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A B S T R A C T   

Wheat is a vital global cereal crop, but its susceptibility to contamination by mycotoxins can render it unusable. 
This study explored the integration of two novel non-destructive detection methodologies with convolutional 
neural network (CNN) for the identification of zearalenone (ZEN) contamination in wheat. Firstly, the colori-
metric sensor array composed of six selected porphyrin-based materials was used to capture the olfactory sig-
natures of wheat samples. Subsequently, the colorimetric sensor array, after undergoing a reaction, was 
characterized by its near-infrared spectral features. Then, the CNN quantitative analysis model was proposed 
based on the data, alongside the establishment of traditional machine learning models, partial least squares 
regression (PLSR) and support vector machine regression (SVR), for comparative purposes. The outcomes 
demonstrated that the CNN model had superior predictive performance, with a root mean square error of pre-
diction (RMSEP) of 40.92 μ g • kg− 1 and a coefficient of determination on the prediction (R2

P) of 0.91. These 
results affirmed the potential of integrating colorimetric sensor array with near-infrared spectroscopy in eval-
uating the safety of wheat and potentially other grains. Moreover, CNN can have the capacity to autonomously 
learn and distill features from spectral data, enabling further spectral analysis and making it a forward-looking 
spectroscopic tool.   

1. Introduction 

Wheat is a globally significant staple crop, with approximately one- 
third of the world’s population dependent on it for sustenance (Bentley 
et al., 2022). In addition to providing calories and protein in the human 
diet, wheat also offers various vitamins and minerals (Arzani & Ashraf, 
2017). Given its nutritional importance, ensuring the safety and quality 
of wheat is crucial (Varzakas, 2016). Specifically, the issue of fungal 
toxin contamination in wheat has garnered widespread attention (Sad-
hasivam et al., 2017). Fungal toxins have potent adverse effects and pose 
a threat to human health when ingested (Agriopoulou, Stamatelopou-
lou, & Varzakas, 2020). Zearalenone (ZEN), a naturally occurring fungal 
toxin, is a secondary metabolite produced by Fusarium species, 
commonly found in wheat and other grains. Its presence presents a 
challenging problem, as it not only compromises food safety and public 
health, but also results in economic losses in agricultural production 
(Ropejko & Twarużek, 2021). Currently, many countries have estab-
lished minimum regulatory limits for ZEN in grains. Hence, the accurate 
detection of ZEN content in wheat becomes particularly critical. 

In recent years, with the increasing concern for food safety, more and 
more researchers have focused on developing detection methods for 
fungal toxins (Janik et al., 2021). Currently, a significant amount of 
research is centered around detecting fungal toxins based on their 
chemical characteristics, and numerous analytical methods have been 
proposed for the detection of these toxins in various cereal grains. 
Common methods for fungal toxin detection include liquid 
chromatography-tandem mass spectrometry (LC/MS) (Tahoun, Gab- 
Allah, Yamani, & Shehata, 2021), high-performance liquid chromatog-
raphy (HPLC) (Irakli, Skendi, & Papageorgiou, 2017), enzyme-linked 
immunosorbent assay (ELISA) (Batrinou, Houhoula, & Papageorgiou, 
2020), and electrochemical-based approaches (Chen, Wu, Tang, Zhang, 
& Li, 2023). However, these detection methods are limited by factors 
such as complicated procedures, expensive equipment, and the 
requirement for a large amount of biochemical reagents. They are only 
suitable for accurate physicochemical analysis in laboratory settings and 
cannot achieve rapid detection of ZEN in large quantities of wheat 
during production, transportation, and storage. Therefore, the rapid and 
effective detection of ZEN content in wheat has become a research 
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hotspot and an urgent issue to address. 
Colorimetric sensor array, as an emerging detection technology, 

have found widespread applications in fields such as food, environment, 
and biomedicine due to their simple and convenient operation process 
and fast detection speed (Jiang, Deng, & Chen, 2023; Sun, Qian, Zheng, 
Li, & Lin, 2020; Zhao, Jiang, & Chen, 2023). These colorimetric sensors 
mimic the olfactory system of mammals, employing multiple color- 
sensitive materials as sensor units arranged in an array structure. Each 
sensor unit produces a distinct response to the analyte. This response is 
generated through strong chemical reactions, such as hydrogen bonding, 
metal coordination, and polar interactions, between the color-sensitive 
materials and the target analyte. As a result, colorimetric sensor arrays 
exhibit high sensitivity and are less influenced by environmental factors. 
By collecting the response signals from the colorimetric sensor array and 
processing them using computer algorithms combined with appropriate 
pattern recognition, differentiation and detection of multiple compo-
nents in the analyte can be achieved. Currently, the feasibility of 
colorimetric sensor arrays has been verified in applications such as meat 
freshness assessment (Xu et al., 2022), tea classification and grading 
(Jia, Pan, Zhou, & Zhang, 2021), and grain quality evaluation (Liu, 
Jiang, & Chen, 2022). 

However, applying this technology for quantitative detection of ZEN 
in moldy wheat still faces some challenges. A colorimetric sensor array 
captures the odor information of moldy wheat with different concen-
trations of ZEN, using portable instruments such as a flatbed scanner and 
digital camera to convert the color changes of the sensing units before 
and after odor response into spectral information, and obtains the cor-
responding values for the red, green, and blue (R, G, B) channels. By 
extracting the differences in the color change information of each sensor 
unit, i.e., the differences in red, green, and blue values (ΔR, ΔG, ΔB), the 
ZEN content in moldy wheat is discriminated. However, extracting three 
separate channel pieces of information may lead to the omission of a 
considerable amount of other data, which could severely limit the use 
and application of the colorimetric sensor array. In fact, most research 
on colorimetric sensor arrays remains at the qualitative differentiation 
stage. 

Near-infrared spectroscopy is a stable and rapid detection method 
that captures characteristic information of samples by their absorption 
and scattering properties in the near-infrared band, enabling sample 
analysis (Pasquini, 2018). Compared to traditional analytical tech-
niques, near-infrared spectroscopy generally does not require sample 
pre-treatment, is non-destructive, and has been widely used for detect-
ing various types of samples. Additionally, near-infrared spectroscopy 
has a fast response rate, high analysis efficiency, and is suitable for 
online monitoring. Combining near-infrared spectroscopy with the 
colorimetric sensor array, colorimetric sensor array captures odor in-
formation of the wheat ZEN contamination, and near-infrared spec-
troscopy acquires the spectral information of the sensor after the wheat 
volatile gas reaction. Both technologies collectively detect the level of 
ZEN contamination in wheat. The advantages of the two technologies 
are combined: the colorimetric sensor array can detect the overall vol-
atile odor of wheat, avoiding the one-sidedness of single-point spectrum 
collection, while the diversity of spectral data compensates for the 
insufficient number of variables in the colorimetric sensor array. 

Chemometrics provides mathematical models for the analysis of 
spectral data (Mishra & Passos, 2021). However, existing chemometric 
spectral analysis faces the problem of decreased predictive performance 
of models for unknown samples. The reason for this issue is that spectral 
data from different sources typically contain varying background noise, 
and the variation in noise causes a decline in the predictive performance 
of previously trained models on new datasets. Spectral preprocessing 
and feature selection can reduce noise in spectral data and extract fea-
tures to improve model accuracy. However, inappropriate spectral 
preprocessing and feature selection methods may introduce new errors, 
leading to a decrease in the model’s predictive accuracy. Therefore, 
there is a need to develop a spectral analysis model for automatic feature 

extraction without the need for spectral data preprocessing and feature 
selection, to simplify the spectral analysis process and improve its ac-
curacy and robustness. 

Convolutional neural network (CNN) is a deep learning algorithm 
that includes convolutional layers and has shown significant advantages 
in processing two-dimensional images (Deng, Ni, Bai, Jiang, & Xu, 2023; 
Ng et al., 2019). It is one of the representative algorithms of deep 
learning. As a data-driven modeling approach, CNN can extract useful 
information from high-dimensional raw spectra without the need for 
spectral preprocessing and feature extraction. CNN model can transform 
spectral data into abstract features through multiple layers of non-linear 
modules. Through layered feature extraction, the model can ultimately 
learn complex feature representations. In fact, CNN has been quite 
mature in the application of one-dimensional spectral analysis (Xue, 
Zhu, & Jiang, 2023), but its potential for two-dimensional spectral 
analysis has not been fully explored. 

Upon careful consideration, the primary tasks of this research are 
outlined as follows: (1) Preparation of the colorimetric sensor array to 
obtain wheat with different levels of ZEN contamination; (2) Acquisition 
of near-infrared spectral data from the colorimetric sensor array after its 
reaction with wheat samples using a near-infrared spectrometer; (3) 
Application of the CNN for training and establishing a regression model 
on the two-dimensional data converted from near-infrared spectra; (4) 
Comparative analysis of the robustness and generalization performance 
of the constructed model with that of the partial least squares regression 
and support vector regression models. 

2. Materials and methods 

2.1. Collection and preparation of samples 

For the investigation of ZEN content, a total of 5 kg naturally grown 
wheat grains acquired online shopping. They were placed in an incu-
bator where the optimal conditions for ZEN toxin production are within 
a temperature range of 26 to 30 ◦C and a humidity range of 75 to 85 %. 
Random samples of 200 g were taken daily, and a grinder (BJ-150, Baijie 
Electrical Appliances Co., Ltd., Deqing, China) was employed to grind 
the wheat into powder to obtain a uniform sample. An electronic bal-
ance was used to divide the wheat powder into 12 portions, each 
weighing 10 g. Additionally, the equipment was thoroughly cleaned 
during daily sample collection to prevent contamination between sam-
ples. Following this procedure, sampling was conducted for eleven days, 
resulting in a total of 132 representative samples. 

2.2. Detection of ZEN 

In this study, the quantitative detection of ZEN toxin in wheat was 
conducted using a ZEN quantitative detection card. The principle of this 
detection card is based on competitive colloidal gold technology. Prior 
to toxin detection, stabilize all reagents and samples at room tempera-
ture. Subsequently, 2 g wheat samples were taken in test tubes, to which 
8 ml of extraction reagent (70 % CH3OH) was added. The test tubes were 
then placed in an oscillator and shaken for 3 min. Next, 1.5 ml of liquid 
was taken from the test tube into the eppendorf tube, which was 
centrifuged at 10,000 rpm for 1 min. Subsequently, 100 μL centrifugal 
supernatant was mixed with 900 μL diluent. After that, 100 μL of the 
mixture drops were rapidly pipetted into the sample well of the detec-
tion card, and the timing started. After 6 min, the results were read. 

2.3. Preparation of colorimetric sensor array 

The substrate material for the colorimetric sensor should possess 
good hydrophobicity and stability. Therefore, C2 reverse phase silica gel 
plate was selected as the substrate material. Based on the research 
team’s prior investigations into the volatile gases from moldy wheat, 
porphyrin materials were initially chosen as color sensitive material of 
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sensing unit. Following preliminary experiments to observe the staining 
effect of porphyrin materials on silica gel plate, six porphyrin materials 
shown in Table 1 were ultimately selected to prepare the colorimetric 
sensor array. 

The six types of porphyrin materials were separately dissolved in 
dichloromethane to prepare solutions with a concentration of 2 mg/mL, 
and sealed in brown bottles. The prepared six solutions were placed in 
an ultrasonic cleaner and oscillated for 15 min to ensure complete 
dissolution of the porphyrin materials. After preparation, the six solu-
tions were stored at low temperature and shielded from light for later 
use. During the sensor preparation, approximately 1 μL of each solution 
was extracted using a capillary tube (0.3 × 100 mm), and sequentially 
spotted onto a 3 cm × 3 cm silica gel plate to create a 2 rows by 3 col-
umns array of colorimetric spots for each solution. The prepared arrays 
were sealed in bags and stored for later use. 

2.4. Acquisition of near-infrared data 

The wheat samples, weighing 10 g, were placed into 60 mm diameter 
petri dishes, and the wheat flour was spread and compacted. Simulta-
neously, the base of the sensor array was fixed on a plastic film, which 
was used to seal the petri dishes, ensuring that the sensor array was 
positioned directly facing the wheat samples for a full reaction with the 
wheat volatiles for 20 min. Upon completion of the reaction, the spectral 
data for each colorimetric spot was immediately collected using a near- 
infrared spectroscopy acquisition system. The experiment utilized an 
integrating sphere to gather the reflectance of each colorimetric spot, 
with the spectrometer’s integration time set at 100 ms, 3 scan averages, 
and a 5-point moving average width. Each acquired spectrum consisted 
of 128 data points. Fig. 1 displays the collected raw spectra. 

The experiment collected a total of 132 samples, each yielding 128 
spectra from six different colorimetric spots. In this study, the spectra 
corresponding to each sample were transformed into a two-dimensional 
format of 6 × 128. 

2.5. Spectral data preprocessing 

Preprocessing of spectral data is an important step in spectral anal-
ysis and interpretation. Savitzky-Golay (SG) is a linear smoothing 
technique widely used in the preprocessing of spectral data. It can be 
used to remove noise, smooth baseline, and reduce random fluctuations 
in the data, thus enhancing the accuracy of subsequent spectral analysis 
and interpretation. The advantage of SG is its ability to reduce noise 
while preserving spectral features. Additionally, it can control the de-
gree of smoothing by adjusting the window size and polynomial order. 
In this study, the parameters for the window size and polynomial order 
of SG were set to 41 and 5, respectively. 

2.6. Convolutional neural network 

The more layers there are in a CNN model, the more complex fea-
tures it can extract (Wang, Tian, Yang, Zhu, Jiang, & Cai, 2020). How-
ever, excessive depth increases model complexity, making training more 
difficult and increasing the risk of overfitting. Similarly, different con-
volutional kernels can extract various types of features. While a larger 

number of kernels can extract more features, an excessive number leads 
to model redundancy and increased computational load. Therefore, in 
the model design process, structural selection should be comprehen-
sively considered based on the input dataset. Because of the limited data 
volume and the relatively low number of wavelengths in the input 
spectral data, the basic structure of the designed CNN model included 2 
convolutional layers, 2 pooling layers, and 3 fully connected layers. The 
size of the kernels in the two convolutional layers was set to 3 × 3, with a 
quantity of 64. The neuron node numbers for the first and second fully 
connected layers were set at 64, using max-pooling for the pooling 
method. Since the model was for quantitative analysis, the number of 
output neuron nodes was set to 1. To prevent model overfitting and save 
training time, Gaussian noise was added before the input layer. Addi-
tionally, dropout layers were included between one pooling layer and 
the second convolutional layer, and between the two fully connected 
layers. Dropout layers temporarily ignored some neuron nodes at a 
certain probability during training, weakening the joint adaptability 
among neurons and preventing model overfitting. Fig. 2 illustrates the 
final CNN constructed for two-dimensional input in this study. 

2.7. Partial least squares regression 

The partial least squares regression (PLSR) method selects a linear 
combination of independent variables that are strongly correlated with 
the dependent variable and are computationally convenient (Leng, Li, 
Chen, Tang, Xie, & Yu, 2021). This approach effectively extracts 
comprehensive information that best explains the system, achieving 
dimensional reduction of high-dimensional data spaces. It can better 
overcome multicollinearity among variables, is more stable, and pro-
vides stronger interpretability. However, it cannot control overfitting 
during the learning process and lacks variable selection features. PLSR is 
a prevalent linear spectral analysis technique utilized to establish a 
linear relationship between spectral variables and the variables under 
consideration. PLSR effectively addresses the challenge of multi-
collinearity among independent variables. However, it is not suitable for 
cases where the spectral and measured variables exhibit complex 
nonlinear relationships due to the characteristics of spectral overlap and 
variation. In this study, a five-fold cross-validation was conducted to 
select the number of PLSR latent variables, ranging from 1 to 20. 

2.8. Support vector machine regression 

The support vector machine regression (SVR) model, derived from 
the support vector machine model, aims to identify relationships be-
tween independent and dependent variables in nonlinear regression 
problems (Z. Liu et al., 2022). By introducing a non-linear mapping 
function, datasets with non-linear regression relationships in low- 
dimensional space are mapped to high-dimensional space, followed by 
a transformation into a linear regression relationship. SVR exhibits 
strong generalization and wide adaptability. It is a powerful nonlinear 
model that can effectively capture the intricate relationships between 
the spectral variables and the target variables, resulting in accurate 
regression predictions. In this study, the radial basis function was 
employed as the kernel function, parameter ‘c’ balanced the model’s 
complexity and fitting error, and parameter ‘g’ specified the influence of 
each sample on the model fitting. During SVR model training, grid 
search was utilized to select optimal values for ‘c’ and ‘g’, within a range 
from 2-10 to 210. 

2.9. Software 

The algorithms performed in this study were run on MATLAB 
R2021a and Jupyter Notebook with Python libraries installed. 

Table 1 
Color sensitive materials in colorimetric sensor array.  

Number Name 

1 5,10,15,20-Tetraphenyl-21H,23H-porphine 
2 5,10,15,20-Tetraphenyl-21H,23H-porphine copper (II) 
3 5,10,15,20-Tetrakis(4-methoxyhenyl)-21H,23H-porphine cobalt(II) 
4 5,10,15,20-Tetraphenyl-21H,23H-porphine zinc 
5 5,10,15,20-Tetraphenyl-21H,23H-porphine vanadium(IV) oxide 
6 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine ruthenium(II) 

carbonyl  
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Fig. 1. Near-infrared spectra of colorimetric spots.  

Fig. 2. Structure diagram of CNN model.  
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3. Results and discussion 

3.1. Division of dataset 

In this study, the dataset was initially randomly divided into a cali-
bration set and a prediction set in approximately a 4:1 ratio, comprising 
105 samples in the calibration set and 27 samples in the prediction set. 
The PLSR and SVR models were trained using the calibration set data. 
For CNN, the calibration set data was further randomly divided into a 
new training set and a validation set in a 4:1 ratio. The new training set 
contained 84 samples, and the new validation set contained 21 samples. 
The model weights were trained on the new training set, and the best 
hyperparameters were selected based on the model’s performance on 
the validation set to determine the properly trained model. Subse-
quently, the predictive performance of the three models was tested on 
the prediction set after training. Table 2 presents the statistical results of 
the ZEN content of wheat samples in the calibration and validation sets. 

3.2. The results of nonlinear detection 

In this study, it was uncertain whether there is a nonlinear rela-
tionship between the spectral signal and the concentration of ZEN in 
wheat. Before the model was built, the runs test was used to check the 
serial correlation of the residuals (Centner, De Noord, & Massart, 1998). 
Table 3 shows the results of the nonlinear detection. The spectral signal 
of the colorimetric sensor array was not linear with the ZEN level in 
wheat. Therefore, SVR and CNN were used to establish the model in this 
study. 

3.3. The results of CNN 

In this study, the spectral data and ZEN reference values were 
initially globally scaled (GS) to enable the CNN model to capture fea-
tures of different scales, thereby enhancing model performance. Both 
the spectral data and ZEN reference values have been scaled to a range 
with a mean of 0 and a standard deviation of 2. Subsequently, the two- 
dimensional 6 × 128 data was fed into the CNN for model training. 
Additionally, a Gaussian Noise of 0.01 was introduced into the CNN to 
improve its robustness and generalization capability. The loss function, 
which evaluates the error between the model’s predicted values and 
actual values, plays a crucial role in model training. For the spectral 
analysis in this study, the mean squared error (MSE) was used as the loss 
function for quantitative analysis models. The training utilized an initial 
learning rate of 0.0005 with the Adam optimizer as the optimization 
algorithm. Furthermore, the batch_size for training was set to 30, and 
the training epochs were set to 500. During the training of the CNN 
model, all random seeds were fixed, and no repeated experiments were 
conducted. Fig. 3 illustrates the training process of the CNN constructed 
in this study. It is evident from the graph that with increasing training 
iterations, both the training and validation set’s loss functions contin-
uously decreased, indicating that the CNN was actively learning spectral 
data features during training. Further analysis revealed a significant 
decrease in the loss function curve within the first 200 epochs, followed 
by a more gradual and convergent trend beyond the 200th epoch. The 
marginal difference between the two curves indicates that the model did 
not overfit, signifying the success of the CNN training overall. 

3.4. Compare and discuss the results of different models 

In this study, the spectral curves of the six colorimetric spots were 
sequentially connected to form a continuous spectral curve, which was 
then subjected to SG preprocessing. The preprocessed spectral data were 
used to establish PLSR and SVR models. Specifically, for the PLSR model, 
the optimal number of latent variables was determined through five-fold 
cross-validation using the calibration set data. As for the SVR model, a 
grid search algorithm was employed as the method for optimizing the 
SVM model parameters. Table 4 presents the results of different models, 
among them, the coefficient of determination on the prediction (R2

p) of 
the CNN model was 0.91, the R2

p of the PLSR model was 0.77 and the R2
p 

of the SVR model was 0.68. The root mean square error of prediction 
(RMSEP) of the CNN model was 40.92μ g • kg− 1,the RMSEP of PLSR 
model was 64.44μ g • kg− 1 and the RMSEP of SVR model was 75.17μ g •
kg− 1. It is evident that RMSEP of the CNN model was lower than that of 
the SVR and PLSR models, while its the R2

p was higher than both models. 
The results indicated that the PLSR model performs poorly in both 

the calibration and prediction sets but did not exhibit clear signs of 
overfitting. This suggested that the PLSR model’s ability to extract 
common features from the spectra was limited in datasets with higher 
sample diversity, resulting in poor performance in both the calibration 
and prediction sets. Moreover, the SVR model’s coefficient of determi-
nation for the prediction set was only 0.68, indicating overfitting during 
the analysis process, leading to poor predictive results. In the CNN, the 
local perception ability of convolutional layers is advantageous for 
extracting peak and valley features in spectra. The shared convolutional 
kernel parameters reduce the quantity of parameters, accelerate 
learning rate, and prevent overfitting. The pooling layer continuously 
reduces the spatial size of the data in spectral processing, compressing 
the input feature maps and simplifying network computational 
complexity. Furthermore, pooling aids in feature compression, enabling 
extraction of the primary features in the spectra. Lastly, the deep 
structure of the CNN enhances the model’s fitting and feature extraction 
capabilities, making it suitable for spectral analysis. The CNN model 
exhibited better predictive results compared to the SVR and PLS models, 
indicating its capability to capture underlying common features within 
the spectra of the six colorimetric spots, leading to improved accuracy. 
Overall, the CNN model demonstrated a clear advantage over traditional 
methods, indicating superior data fitting capabilities. This suggested 
that the CNN model’s fitting performance excels particularly with more 
complex spectral sample datasets. 

4. Conclusions 

This study demonstrates that the combination of colorimetric sensor 
technology and near-infrared spectroscopy is an effective method for 
quantifying the ZEN content in wheat. Using six porphyrin materials, a 
simple structured colorimetric sensor array successfully captured the 
odor information of volatile compounds in wheat. Furthermore, this 
paper presented a two-dimensional CNN spectral quantification model 
that utilizes the original near-infrared spectral data from the six color-

Table 2 
The results of the level of measured ZEN in wheat in CNN training.  

Subsets Number of samples Units Maximum Minimum Mean Standard deviation 

Calibration set 84 μg.kg− 1  483.96  22.96  100.19  129.17 
Validation set 21 μg.kg− 1  401.44  20.24  67.62  94.71  

Table 3 
The results of nonlinear detection.  

n+ n− u μ σ |z| Conclusion  

386855.43  1323.41 1  585.63  258.02  36.37 Nonlinearity  
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imetric sensor points without preprocessing, leading to increased spec-
tral analysis accuracy. A comparison of this model with the PLSR and 
SVR revealed that the CNN model achieved the lowest RMSEP of 40.92μ 
g • kg− 1 and the best R2

P of 0.91. By integrating the spectral information 
of the colorimetric sensor points with the CNN for the prediction of 
wheat mycotoxins, this approach provided a new technological means 
for the rapid detection and safety monitoring of mycotoxins in wheat. 
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