heritability
of CR, which causes smaller effect variations in each
level of EG.
Three SNP clusters were inspected to identify com-

mon genes among all the fertility traits (Fig. 8). As ex-
pected, more candidate genes were shared between
interval traits (AFC and IFL), especially in C1 and C2.
The number of overlapping genes among all the traits
and EGs were comparable for each cluster. For C3, the
top SNPs with slope effects close to 0 were chosen, but
the variation was negligible, i.e. SNP effects of the slope
ranged from 9.48e-9 to 1.47E-11 for all traits. Thus, a
slight change in the effect estimates may cause re-
ranking of SNPs, which results in a small proportion of
shared genes among traits in C3. The trajectories of C1
and C2 (Fig. 7) indicate the existence of SNP by environ-
ment interactions, and therefore, some related genes
may be activated at specific temperature and humidity
levels. Thus, candidate genes that play an important role
in SNP effect changes (C1 and C2) are the priority of
the current research.
Some genes detected in both EGs were reproduction–

or milk–related. For instance, MLH1 is associated with
oocyte development [50] and EOMES plays a vital role
in the early pregnancy stage of ruminants. Sakurai et al.
[63] reported that cattle EOMES expression increases
when conceptuses attach to the uterine epithelium. In a
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Chinese Holstein population, Han et al. [64] profiled the
genetic effect of ACACB, which affects milk composition
traits, using whole genome re-sequenced data. As pro-
duction and reproduction traits are genetically related
[2], it is reasonable that some production associated
genes were also detected in this study.
When prop-EG was considered, reproductive genes

NR5A2, THBS2 and PRKCE were identified. NR5A2 was
mapped in C1, and it has been reported to affected ste-
roidogenic pathways of progesterone production during
the luteal phase of the estrous cycle in cattle [65].
THBS2 and PRKCE contain several candidate SNPs in
C2, and their potential luteolytic functions were illus-
trated in previous studies [66, 67]. Additionally, EGFR,
whose expression is related to bovine reproduction stage
[68], was detected in both C1 and C2. Wijayagunawar-
dane et al. [69] explored the potential mechanisms re-
sponsible for the detrimental effect of heat stress by
exposing bovine oviductal epithelial cells to heat stress
conditions (40 and 43 °C). The results indicated that
EGFR could be involved in the regulation of the bovine
oviductal microenvironment, but these regulatory mech-
anisms may be compromised in the presence of heat
stress. This indicates that the regulatory functions of de-
tected reproductive (or even milk- and growth-related)
genes might be compromised in heat stress conditions.
Thus, these altered SNP effects were observed at higher
levels of prop- and mTHI-EGs (Fig. 7).
When mTHI-EG was used, GUCY1B1 was identified

in C2. Several papers [70, 71] have demonstrated that
GUCY1B1 interacts with heat shock protein 90 (HSP90),
whereas Khan et al. [72] detected HSPA13 as a differen-
tially expressed gene in heat-stressed bovine granulosa
cells. This indicates that the interaction between
GUCY1B and HSP90 in cattle may be related to the heat
stress response.

Conclusions
We analyzed the impact of heat stress on dairy cattle
based on three fertility traits. The critical periods, which
are when heifers may be more affected by heat stress,
were found to be related to the environmental gradient
used, centered on the first insemination day. This indi-
cates that detailed analysis for other traits should be ap-
plied to derive this period. Genetic parameters suggest
significant and considerable magnitude of G × E for all
three heifer fertility traits, indicating that breeding values
may change under heat stress conditions for these traits.
The re-ranking of sires between different environments
further demonstrates the effects of G × E on animal
breeding. Several reproduction–, growth–, production–,
and resilience–related genes and QTLs were identified
in the candidate genomic regions affecting fertility traits.
Overall, G × E models should be integrated into current

dairy cattle breeding schemes to select more climatic re-
silient animals. The heat stress-related genes or QTLs
are important for exploring the mechanisms of heat
stress response in dairy cattle.

Materials and methods
Data
Field records of birth, service and calving from 2005 to
2018 for heifers raised in 15 Holstein cattle farms (Sun-
lon Livestock Development Co. Ltd) in Beijing, China,
were collected through the herd management software
AfiFarm (AfiFarm, www.afimilk.com.cn). All herds were
kept in a free-stall design and included 1000 to 2000
heifers and the management strategies in these farms are
similar. The analyzed heifer traits are AFC (age at first
calving, days), IFL (interval from the first to last service,
days), and CR (conception rate of first service). CR was
coded as 1 when there was a confirmed pregnancy after
the first service and 0 otherwise. The IFL was 0 when a
heifer was pregnant after the first service. Further cri-
teria for the data editing included AFC between 500 and
1100 days and IFL between 0 and 365 days. Records with
values outside these ranges were dropped of further ana-
lyses. Animals which changed herds during the analyzed
period were also excluded. The number of records for
each trait after editing was 56,998 (Table 1). The pedi-
gree was derived from field birth records and each ani-
mal was traced back at least three generations, as
suggested by previous studies [6, 7]. The final pedigree
contains 181,693 individuals, among which 6556 are
sires.
Phenotypes (of daughters) and genotypes were avail-

able for 3731 heifers and 537 bulls. All bulls and a subset
of 2379 heifers were genotyped using the GeneSeek
Genomic Profiler Bovine 50 K Chip, whereas the
remaining 1352 heifers were genotyped using the Gene-
Seek Genomic Profiler Bovine 150 K Chip. In addition,
1769 heifers genotyped with the 150 K chip were in-
cluded in the reference population to improve imput-
ation accuracy. The animals genotyped with the 50 K
chip were imputed to the 150 K using the Beagle v5.0
software [73] with an imputation accuracy greater than
0.95. After imputation, SNP markers were filtered by re-
moving markers with minor allele frequency lower than
0.05, missing rate greater than 0.10, and presenting ex-
treme deviation from the Hardy–Weinberg equilibrium
(P ≤ 10E− 5). Individuals with genotype call rate lower
than 0.90 were dropped and only autosomal markers
were retained for this study. After quality control, 111,
068 SNPs remained in the dataset.
Hourly recorded temperature data of Beijing (all farms

are within 30 km from the weather station) during the
test years were obtained from the National Oceanic and
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Atmospheric Administration (www.noaa.gov). Hourly
THI was calculated using the following formula [74]:

THI ¼ Tdb þ 0:36Tdp
� �þ 41:2

where Tdb is the hourly dry bulb temperature (°C) and
Tdp is the dew point temperature (°C). Then, the daily
THI was calculated by averaging hourly values.

Models
Many studies have shown that the estimates from linear
models for categorical fertility traits are similar to those
from threshold models, while the former require less
computation time [75, 76]. Furthermore, several studies
managed to detect G × E for categorical fertility traits
using linear RNMs [6, 7]. Thus, linear models were used
for all fertility traits in the current study. Variance com-
ponents were obtained using the following single-trait
animal model:

y¼XbþZaþe

where y is the phenotype of each heifer for the three fer-
tility trait (AFC, IFL, and CR); X is an incidence matrix
connecting the vector of fixed effects b (herd-year-
month of the first service, service technician and gender-
controlled semen) to y; Z is an incidence matrix con-
necting a (additive genetic effect) to y, and e is the re-
sidual effect. The following RNM was used to investigate
G × E:

y¼XbþZ0a0þZ1a1þe

where Z0 is an incidence matrix connecting a0 (inter-
cept) to y, and Z1 is an incidence matrix containing EGs
as covariables to connect a1 to y (slope). It was assumed
that
a0
a1

� �
� N 0;K⨂

σ2a0 σa0a1
σa0a1 σ2a1

� �� �
, where K is A (nu-

merator relationship matrix) for pedigree-based BLUP,
or H (combined pedigree-genomic relationship matrix)
for ssGBLUP.
The matrix A was constructed using pedigree data

only for conventional BLUP, whereas for the ssGBLUP
models, the inverse of the H matrix (H− 1), which was
calculated as follows [20, 77]:

H − 1 ¼ A − 1 þ 0 0
0 G − 1 −A22

� �

where A22 is the subset of A for genotyped individuals
and G is the blended genomic relationship matrix. G
was built using (1 − ω)G0 + ωA22, where ω is the as-
sumed weight of the genetic variance not captured by
markers and was set to 0.05 according in previous stud-
ies [7, 78]. G0 was constructed using the method

proposed by [79]. Finally, G was tuned to have the same
scale as A22 [80, 81].
The random residual vector e is assumed to follow N

� ð0; Iσ2
eÞ , where I is an identity matrix. The residual

variances were assumed to be the same across different
EGs, based on the results of preliminary analyses, which
suggested that residual variances were similar across dif-
ferent levels of EG. The full data was divided into three
subsets based on the percentile of EGs (percentiles of
EG of ≤0.1, 0.1–0.3, and ≥ 0.3) to achieve similar sample
sizes across subsets.
The (co) variance components for RNMs were esti-

mated using the average information REML method im-
plemented in the BLUPF90 programs [82]. The standard
errors of (co) variance components were obtained from
the average information matrix. The standard errors of
heritabilities for different EGs were calculated using the
Taylor series expansions [83].

Critical period and environmental gradient
To evaluate the impact of heat stress on heifer
reproduction, the basic assumption was that heifers
experiencing higher THI in a specific period have re-
duced fertility performance based on critical periods,
as defined in Fig. 1. The levels of prop-EG range
from 0 to 1 according to its definition. For mTHI-
EG, the levels of EG are the true minimum THI
value, ranging from 15 to 75. Two scenarios were in-
cluded in each EG to select critical period: 1) Sce-
nario 1 (S1) contained only one reference period of
60 days, which goes from 30 days prior to the first in-
semination to 30 days after the first insemination [17]
for three reproductive traits and two EG schemes;
scenario 2 (S2): the critical periods were selected
based on the AIC of RNMs, which resulted in differ-
ent critical periods for each trait or EG scheme. A
total of 19 combinations were tested in S2, and pe-
riods with the lowest AIC were chosen (Supp. File 2).
For each trait, two critical periods (S1 and S2) were
chosen under each EG (prop-EG and mTHI-EG) to
estimate the (co) variance components of the RNMs.
The relationships of the two EG schemes were also
evaluated by calculating the equivalent values: the
proportion of days exceeding threshold THI when the
average minimum THI of this period at a certain
level. Afterwards, the overlapping heifers were
counted for each equivalent environmental condition
between two EG schemes.

Magnitude of G × E
G× E exists if the variance of the slope was significantly
different from zero by using a one-tailed t-test with the
significance level of 0.05 [6, 33]. One possible
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consequence of G × E is the re-ranking of animals across
different environments [5]; thus, the top 50 sires with at
least 20 daughters having phenotypes were selected to
assess the magnitude of re-ranking. Re-ranking plots
were drawn to show the change pattern of breeding
values for sires with the most preferential intercepts or
with the lowest slopes.

Single-step genome-wide association study (ssGWAS)
The marker effects of the intercept and the slope for all
traits were estimated using the ssGWAS method pro-
posed by Wang et al. [21]. The percentage of genetic
variance explained by a moving genomic window of 20
adjacent SNPs was obtained, by applying the postGSf90
package [84]. The number of adjacent SNPs were de-
fined based on the level of linkage disequilibrium in this
population, following [7]. The top 0.5% genomic regions
that explained the highest genetic variance of intercept
or slope was considered as the candidate genomic re-
gions. Subsequently, candidate genes or QTLs within the
candidate genomic regions were annotated based on the
ARS-UCD1.2 genome (http://hgdownload.soe.ucsc.edu/
goldenPath/bosTau9/bigZips/genes/) and the Cattle
QTL database (https://www.animalgenome.org/cgi-bin/
QTLdb/). The biological processes of candidate genes
were annotated using the PANTHER Classification Sys-
tem [85].

Cluster analyses of relevant SNPs
The SNPs were chosen to investigate the trajectories of
their effects. Firstly, SNPs were ranked according to the
magnitude of their slope effects for each trait, EG, and
scenario. Then, three clusters (C) of SNPs were obtained
according to the trajectory of their SNP effects across
each EG: C1 = SNP effects changes in preferential ways
(decrease for AFC and IFL; increase for CR); C2 = SNP
effects changes in opposite ways (increase for AFC and
IFL; decrease for CR); C3 = constant SNP effects over
time. For C1 and C2, the top 0.5% (n = 555) SNPs with
the highest or the lowest slope effects were selected,
whereas for C3, the 0.5% SNPs with slope effects closest
to zero were selected. Choosing the top 1% SNPs for tra-
jectory analyses has been implemented in several GWAS
studies based on the 50 K SNP panel [32, 86]. The re-
sults were visualized based on the average and standard
deviation of SNP effects in each EG to show the differ-
ences among the three clusters. For C3, SNPs were
grouped into two categories according to their average
effects (lower or higher than 0). Only the genes contain-
ing SNPs further confirmed in the cluster analysis and
shared among three traits were further annotated for
biological functions.
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