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Diabetic kidney disease (DKD) is a critical complication associated with diabetes;
however, there are only a few animal models that can be used to explore its
pathogenesis. In the present study, we established a mouse model of DKD using a
technique based on the Developmental Origins of Health and Disease theory, i.e., by
manipulating the embryonic environment, and investigated whether a dietary intervention
could ameliorate the model’s pathology. Two-cell embryos were cultured in vitro in a-
minimum essential medium (MEM; MEM mice) or in standard potassium simplex-
optimized medium (KSOM) as controls (KSOM mice) for 48 h, and the embryos were
reintroduced into the mothers. The MEM and KSOM mice born were fed a high-fat, high-
sugar diet for 58 days after they were 8 weeks old. Subsequently, half of the MEM mice
and all KSOMmice were fed a diet containing rice powder (control diet), and the remaining
MEM mice were fed a diet containing barley powder (barley diet) for 10 weeks.
Glomerulosclerosis and pancreatic exhaustion were observed in MEM mice, but not in
control KSOM mice. Renal arteriolar changes, including intimal thickening and increase in
the rate of hyalinosis, were more pronounced in MEM mice fed a control diet than
in KSOM mice. Immunostaining showed the higher expression of transforming growth
factor beta (TGFB) in the proximal/distal renal tubules of MEM mice fed a control diet than
in those of KSOMmice. Pathologies, such as glomerulosclerosis, renal arteriolar changes,
and higher TGFB expression, were ameliorated by barley diet intake in MEM mice. These
findings suggested that the MEM mouse is an effective DKD animal model that shows
glomerulosclerosis and renal arteriolar changes, and barley intake can improve these
pathologies in MEM mice.

Keywords: diabetic kidney disease (DKD), MEMmice, DOHaD (developmental origins of health and disease), barley,
glomerulosclerosis, transforming growth factor beta (TGF- b)
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a major cause of chronic
kidney disease (1, 2), commonly known as diabetic kidney disease
(DKD). DKD generally develops and progresses with renal
glomerular hyperfiltration, microalbuminuria, apparent
albuminuria, and low glomerular filtration rate (GFR), and
patients eventually require dialysis (3). A serial, cross-sectional
Japanese T2DM cohort study reported that the number of
patients with DKD with an estimated glomerular filtration rate
(eGFR) < 60 mL/min/1.73 m2 increased from 12.1% in 1996 to
24.0% in 2004 (4). Therefore, the mechanistic exploration of DKD
development and therapy are necessary for DKD prevention.

Glomerular and tubular disorders, induced by mesangial
matrix expansion, are considered to be the main features of
DKD. Hyperglycemia is known to promote the proliferation of
mesangial cells, which leads to the excess production of
extracellular matrix (ECM) and induces glomerulosclerosis (5,
6). In addition, hyperglycemia induces the migration of pericytes
from the peritubular capillaries to the interstitial space, thereby
causing arteriolosclerosis (7). Furthermore, the migration of
peritubular pericytes accelerates tubular interstitial changes by
enhancing the transition of pericytes into myofibroblasts. DKD
can be classified into four categories based on the type of
hierarchical glomerular lesions, and tuberous sclerosis is the
most characteristic lesion in DKD, with extensive interstitial
and vascular lesions formed in DKD of each category (8).
Glomerular cell dysfunction impairs glomerular filtration and
microvascular permeability, which reduces the levels of body
wastes (such as nephrotoxins) in the urine, and also reduces
microalbuminuria or albuminuria. However, dietary or drug
therapies to prevent or ameliorate DKD are not well developed.

The lack of animal models with disease development similar
to that occurring in patients with DKD has delayed research and
development of DKD therapies. Several T2DM animal models,
such as mutant T2DM models and spontaneous T2DM models,
as well as conventional models, exhibit DKD. Compared with
age-matched non-diabetic db/m control mice, obese diabetic db/
db mice carrying the mutant leptin (an anorexigenic hormone)
receptor exhibited six times higher urinary albumin levels and
lower GFRs at 28 weeks of age and greater mesangial matrix
bbreviations: aMEM, a minimum essential medium; ART, assisted
eproductive technology; DKD, diabetic kidney disease; DOHaD,
evelopmental Origins of Health and Disease; ECM, extracellular matrix;
GCg, epigallocatechin gallate; eGFR, estimated glomerular filtration rate;
NOS, endothelial nitric oxide synthase; EVG, Elastica van Gieson; GFR,
lomerular filtration rate; GK rat, Goto-Kakizaki rat; HE, hematoxylin-eosin
tain; ICR, Institute of Cancer Research; IVF, in vitro fertilization; KC, mice
eveloped from embryos cultured in KSOM and subsequently fed a rice-based
iet; KSOM, potassium simplex-optimized medium; MDA, malondialdehyde;
EM, minimum essential medium; MB, mice developed from embryos cultured
MEM and fed a barley-based diet; MR, mice developed from embryos cultured
MEM and fed a rice-based diet; MT, Masson’s trichrome; NADKD,

ormoalbuminuric diabetic kidney disease; NADPH, nicotinamide adenine
inucleotide phosphate; OD, outer diameter; OGTT, oral glucose tolerance test;
AS, Periodic acid-Schiff; SEM, standard error of the mean; TGFB, transforming
rowth factor beta; T2DM, type 2 diabetes mellitus; 8-hydroxydeoxyguanosine,
-OHdG.
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expansion after 16 weeks of age (9–11). db/db mice with
unilateral renal artery stenosis developed severe mesangial
sclerosis, progressive interstitial fibrosis, tubular atrophy, and
interstitial inflammation, but not mesangial matrix expansion, a
major characteristic of DKD (12). Compared with lean control
rats, the T2DM model Zucker rat, which carries a mutant leptin
receptor and develops obesity at younger ages, exhibited 200-fold
higher urinary albumin levels at 16 weeks and 1000 times higher
hyperfiltration (non-decreased 50% eGFR) at 26 weeks. These
phenotypes can be considered severely pathological compared
with those of patients with DKD (13). OLETF rats, which are
spontaneous T2DM model rats with a lack of cholecystokinin 1
receptor gene, exhibited diffuse glomerular sclerosis and
tuberous sclerosis, along with basement membrane thickening,
mesangial proliferation, and fibrin cap formation (14). However,
compared with control OLETF rats, OLETF rats fed a 40% (w/w)
high-protein diet from 5 to 30 weeks of age showed a progression
in nephropathy at 30 weeks, even though they exhibited
relatively lower blood glucose levels in the oral glucose
tolerance test (OGTT) than 26-week-old control OLETF rats
(15). Therefore, diabetes cannot be considered the main cause of
kidney dysfunction in the OLETF model. In addition, because
T2DM and DKD development in OLETF rats takes longer (20 or
more weeks of age) than that in db/db mice (18 weeks of age),
and the developmental stages vary widely among different
experimental groups, the OLETF rat model is not suitable for
studies on DKD (11, 15). Therefore, the animal models
mentioned above do not replicate the manifestations of DKD
observed in patients, such as middle albuminuria, glomerular
hypertrophy, and mesangial matrix expansion (16).

Recent studies have suggested that environmental factors
during developmental stages can induce metabolic diseases,
inc luding T2DM and DKD. This is s ta ted as the
Developmental Origins of Health and Disease (DOHaD)
theory. A retrospective cohort study in Ukraine reported that
the odds ratio of T2DM diagnosis at age 40 years or older was
higher in individuals born in areas affected with severe-to-
extreme famine than in individuals born during famine but in
unaffected areas (17). Furthermore, it was reported that the body
weight as per gestational age shows positive correlation with total
kidney volume at 0, 3, and 18 months after birth. Additionally,
premature (< 37 weeks of gestation) children had smaller kidneys
compared to mature children (37 to 42 weeks of gestation) (18).
In a retrospective case-control study of infants born at ≤ 34
weeks of gestation, compared with appropriate for gestational
age premature infants, small for gestational age premature
infants had higher serum creatinine on postnatal days 1 and 3
and a lower urinary output (in mL/kg/h) (19). These findings
suggest that undernutrition during the gestational period is a risk
factor for the development of T2DM and renal insufficiency in
adulthood, and SGA offspring are predisposed to these
conditions. Recently, we established a T2DM mouse model
using techniques based on the DOHaD theory, such as
manipulation of the embryonic environment and subsequent
administration of high-fat, high-sugar diets. Specifically, we
established a mouse model using two-cell-stage embryos
November 2021 | Volume 12 | Article 746838
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cultured in a-minimal essential medium (aMEM), followed by
embryo transfer into the mother (MEM mice). After birth, the
mice were fed a high-fat, high-sugar diet after weaning, and
hence, were remarkably hyperglycemic and moderately
overweight, similar to patients with T2DM, particularly Asian
patients (20). MEM mice also developed non-alcoholic hepatic
steatosis with hepatic fibrosis (21), which is frequently observed
in patients with T2DM. The factors influencing T2DM
development in MEM mice, such as the environmental
conditions during the fetal and postnatal periods, is similar to
those in patients with T2DM. In addition, the intake of barley, a
food abundant in the soluble dietary fiber b-glucan, reduced
postprandial hyperglycemia (22) and repressed hepatic fibrosis
in MEM mice. However, it is unclear whether MEM mice
develop DKD, and whether dietary factors, including barley,
attenuate DKD in MEM mice.

In this exploratory animal study, we investigated whether
T2DMMEMmice develop DKD, and whether barley intake after
birth alleviates the pathology.
MATERIALS AND METHODS

Animals
We have previously demonstrated that mice developed from
embryos cultured in vitro in a-MEM (MEM mice) exhibit
T2DM with postprandial hyperglycemia and non-alcoholic
steatohepatitis, in contrast to mice developed from embryos
cultured in vitro in potassium simplex optimized medium
(KSOM) (23). Barley intake for 10 weeks ameliorated non-
alcoholic steatohepatitis in MEM mice (21). In this study, we
used the same mice (MEM mice and KSOM mice) to explore
whether MEMmice develop DKD and to investigate the effects of
barley intake on renal pathology. Briefly, 2-cell embryos were
obtained from the uteri of Institute of Cancer Research (ICR)
pregnant mice aged 8 weeks, and subsequently, the 2-cell embryos
were cultured in either a-MEM (135-15175,Wako Pure Chemical
Industries, Ltd., Osaka, Japan) or KSOM (ARK Resource,
Kumamoto, Japan) control medium (Table S1) for 48 h
(morula stage) at 37 °C in a 5% CO2 incubator. Subsequently,
to develop MEM or KSOM mice, the morulae were transplanted
in another pregnant mouse (aged 8 weeks) and pregnant mothers,
and the mothers with suckling pups were fed the laboratory chow
diet (MF, Oriental Yeast Co., Ltd., Tokyo, Japan) until weaning
(21 days) at Kiwa Laboratory Animal Co., Ltd. (Wakayama,
Japan). After weaning, the pups were fed the laboratory chow
diet until they were of 8 weeks, and subsequently, they were fed a
high-fat, high-sugar (Western-style) diet (Supplementary Table
S2) for 58 days. At age 19–25 weeks, MEM/ICR (n = 24) and
KSOM/ICR male mice (n = 8) were moved to the University of
Yamanashi, where they were provided water and food ad libitum,
placed in cages (two per cage), and maintained under controlled
conditions (temperature 23 ± 2°C; humidity 50% ± 10%; 12 h
light/12 h dark cycle). MEM mice were then randomly allocated
to two groups of similar age and body mass. Thus, three groups
were formed: MEM mice fed a rice-based diet (Niigata Flour
Frontiers in Endocrinology | www.frontiersin.org 3
Milling Co., Ltd., Niigata, Japan; n = 12; MR group), MEM mice
fed a diet containing barley powder (Hakubaku Co., Ltd.,
Yamanashi, Japan; n = 12; MB group), and KSOM control mice
(n = 8) fed a rice-based diet (KC group). One animal in the MB
group died during the OGTT and, therefore, its data was not
included in the experimental data (21, 23). The diet composition
provided by Oriental Yeast Co., Ltd. is provided in
Supplementary Table S2. We did not calculate the sample sizes
or perform the study under blinded conditions because this was
an exploratory study. The b-glucan content in the barley diet was
1.06 g/100 g barley (average; n = 2), as determined at Hakubaku
Co., Ltd. This animal study was approved by the Ethics
Committee of the University of Yamanashi (approval number
A30-24) and was performed according to the institutional animal
experiment guidelines. The mice were decapitated, and samples
were collected from one mouse at a time in the order of MR, MB,
and KC to ensure that each group had similar mean dissection
times (9:00 am–3:00 pm) (21, 23). Kidney tissue samples were
collected and weighed, and the right kidney tissues were snap-
frozen in liquid nitrogen and stored at −80°C until use for qRT-
PCR and western blotting.

Histological Staining of the Pancreas and
Kidney Sections
The pancreas and left kidney were divided into three equal parts,
and the middle sections were immediately fixed with 4%
paraformaldehyde and incubated overnight in phosphate-
buffered saline, with the solution switched to 70% ethanol
prior to processing for paraffin embedding, as described
previously (21). Each tissue section was embedded in paraffin
by New Histo. Science Laboratory Co., Ltd. (Tokyo, Japan). The
pancreas sections were stained with hematoxylin-eosin (HE)
stain and Masson’s trichrome (MT) stain for quantifying the
islets of Langerhans and pancreatic b cells and estimating
fibrosis. The kidney sections were subjected to Periodic Acid-
Schiff (PAS) and Elastica van Gieson (EVG) staining at KAC Co.,
Ltd. (Shiga, Japan) for quantification of mesangial expansion,
glomerulosclerosis, and renal artery injury. Immunostaining for
insulin (rabbit monoclonal antibody, 1:1,000; #3014, Cell
Signaling Technology) and TGFB (transforming growth factor
beta; rabbit polyclonal antibody, 1:1,000; #3711, Cell Signaling
Technology) was performed at KAC Co., Ltd. Subsequently, the
islets of Langerhans of the pancreas, and the glomerulus, tubule,
and renal artery were examined under a light microscope
(CX41LF, Olympus Corp., Tokyo, Japan). The islets of
Langerhans were observed using HE staining. The fibrotic and
insulin-positive areas as well as the pancreatic b cells were
analyzed from the digital images (five images per a mouse).
Glomerular expansion was assessed using the fractional average
diameter based on ten glomeruli per a mouse, and glomerular
fibrosis was defined based on the mesangial matrix area (PAS-
positive area) per unit diameter, based on observations in ten
glomeruli per mouse. The nodular lesion ratios were quantified
by counting the pathological, altered glomeruli per total
glomeruli in each specimen. Intimal thickening of the renal
artery was determined as a percentage of the outer diameter
November 2021 | Volume 12 | Article 746838
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(OD) (%OD), as described previously (24). In brief, %OD = 100
(T+S)/2OD, where (T+S)/2 is the average of the two-sided
intimal thickness. Arteriolar intimal hyalinosis was observed,
as reported in previous studies (24, 25), and the hyalinization
ratio was quantified in terms of hyalinization vessel counts per
total vessel counts in each specimen. The TGFB-positive area was
measured in the glomeruli, proximal tubule, and distal tubule, as
described previously (26) (one image was randomly selected per
a mouse, n = 8–12 images in each experimental group). All
digital images were analyzed using the ImageJ software (Image
Processing and Analysis in Java, NIH, Bethesda, MD, USA), as
recommended (27).

Preparation of Kidney Homogenates and
Biochemical Analysis
Approximately 100 mg of each frozen kidney sample was
homogenized in 1 mL of RIPA buffer (1% NP-40, 0.1% sodium
dodecyl sulfate, 20 mM Tris-HCl [pH 8.0], 5 mM EDTA, 150 mM
NaCl, 1 mM Na3VO4, 0.1 mM Na2MoO4, and 10 mM NaF)
containing protease inhibitor cocktail tablets (cOmplete™, Roche
Diagnostics K.K., Risch-Rotkreuz, Switzerland), as described
previously (21, 23). Five hundred microliters of the homogenates
were dispensed and used to measure the levels of malondialdehyde
(MDA), 8-hydroxydeoxyguanosine (8-OHdG), and other
oxidative markers, in the kidney, as well as for western blotting.
Blood glucose and insulin concentrations were measured as
described previously (21, 23). Renal and urinary 8-OHdG levels
were measured using a highly sensitive ELISA kit for 8-OHdG
(Japan Institute for the Control of Aging NIKKEN SEIL CO, Ltd.,
Shizuoka, Japan), and the renal MDA concentration was measured
using a NWLSS™ Malondialdehyde Assay (Northwest Life
Science Specialties, LLC, Vancouver, WA, USA). The
phosphorous content in the collected plasma samples was
measured using a phospha-C Test Wako kit (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan). All tests were
performed according to the manufacturer’s instructions.

Statistics Analysis
The results are expressed as mean ± standard error of the mean
(SEM). In this study, there were two explanatory variables, such
as the difference in culture medium (MEM and KSOM) for in
vitro embryos and diet differences from the adult stage (control
diet and barley-based diet). Therefore, we used Student’s t-test to
compare each explanatory variable between the MEM and
KSOM groups or between the control and barley-based diet
groups. A P value < 0.05 was considered to be statistically
significant. All values were analyzed using Excel Statistics 2010
(Social Survey Research Information Co., Ltd., Tokyo, Japan).
RESULTS

Characteristics and Biochemical
Parameters of MEM Mice
As described previously (21, 23), the body weight, non-fasting
blood glucose concentrations, and insulin concentrations in MR
Frontiers in Endocrinology | www.frontiersin.org 4
mice were not higher than those in KC or MB mice. However,
food intake was higher in MR mice than in KC mice, and the
weight of the pancreas per unit body weight was lower in MB
mice than in MR mice. In this study, we measured the weights of
the pancreas and kidneys; MDA and 8-OHdG concentrations in
the kidney and urine; and plasma phosphorus concentrations in
mice. The weights of the kidney and pancreatic tissues did not
differ between MR and KC mice or between MR and MB mice.
The renal concentration of MDA, an oxidative stress marker, was
lower in MB mice than in MR mice, but did not differ between
MR and KC mice. The concentrations of 8-OHdG, an indicator
of oxidative stress, in the kidney and urine, did not differ between
MR and KC mice or between MR and MB mice. MR mice
showed higher plasma phosphorus concentrations than KC
mice, whereas MB mice showed lower plasma phosphorus
concentrations than MR mice (P = 0.055) (Table 1). The
urinary albumin was not detected (data not shown).

Pancreatic Exhaustion in MEM Mice
Under Diabetic Conditions
The islets of Langerhans were assessed by HE-staining, and the
areas of fibrosis, and insulin positivity and pancreatic b cells in
each islet of Langerhans was assessed by MT staining and
immunostaining for insulin, respectively (Figures 1A–I). The
fibrotic areas were larger inMRmice than in KCmice and smaller
in MB mice than in MR mice (Figure 1J). The insulin-positive
area was smaller in MR mice than in KC mice, whereas it was
larger inMBmice than in MRmice (Figure 1K). The islet size did
not differ between MR mice and KC mice or MR mice and MB
mice (Figure 1L). All images of HE, MT and Insulin staining of
the pancreas of each group (Supplementary Figures S1–S3).

Increased Number of Glomerular Lesions
in Diabetic MEM Mice
To ascertain whether the pathological characteristics and changes
in the glomeruli of MEM mice were owing to the diabetic
conditions, we performed PAS-staining (Figures 2A–C). The
nodular lesion ratio, which is frequently measured in diabetic
glomerular pathology, was higher in MR mice than in KC mice,
whereas it was lower in MB mice than in MR mice (Figure 2D).
The glomerular size, a measure of glomerular expansion, was
greater inMRmice than in KCmice (Figure 2E) and lesser in MB
mice than in MR mice. The glomerular fibrotic area, a measure of
the mesangial matrix area, was larger in MR mice than in KC
mice, but did not differ between MR mice and MB mice
(Figure 2F). All images of PAS in the glomerulus of each group
(Supplementary Figures S4–S6).

Renal Arterial Changes in Diabetic
MEM Mice
To assess renal artery injury, we examined the intimal thickness
and hyalinosis in the renal artery using EVG staining and PAS
staining, respectively (Figures 3A–F). Intimal thickening,
calculated as %OD, was higher in MR mice than in KC mice
(Figure 3G), whereas it was lower in MB mice than in MR mice.
The hyalinization ratio was higher in MR mice than in KC mice
November 2021 | Volume 12 | Article 746838
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and lower in MB mice than in MR mice (Figure 3H). All images
of PAS and EVG staining of the kidney of each group
(Supplementary Figures S4–S6).

Localization of Renal TGFB Protein
We performed immunostaining to evaluate renal TGFB protein
distribution, including that in the glomerulus and distal and
proximal tubules (Figures 4A–F). The areas showing TGFB
expression in the proximal and distal tubules were larger in
MR mice than in KC or MB mice (Figures 4H, I). However, the
differences in the glomerular TGFB expression levels were not
significant between MR and KC mice or MB mice (P=0.16,
P=0.21, respectively) (Figure 4G). All images of TGFB staining
in the glomerulus and proximal/distal tuble of the kidney of each
group (Supplementary Figure S7–S9). The TGFB protein level
in total kidney did not differ between MR and KC mice or
between MR and MB mice. (Supplementary Figure S10). There
was no differences of the mRNA expression levels of
inflammation cytokines between KC and MR, and between
MR and MB in the kidney (Supplementary Figure S11).
DISCUSSION

In the present study, we provided first evidence that MEM mice
developed from two-cell-stage embryos cultured in vitro in
aMEM exhibited pancreatic exhaustion and glomerulosclerosis,
in contrast to control mice developed from embryos cultured in
normal KSOM. Furthermore, the administration of dietary barley
for 10 weeks after the mice reached an adult stage ameliorated
these pathologies.

We observed a higher incidence of typical DKD pathology—
nodular lesions and glomerular hypertrophy—in MEM mice that
were fed a rice-based diet than in control KSOM mice. In this
study, we did not observe microalbuminuria in MEM mice (data
not shown), and the plasma phosphorus concentration did not
differ between MEMmice fed a rice-based diet and control KSOM
mice. The appearance of renal efferent arteriosclerosis in patients
with T2DM is frequently associated with microalbuminuria, a
marker of early-stage DKD. Thus, MEM mice at the stage
Frontiers in Endocrinology | www.frontiersin.org 5
evaluated in this study can be considered an animal model of
DKD with similar pathology to patients with an earlier stage of
DKD, although it remains unclear whether the continuous feeding
of a high-fat, high-sugar diet to MEM mice causes DKD
progression. Recent clinical studies on DKD suggest that the
assessment of DKD development based on urine microalbumin
levels is limited because progressive kidney dysfunction (eGFR <
60mL/min/1.73 m2) is frequently observed in patients with T2DM
with normoalbuminuria. The symptom is referred to as
normoalbuminuric DKD (NADKD) or nonalbuminuric diabetic
nephropathy (28, 29). There are no reports establishing NADKD
animal models with severe renal damage similar to that observed
in patients with NADKD. Further works should be examined
whether animal models including our MEM mice models reflect
human T2DM/DKD pathology by measuring biomarkers in
human such as GFR or proteinuria. Additionally, only a few
reports have shown that the symptoms in genemutation-inducible
or reagen-inducible DKD animals improve in response to dietary
interventions. One study reported that the administration of
epigallocatechin gallate (EGCg), a type of green tea extract, to
db/db mice for 8 weeks reduced the mesangial matrix index by
34%, leading to glomerular dysfunction, in contrast to that in db/
db mice that did not receive EGCg (30). In the present study, the
administration of a barley diet for 10 weeks in adult MEM mice
reduced the glomerular and nodular lesions as well as the renal
arteriolar lesions. Furthermore, barley intake for only 10 weeks
reduced the glomerular lesion ratio by 50%, intimal thickening by
15%, and hyalinosis by 27%. Taken together, MEM mice may be
considered NADKD animal models with a similar pathology to
patients with DKD, with nodular sclerosis in the glomeruli, and
the DKD pathology can be attenuated by dietary interventions.

In this study, we found that the renal arteriolar hyalinosis rate
and intimal thickening of the renal arteriola, both of which
indicate renal efferent arteriosclerosis (31), were higher in MEM
mice fed a rice-based diet than in control KSOM mice. Renal
vascular lesions in DKD are linked to renal efferent
arteriosclerosis, in which there is an increase of ECM in the
interior of renal vascular vessels, which is related to
hypertension. Hypertension is one of the strongest risk factors
for renal arteriolosclerosis. The elevation of blood pressure
TABLE 1 | Metabolic variables of KSOM control mice and MEM mice after 10 weeks of control or barley diet feeding.

KC MR MB

Age (weeks) 28 ± 0.0 30 ± 0.6* 30 ± 0.7
Body weight (g) 70 ± 3.5 81 ± 4.2 84 ± 3.8
Blood glucose (mg/dL) 191 ± 7 334 ± 73 290 ± 71
Blood insulin (mg/dL) 3.3 ± 1.2 2.3 ± 0.6 1.1 ± 0.1
Kidney weight/body weight (g/g) 0.013 ± 0.001 0.014 ± 0.002 0.013 ± 0.002
Pancreas weight/body weight (g/g) 0.008 ± 0.000 0.009 ± 0.001 0.007 ± 0.001#

Plasma phosphorus (mg/dL) 7.19 ± 0.23 8.15 ± 0.32* 7.32 ± 0.24
Renal MDA/protein (mM) 6.1 ± 0.2 6.7 ± 0.7 5.4 ± 0.5#

Renal 8-OHdG (ng/mL) 0.87 ± 0.04 1.26 ± 0.18 1.07 ± 0.04
Urinary 8-OHdG (ng/mL) 0.03 ± 0.02 0.10 ± 0.03 0.17 ± 0.10
Food consumption (g/day) 4.74 ± 0.04 7.22 ± 0.46* 8.56 ± 1.08
November 2021 | Volume 12
8-OHdG, 8-hydroxydeoxyguanosine; MB, minimum essential medium (MEM) mice on a barley diet; MDA, malondialdehyde; MR, MEM mice on a rice diet; KC, potassium simplex
optimized medium control mice on a rice diet. Data are expressed as means ± SEM for 8-12 mice. Statistical analyses were performed by Student’s t-test. *P < 0.05 compared with the KC
group; #P < 0.05 compared with the MR group.
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induces endothelial collapse and subsequent endothelial cell
proliferation for the repair of the renal arteriola, which leads to
the development of renal efferent arteriosclerosis (32).
Reportedly, greater renal arteriolar hyaline degeneration as well
as mesangial matrix proliferation and glomerular fibrosis were
observed in patients with NADKD with exacerbated eGFR (<60
Frontiers in Endocrinology | www.frontiersin.org 6
mL/min/1.73 m2) than in patients with normal eGFR NADKD,
but there was no difference in the systolic/diastolic blood
pressure between patients with NADKD with normal/
exacerbated eGFR (33). In representative conventional T2DM
models, such as ob/ob mice and db/db mice, renal efferent
arteriosclerosis as well as glomerular lesions were observed in
FIGURE 1 | b-Cell area in mice after 10 weeks of experimental diet intake. (A–C) Representative histological hematoxylin-eosin staining of pancreatic sections from
mice from each of the three experimental groups. (D–F) Fibrotic areas in the pancreas within the islets were stained blue after Masson’s trichrome staining (arrows).
(G–I) Insulin-positive areas within the islets are stained brown (scale bar, 100 µm). Ratio of areas with fibrosis (J) and insulin-positive cells (K) in the pancreatic islets
and area of pancreatic islets (L). MB, minimum essential medium (MEM) mice on a barley diet; MR, MEM mice on a rice diet; KC, potassium simplex optimized
medium control mice on a rice diet. Data are expressed as the mean ± SEM for 8–12 animals. Data were analyzed using Student’s t-test. *P < 0.05 compared with
the KC group; #P < 0.05 compared with the MR group.
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endothelial nitric oxide synthase (eNOS)-deficient db/db mice
(34) and -ob/ob mice of the BTBR strain (35). eNOS expression
in the endothelium is associated with the reduction of blood
pressure via the relaxation of blood vessels (36). These results
indicate that hypertension with diabetes is associated with the
development of renal efferent arteriosclerosis. Therefore, renal
efferent arteriosclerosis in MEM mice may be caused by
hypertension, and the improvement of renal efferent
arteriosclerosis in MEM mice by barley intake may require the
reduction of hypertension. However, in this study, we did not
measure the blood pressure of MEM mice. Reportedly, rat
offspring that underwent protein restriction (9% casein) during
the fetal period showed reduced nephron number (37). In a
human cohort study, participants with a low birth weight had a
higher incidence of hypertension at 36 years of age compared to
participants with normal birth weight (38), and participants born
to mothers who experienced severe famine during early gestation
had a higher incidence of hypertension and kidney disease at 58
years of age compared with those born to mothers who did not
experience famine during gestation (39). It remains unclear how
renal efferent arteriosclerosis is ameliorated by barley intake. A
placebo-controlled randomized trial called Study TO Prevent
Frontiers in Endocrinology | www.frontiersin.org 7
Non-Insulin-Dependent Diabetes Mellitus (STOP-NIDDM)
reported that treatment with acarbose, an a-glucosidase
inhibitor, in mildly impaired glucose tolerance reduced not
only the risk of T2DM progression (36%) (40) but also a
develop risk of hypertension (34%) and cardiovascular disease
(49%) (41). In addition, treatment with the a-glucosidase
inhibitor miglitol (42) and barley (23) lowered the expression
of inflammatory cytokines, such as interleukin 1 beta and tumor
necrosis factor alpha, and integrins, such as CD11s in peripheral
leukocytes of rodents with diabetes. Further investigation is
needed to confi rm the assoc ia t ion between rena l
arteriolosclerosis and hypertension by blood pressure
measurement in MEM mice.

In this study, we found that the number of insulin-positive
b cells was lower and the number of fibrotic-areas was higher in
the pancreas of MEM mice fed a rice-based diet than in KSOM
control mice. Further, the reduction in the number of insulin-
positive b cells and expansion of fibrotic areas in the pancreas of
MEM mice was ameliorated by barley intake for 10 weeks in the
adult stage. Therefore, pancreatic exhaustion in MEM mice was
suppressed by barley administration for 10 weeks. A previous
study on a T2DM animal model–the Goto-Kakizaki (GK) rat–
FIGURE 2 | Histopathology showing fibrosis and pathogenesis in the kidneys of mice after 10 weeks of experimental diet intake. (A–C) Glomerular fibrosis observed
using Periodic acid–Schiff staining (scale bar, 20 µm) in mice from the three groups. (D–F) Quantification of the nodular lesion ratio (D), glomerular size (E), and
fibrotic area (F). MB, minimum essential medium (MEM) mice on a barley diet; MR, MEM mice on a rice diet; KC, potassium simplex optimized medium control mice
on a rice diet. Data are expressed as the mean ± SEM for 8–12 animals. Data were analyzed using Student’s t-test. *P < 0.05 compared with the KC group; #P <
0.05 compared with the MR group.
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demonstrated that 8-week treatment with miglitol, which is an
a-glucosidase inhibitor, suppressed postprandial hyperglycemia,
in contrast to that in non-treated GK control rats, but it did not
improve the insulin secretion capacity and pancreatic exhaustion
(43). Another study reported that the miglitol treatment of
OLETF rats improved pancreatic exhaustion, but improvement
was observed only after treatment for more than 1 year (65
weeks) (44). Additionally, dietary supplementation with
acarbose, an a-glucosidase inhibitor, in db/db mice for 4 weeks
moderately improved the insulin secretion capacity compared
with that in db/db mice that did not receive the supplement.
However, considerably high doses of acarbose (such as 9 g/kg/
day) were needed, whereas patients with T2DM are administered
Frontiers in Endocrinology | www.frontiersin.org 8
doses of 150−300 mg/day (45). Therefore, the MEM mouse is an
effective T2DM model that can be used to assess dietary factors
and/or drugs to improve T2DM and DKD. However, it should be
confirmed whether the T2DM and DKD pathologies in MEM
mice are in fact improved by other dietary factors and drugs. Of
note, the body weight did not differ significantly between MEM
mice fed a rice-based diet and KSOM control mice, whereas food
intake was greater in MEM mice fed a rice-based diet than in
KSOM control mice. MEM mice show characteristic
hyperglycemia with a slightly higher weight and reduced
capacity of insulin secretion from the pancreas in spite of
overeating, similar to lean Asian patients with T2DM, as
shown in a previous study (20). In future studies, it should be
FIGURE 3 | Histopathology showing renal arteriolar intimal thickening and hyalinosis in the kidneys of mice after 10 weeks of experimental diet intake. (A–C)
Glomerular fibrosis observed using Elastica van Gieson staining (arrow) (scale bar, 50 µm) in mice from the three groups. (D–F) Renal arteriolar hyalinosis observed
using Periodic acid–Schiff staining (arrow) (scale bar, 50 mm) in mice from the three groups. (G, H) Quantification of arteriosclerosis ratio (%OD) by fibro-intimal
thickening/vascular media (G) and hyalinization of the intrarenal vasculature (H). OD, outer diameter; MB, minimum essential medium (MEM) mice on a barley diet;
MR, MEM mice on a rice diet; KC, potassium simplex optimized medium control mice on a rice diet. Data are expressed as the mean ± SEM for 8–12 animals. Data
were analyzed using Student’s t-test. *P < 0.05 compared with the KC group; #P < 0.05 compared with the MR group.
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investigated whether the capacity of insulin secretion is lower
from a prior to development of T2DM/DKD in MEM mice. In
addition, it should be examined whether MEM mice can develop
T2DM/DKD even when pair-feeding is performed for equal
consumption between MEM and KSOM mice.

In the present study, we demonstrated that barley intake
improved DKD pathologies, including tuberous sclerosis and
renal arteriolar changes, in MEM mice. It was previously
reported that barley intake decreased the blood glucose levels
30 min after the meal in healthy participants, suggesting that
barley intake can decrease the postprandial blood glucose
concentration (46). We previously performed OGTT to assess
the glucose tolerance of MEM mice, but the assay could not
assess the postprandial blood glucose levels after barley intake in
Frontiers in Endocrinology | www.frontiersin.org 9
diurnal variation (23). Therefore, the improvement in DKD
pathology in MEM mice after barley intake could be attributed
to the reduction of postprandial hyperglycemia by barley.
Another potential contributor is the prebiotic effect of b-
glucan, which is an abundant soluble dietary fiber present in
barley. Indeed, it was reported that the daily oral administration
of b-glucan (80% purity) at 1 g/kg body weight/day in specific
pathogen-free mice fed a 12-week high-fat (60% kcal) diet altered
the intestinal bacterial flora in present in feces, although the
particular role of the bacterial flora is not fully understood (47).
Barley intake for 8 weeks increased the proliferation of probiotic
Lactobacillus strains, such as Prevotella, Lactobacillus, and the
fiber-degrader S24-7 (Candidatus Homeothermaceae) in obese
db/dbmice compared to that in lean db/m control or obese db/db
FIGURE 4 | Histopathological evaluation by immunostaining for transforming growth factor beta (TGFB) and quantification of TGFB in the mice kidney tissues after
10 weeks of experimental diet intake. (A–F) Representative histological TGFB staining of sections of the glomerulus, distal tubule (A–C), and proximal tubule (D–F) in
mice from each of the three experimental groups (TGFB-positive areas are stained orange; scale bar, 50 µm). Quantification of the TGFB-positive area in the
glomerulus (G), proximal renal tubules (H), and distal renal tubules (I). MB, minimum essential medium (MEM) mice on a barley diet; MR, MEM mice on a rice diet;
KC, potassium simplex optimized medium control mice on a rice diet. Data are expressed as the mean ± SEM for 8–12 animals. Data were analyzed using Student’s
t-test. *P < 0.05 compared with the KC group; #P < 0.05 compared with the MR group.
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mice fed a control diet (48). Further studies are needed to
examine whether the intestinal bacterial flora altered by barley
intake can improve DKD in MEM mice.

The components of the aMEM responsible for the
development of T2DM/DKD pathologies in MEM mice remain
unknown, even though the components, such as non-essential
amino acids and vitamins, differ between KSOM and aMEM
(Supplementary Table S1). In human clinical practice, aMEM is
not used in the in vitro culture of embryos in in vitro fertilization
(IVF), and media with relatively simple ingredients, similar to
KSOM, are used. A study demonstrated that in spite of the same
body-mass index, at puberty, children born via IVF had higher
fasting blood glucose levels, systolic and diastolic blood pressure
(49), and peripheral fat mass (50) than children born by
spontaneous delivery. In addition, it was reported that children
born via IVF have a higher risk of low birth weight (<2,500 g)
and cardiovascular hospitalization incidence until 18 years
compared with children born via spontaneous delivery (51)
This shows that in vitro embryo culture in the early embryo
stage may affect health risks, such as that for T2DM/DKD, after
birth, and the optimal medium for IVF is still under investigation
in human clinical practice. Further studies are needed to identify
the components of aMEM that influence the T2DM/DKD
pathology in MEM mice to optimize the culture media for
assisted reproductive technology (ART) with a low health
hazard risk and to determine the mechanism underlying
aMEM exposure-induced DKD pathogenesis at the two-cell
embryo stage. In addition, the IVF medium used in human
clinical practice should be optimized by evaluating T2DM and
DKD development in mice that have developed from embryos
subjected to in vitro culture in the medium. However, the
conditions in the mice models are different from those in
human disease; therefore, further studies are needed to
examine whether the different methods used in ART induce
metabolic disorders in mice and humans.

Of note, the glomerular distribution of TGFB protein, a
strong risk factor for the development of glomerulosclerosis by
mesangial matrix expansion (52), did not differ between MEM
mice fed a rice-based diet and KSOM control mice. It has also
been reported that db/db mice, which exhibit severe non-fasting
hyperglycemia (34.8 ± 6.3 mM (mean ± SEM) at 25 weeks of age)
(53), expressed TGFB and showed mesangial matrix expansion
in the glomerulus. Therefore, MEM mice developed early-stage
and non-fulminant DKD. Interestingly, we found that TGFB
distribution in the proximal/distal renal tubules was higher in
MEM mice fed a rice-based diet than in KSOM control mice. In
addition, after MEM mice reached an adult stage, barley intake
suppressed TGFB expression in the renal tubules. Kidney
sections have been studied to show that TGFB expression is
relatively higher in the renal tubules than in the glomerulus in
patients with T2DM (54). The kidney contains diverse cell types
(including the cells in the glomerulus and proximal/distal
tubules) with varied functions. TGFB is reportedly expressed in
renal tubules as well as in the glomerulus during the
development of nephropathy (55); however, the roles of TGFB
in renal tubular dysfunction remain unclear. The results of the
Frontiers in Endocrinology | www.frontiersin.org 10
present study suggest that a higher TGFB expression in the renal
tubules of MEM mice may indicate renal tubular dysfunction.
Further studies are required to identify the stage of DKD in
MEM mice, to measure TGFB expression in the tubules or
glomeruli of MEM mice and patients with DKD, and to
determine the roles of TGFB in renal tubular dysfunction. In
addition, with the progression of DKD in T2DM, MEM mice
from the pre-DKD stage to late-DKD stage should be assessed to
confirm whether MEM mice models show pathologies similar to
those observed in human T2DM/DKD.

In conclusion, T2DM MEM mice formed from two-cell
stage embryos cultured in vitro in a-MEM developed DKD,
and barley intake after birth ameliorated the DKD pathology in
these mice.
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