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Abstract: Radiomics is an emerging field of image analysis with potential applications in patient
risk stratification. This study developed and evaluated machine learning models using quantitative
radiomic features extracted from multiparametric magnetic resonance imaging (mpMRI) to detect and
classify prostate cancer (PCa). In total, 191 patients that underwent prostatic mpMRI and combined
targeted and systematic fusion biopsy were retrospectively included. Segmentations of the whole
prostate glands and index lesions were performed manually in apparent diffusion coefficient (ADC)
maps and T2-weighted MRI. Radiomic features were extracted from regions corresponding to the
whole prostate gland and index lesion. The best performing combination of feature setup and classifier
was selected to compare its predictive ability of the radiologist’s evaluation (PI-RADS), mean ADC,
prostate specific antigen density (PSAD) and digital rectal examination (DRE) using receiver operating
characteristic (ROC) analysis. Models were evaluated using repeated 5-fold cross-validation and a
separate independent test cohort. In the test cohort, an ensemble model combining a radiomics model,
with models for PI-RADS, PSAD and DRE achieved high predictive AUCs for the differentiation of (i)
malignant from benign prostatic lesions (AUC = 0.889) and of (ii) clinically significant (csPCa) from
clinically insignificant PCa (cisPCa) (AUC = 0.844). Our combined model was numerically superior
to PI-RADS for cancer detection (AUC = 0.779; p = 0.054) as well as for clinical significance prediction
(AUC = 0.688; p = 0.209) and showed a significantly better performance compared to mADC for csPCa
prediction (AUC = 0.571; p = 0.022). In our study, radiomics accurately characterizes prostatic index
lesions and shows performance comparable to radiologists for PCa characterization. Quantitative
image data represent a potential biomarker, which, when combined with PI-RADS, PSAD and DRE,
predicts csPCa more accurately than mADC. Prognostic machine learning models could assist in
csPCa detection and patient selection for MRI-guided biopsy.
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1. Introduction

Prostate cancer (PCa) is the second most frequent cancer diagnosis made in men, with 1,276,106
new cases and 358,989 deaths reported worldwide in 2018 [1]. Early and accurate detection of clinically
significant prostate cancer (csPCa), which is defined as ISUP grade 2 or higher [2], is essential to initiate
treatment in a timely manner and improve patient outcomes [3].

Over the past decades, multiparametric magnetic resonance imaging (mpMRI) and consecutive
targeted biopsy have become integral diagnostic procedures for the detection and risk stratification
of csPCa [4,5], showing an improvement in detection compared to systematic non-targeted prostate
biopsy [5-7]. The Prostate Imaging-Reporting and Data System (PI-RADS) defines standards for image
acquisition and reporting and is broadly utilized in clinical practice. It has recently been updated to
version 2.1 to address the inconsistencies and limitations of the previously released PI-RADS versions [8].
PI-RADS v2.1 relies on the qualitative assessment of T2-weighted and diffusion-weighted (DWI), as well
as dynamic contrast-enhanced (DCE) images. The sensitivity of 93% and the negative predictive value
of 89% were reported for the detection of csPCa using the PI-RADS classification [3]. Prostate-specific
antigen density (PSAD) has been proved to increase the specificity of prostate-specific antigen (PSA)
in detecting PCa [9], however, early evidence on its use for the selection process for biopsy was
conflicting. Several recent studies suggest that PSAD, combined with mpMRI, improves the negative
predictive value of PI-RADS scoring [10,11]. Lesion volume, as estimated on T2w MRI, has also been
independently associated with PCa detection and clinical significance [12]. Digital rectal examination
(DRE) is commonly performed to screen for PCa, although a recent meta-analysis demonstrated its low
efficacy with a pooled sensitivity of 0.51 and specificity of 0.59 for PCa detection [13]. To deliver the
benefits of the MRI-diagnosis pathway, there is an important need to increase work efficiency while
minimizing variability in MRI data acquisition and in reader interpretations and to reduce the time
needed to identify men who are likely to have csPCa.

Machine learning is a field of artificial intelligence (Al) covering an extensive range of algorithms
that can be trained to perform a certain task, such as classification. Supervised learning methods,
which use labeled data to guide the algorithm, have arguably seen the biggest success in medical
imaging, with applications including diagnosis of metastatic disease, diabetic retinopathy, or intracranial
hemorrhage [14,15]. Typical supervised machine learning approaches include an end-to-end
classification on input images with convolutional neural networks (CNNs) or classification on features
priorly extracted from the image.

Radiomic analysis is defined as computationally extracting quantitative image features for the
characterization of disease patterns. Analyzed image features include shape features, first-order
statistics, and texture characteristics, such as grey level co-occurrence matrices (GLCM) [16]. Recent
advances in image analysis techniques using radiomic features to assess genomic, proteomic, and clinical
phenotypes of the prostate tumor were shown to match or even surpass the qualitative imaging
assessment of radiologists [17-19].

The aim of this study was to develop predictive machine learning models for prostate cancer
detection and classification and compare them with the PI-RADS-based assessment of radiologists
and quantitative imaging as well as clinical biomarkers using ROC analysis and specificity threshold
equivalent to clinical reporting [20]. We focused on two clinically relevant classification tasks:
(i) malignant vs. benign prostate lesion and (ii) csPCa vs. cisPCa classification.
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2. Results

2.1. Demographic Data

Demographic and clinical characteristics, as well as MRI findings of the entire study cohort,
are summarized in Table 1. The analyzed parameters did not follow normal distribution and thus,
are summarized with median and IQR. Of the 191 enrolled patients, 151 patients were included in
the training cohort (median age 68 years, IQR: 63-74 years, median serum PSA 7.60 ng/ml, IQR:
5.71-11.0 ng/ml) and 40 patients were included in the test cohort (median age 69 years, IQR: 63-72 years,
median serum PSA 8.17 ng/ml, IQR: 6.82-11.85 ng/ml). No patients were under ongoing medical therapy.
For all 191 included patients, a single index lesion per patient was segmented and scored according to
PI-RADS v2.0. MR-/Ultrasound fusion biopsy of suspicious index lesions (and following standard
TRUS-guided 12-core prostate biopsy) revealed 102 patients with benign lesions and 89 patients with
histologically proven PCa, including 65 patients with csPCa and 24 with cisPCa, respectively. Clinically
significant cancer was surgically defined as a Gleason score of 7 (ISUP grade 2) or greater.

Table 1. Demographic and clinical characteristics as well as MRI findings of all 191 enrolled patients.

Variable Training Set Test Set
Patients in total 151 40
PCa-negative 80 22
PCa-positive: 71 18

ISUP grade 1 (GS = 6) 17 (24%) 7 (39%)
ISUP grade > 2 (GS > 7) 54 (76%) 11 (61%)
ISUP grade 2 26 (37%) 3 (17%)
ISUP grade 3 14 (20%) 5 (28%)
ISUP grade 4 11 (15%) 3 (17%)
ISUP grade 5 3 (4%) -

Zonal distribution of index lesions:

Peripheral zone 102 (67.55%) 28 (70%)
Transition zone 49 (32.45%) 12 (30%)
Median age (years) 68 (63-74) 69 (63-72)
Median PSA value (ng/ml) 7.60 (5.71-11.00) 8.17 (6.82-11.85)

Median PSA density (ng/ml?)

0.161 (0.108-0.241)

0.194 (0.134-0.291)

Median prostate volume (ml) 48.4 (33.4-67.9) 42.6 (30.2-67.7)
Median lesion volume (ml) 0.53 (0.34-0.91) 0.53 (0.32-0.98)
MRI index lesion evaluation:

PI-RADS 2 8 (5%) 5 (12%)
PI-RADS 3 70 (46%) 14 (35%)
PI-RADS 4 43 (28%) 14 (35%)
PI-RADS 5 30 (20%) 7 (23%)

Prior biopsy status:

No biopsy 73 13

Prior biopsy negative 59 22

Prior biopsy positive 19 5

Prior transurethral resection of the prostate (TURP) 17 5

* in square brackets interquartile range: 25% value-75% value. PSA = Prostate specific antigen; PCa = Prostate
cancer; ISUP = International Society of Urological Pathology; GS = Gleason score.

The combined results of our ROC curve analysis are presented in Table 2, with the training
results calculated in the setting of repeated 5-fold cross-validation. Visual comparison of PI-RADS,
mADC, and the selected models is shown in Figure 1 for the malignant vs. benign classification
and in Figure 2 for the csPCa vs. cisPCa classification. Thresholds selected for sensitivity analysis
corresponding to PI-RADS were 0.471 for radiomics and 1003 x 10~® mm?/s for mADC for malignant
vs. benign classification, and 0.45 for radiomics and 987 x 10~® mm?/s for mADC for csPCa vs.
cisPCa classification.
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Figure 1. Receiver operating characteristics (ROC) curves for malignant vs. benign prostate lesion
classification, in (a) 5-fold cross-validation, and (b) independent test set.

2.2. Differentiation between Malignant and Benign Prostate Lesions

In the cross-validated analysis, the radiomics model achieved good predictive performance with
a mean AUC of 0.783 for the differentiation of malignant vs. benign prostate lesions. In comparison,
alternative clinical or imaging-based predictors numerically showed inferior predictive performance:
PI-RADS (AUC = 0.758, p = 0.368), mADC (AUC = 0.754, p = 0.222), PSAD (AUC = 0.780, p = 0.714)
and DRE (AUC = 0.617, p < 0.001) (Table 2). The cross-validated sensitivity of the radiomics model was
75% (53 of 71), and thus, marginally but not significantly higher than that of radiologist assessment
using PI-RADS (70% (50 of 71), p = 0.832) or mean ADC values (69% (49 of 71), p = 0.581) (Table 3).
In the independent test set, the radiomics model ensembled with PI-RADS, PSAD, and DRE achieved
an excellent predictive performance with an AUC of 0.889, numerically higher than both PI-RADS
(AUC =0.779, p = 0.054) and mADC (AUC = 0.745, p = 0.067). The sensitivity of the ensemble radiomics
model was 94% (17 of 18 lesions), compared with 83% for PI-RADS (15 of 18) (p = 0.5) and 61% for
mADC (11 of 18) (p = 0.031), which proved that the model combining radiomics, PI-RADS and clinical
predictors significantly improved sensitivity over mADC.

Table 2. Results of ROC analysis for the two selected classification tasks.

Predictor Malignant vs. Benign Lesions csPCa vs. cisPCa
Cohort mean AUC 95% CI * p-Value'  mean AUC 95% CI * p-Value *

Training
PI-RADS 0.758 (0.671-0.817)  0.368 0.681 (0.572-0.786)  0.144
mADC 0.754 (0.677-0.827)  0.222 0.697 (0.592-0.781)  0.177
PSAD 0.780 (0.704-0.859) 0.714 0.644 (0.545-0.740)  0.039 *
DRE 0.617 (0.556-0.667) <0.001%  0.666 (0.605-0.721)  0.039 *
Radiomics model 0.783 (0.682-0.875)  ref. 0.807 (0.691-0.906)  ref.
Test
PI-RADS 0.779 (0.603-0.922)  0.054 0.688 (0.431-0.889)  0.209
mADC 0.745 (0.583-0.887)  0.067 0.571 (0.277-0.691)  0.022*
Ensemble radiomics model 0.889 (0.751-0.990)  ref. 0.844 (0.6-1.0) ref.

* 95% confidence interval was calculated with BBC-CV for the radiomics model and with bootstrapping for the
other variables. * calculated with DeLong test for differences in AUC ROC compared with the reference (= ref.).
* statistically significant difference. BBC-CV = Bootstrap Bias Corrected Cross Validation.

As a next step, we analyzed the subgroup of small index lesions, with volumes of less than
0.5 ml and compared it with the subgroup of large index lesions (volume > 0.5 ml) [21,22]. This time,
we performed ROC analysis for PCa detection only in the cross-validation cohort, to avoid small
subgroup sample sizes in the test set (Table 4). In the small lesion subgroup, which included 71
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patients, our radiomics model achieved a mean AUC of 0.678, comparable to PI-RADS (AUC = 0.694,
p = 0.964) and mADC (AUC = 0.662, p = 0.574). In the large lesion subgroup (77 patients), our radiomics
model with a mean AUC of 0.890 was numerically superior to the other two predictors, PI-RADS
(AUC =0.792, p = 0.093) and mADC (AUC = 0.829, p = 0.212), respectively.

2.3. Differentiation between csPCa and cisPCa

In the cross-validated analysis, the best performing radiomics model achieved a predictive AUC of
0.807, which was numerically higher than PI-RADS (AUC = 0.681, p = 0.144) and mADC (AUC = 0.697,
p = 0.177) and showed a significantly better performance than PSAD (AUC = 0.644, p = 0.039) and DRE
(AUC = 0.666, p = 0.039). The cross-validated sensitivity of the radiomics model was 83% (45 of 54).
Within the training set, the sensitivity of the radiomics model was numerically but not significantly
higher than that of radiologist assessment using PI-RADS (80% (43 of 54), p = 0.803) and mADC (70%
(45 of 54), p = 0.092). In the independent test set, our ensemble radiomics model combining quantitative
radiomic features, PI-RADS, and clinical predictors (PSAD and DRE) achieved a numerically superior
predictive performance with an AUC of 0.844 in comparison to PI-RADS alone (AUC = 0.688, p = 0.209)
and performed significantly better than mADC (AUC = 0.571, p = 0.022) for the prediction of clinically
significant prostate cancer. The sensitivity of the ensemble radiomics model was 91% (10 of 11 lesions),
equal to PI-RADS (15 of 18), and higher than mADC (64% (11 of 18)). It should be noted, however,
that at 91% sensitivity, the ensemble radiomics model achieved specificity of 57% (4/7) vs. 28% (2/7)
for PI-RADS.
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Figure 2. ROC curves for csPCa vs. cisPCa classification, in (a) cross-validation, (b) independent test
set. csPCa = clinically significant prostate cancer; cisPCa = clinically insignificant prostate ca.ncer.

As in the previous task, we performed ROC analysis of csPCa vs. cisPCa classification separately
for small (<0.5 ml) and large (>0.5 ml) index lesion subgroups in the cross-validation cohort. The small
lesion subgroup was represented by 32 patients. The radiomics model achieved a cross-validated
mean AUC of 0.708, almost similar to PI-RADS (AUC 0.707, p = 0.972) and mADC (AUC 0.731,
p = 0.731). In the large lesion subgroup (39 patients), the radiomics model with a mean AUC of 0.873
was significantly better than PI-RADS (AUC 0.619, p = 0.03), whereas mADC achieved a mean AUC of
0.633 (p = 0.212).



Cancers 2020, 12, 1767

6 of 14

Table 3. Diagnostic performance of radiologist interpretation and radiomics on a per patient basis.

Predictor Sensitivity (%) * 95% CI(%) p Value®  Specificity (%) *  95% CI (%)
Cohort malignant vs. benign lesions
Training
PI-RADS 70 (50/71) (59-81) 0.832 71 (56/79) (60-81)
mADC 69 (49/71) (56-77) 0.581 73 (58/79) (65-84)
Radiomics model 75 (53/71) (57-87) reference 73 (58/79) (56-83)
Test
PI-RADS 83 (15/18) (74-91) 0.500 73 (16/22) (63-82)
mADC 61 (11/18) (50-73) 0.031 82 (18/22) (73-90)
Ensemble radiomics 94 (17/18) (88-99) reference 77 (17/22) (68-86)
csPCa vs. cisPCa
Training
PI-RADS 80 (43/54) (69-90) 0.803 59 (10/17) (36-83)
mADC 70 (38/54) (58-81) 0.092 59 (10/17) (33-82)
Radiomics model 83 (45/54) (69-95) reference 65 (11/17) (20-100)
Test
PI-RADS 91 (10/11) (82-98) 1.0 28 (2/7) (13-46)
mADC 64 (7/11) (50-78) 0.250 43 (3/7) (24-60)
Ensemble radiomics 91 (10/11) (81-98) reference 57 (4/7) (38-74)

* in brackets proportion of raw data. ¥ McNemar test for differences in sensitivity compared with reference.
csPCa = clinically significant prostate cancer; cisPCa = clinically insignificant prostate cancer.

Table 4. Analysis of patient subgroups with small (<0.5 ml) and large (>0.5 ml) index lesions in the

cross-validation cohort.

Cohort * Predictor Mean AUC 95% CI p-Value *
malignant vs. benign lesions

PI-RADS 0.694 (0.582-0.803) 0.964

Small lesions (71) mADC 0.662 (0.530-0.781) 0.574
Radiomics model 0.678 (0.560-0.814) reference

PI-RADS 0.792 (0.694-0.882) 0.093

Large lesions (77) mADC 0.829 (0.736-0.915) 0.212
Radiomics model 0.890 (0.812-0.953) reference

csPCa vs. cisPCa
PI-RADS 0.707 0.972
. (0.506-0.875)

Small lesions (32) mADC 0.731 0.801
Radiomics model 0.708 (0.537-0.897)v(0.525-0.880) reference

PI-RADS 0.619 (0.385-0.853) 0.030

Large lesions (39) mADC 0.633 (0.388-0.838) 0.086
Radiomics model 0.873 (0.701-0.993) reference

* in brackets raw number of patients. + DeLong test for differences in AUC ROC compared with the reference.
csPCa = clinically significant prostate cancer; cisPCa = clinically insignificant prostate cancer.

All features selected for our radiomics signature for both tasks are enumerated in Supplementary
Table S1. Table 5 shows the Spearman correlation coefficients between ISUP grade and first five
radiomic features selected for the csPCa detection task. The features come from all three segmentation
VOIs (ADC lesion, T2w lesion, and T2w whole gland masks) and are negatively correlated with
ISUP grade. Two features extracted from the T2w images, one related to whole gland shape and one
quantifying lesion homogeneity, are weakly correlated with high statistical significance (p < 0.05).
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Table 5. Spearman correlation coefficient (p) for correlation of the ISUP grade with the first five radiomic
features chosen by mRMR for csPCa vs. cisPCa prediction.

Feature Sequence VOI P p-Value
‘original_shape_Maximum2DDiameterColumn’ T2 whole gland —0.229 0.031*
‘original_firstorder_Maximum’ ADC lesion -0.110 0.305
‘original_shape_Sphericity” T2 whole gland —-0.154 0.149
‘original_glrlm_GrayLevelNonUniformityNormalized” T2 lesion —0.260 0.014
‘original_shape_Elongation’ ADC lesion —-0.11 0.301

* statistically significant correlation. ISUP = International Society of Urological Pathology; csPCa = clinically

significant prostate cancer; cisPCa = clinically insignificant prostate cancer.

Supplementary Table S2 presents model performance within each separate zone. It can be
observed that for both tasks, our model is more accurate in classifying lesions located in the peripheral
zone rather than the transition zone.

3. Discussion

We investigated whether a machine learning model developed with quantitative radiomic
features extracted from pretreatment mpMRI of the prostate could successfully differentiate between
(i) malignant and benign prostate lesions and (ii) csPCa and cisPCa. Such a model could
prospectively improve the clinical selection process for prostate biopsy and potentially tailor individual
treatment decisions.

The main finding of our study is that certain radiomic features extracted from mpMRI are reliable
quantitative imaging biomarkers for PCa detection and classification and machine learning models
using them show good predictive performance in comparison to mADC and PI-RADS as well as
clinical biomarkers such as PSAD and DRE. Furthermore, our ensemble model combining radiomics,
PI-RADS, PSAD, and DRE resulted in a predictive performance numerically superior to PI-RADS with
regard to ROC and sensitivity analyses for both considered classification tasks. In detail, our ensemble
model achieved a high predictive AUC of 0.889 for PCa detection and an AUC of 0.844 for csPCa
vs. cisPCa classification in the independent test set. As a comparison, PI-RADS-based assessment
resulted in AUC of 0.779 (p = 0.054) and 0.688 (p = 0.209), for cancer detection and csPCa classification,
respectively. The ensemble model showed a significantly better predictive performance for csPCa vs.
cisPCa classification than mADC, as an established quantitative imaging biomarker (AUC = 0.571;
p = 0.035).

Several previous studies outlined the potential of radiomics for PCa characterization in mpMR
images. Antonelli et al. [18] found that zone-specific models combining PSAD and radiomic features
outperformed experienced radiologist assessments for the csPCa detection. Chaddad et al. [23] found
a significant correlation between GLCM features extracted jointly from T2w and ADC images and
Gleason score, with an AUC of 0.78 for GS < 3, 0.82 for GS 3+4 and 0.65 for GS > 4+3. Monti et al. [24]
found that for PCa detection, standard radiomics models using T2w and ADC images performed
better than an advanced model with additional diffusion kurtosis imaging and DCE. Approaches
extracting radiomic features from prostate mpMRI using auto-fixed VOIs have also achieved promising
results on peripheral zone csPCa detection, with the highest AUC of 0.87 for the XGBoost classifier [19].
On the other hand, Bonekamp et al. [20] showed that for PCa detection, mADC alone achieved good
results, comparable to clinical interpretation, and found no further benefit with complex radiomics
and machine learning methods, which is in line with our study results. Recent approaches using deep
neural networks for lesion classification have also been reported to perform comparably to PI-RADS for
PCa characterization using mpMRI [17,25]. However, their application in clinical routine is currently
limited by poor generalization and low model interpretability.

A prior study by Hotker et al. [26] found a good to moderate AUC of 0.693 for mean ADC values
in a dataset of 158 patients to detect csPCa. This is in line with the results of our study, where the
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predictive power of mADC measured with AUC varied from 0.697 to 0.754, depending on the task.
Despite good repeatability, mean ADC values were less discriminative than either PI-RADS or our
ensemble radiomics model and were achieving lower AUC for csPCa detection (p = 0.022) as well as
lower sensitivity for PCa detection (p = 0.031) in comparison to our ensemble radiomics model. It is
worth noting that the mRMR algorithm preferred the median ADC value as a more predictive feature
than mADC in our cohort. We also found that other radiomic features, associated with shape and
texture in T2w images, were correlated with Gleason scoring (Table 5).

Our study included a considerable number of small lesions (volume < 0.5 ml) with 23/54 and 5/11
ISUP grade > 2 tumors in the training and test cohort, respectively. This threshold was first suggested
by Epstein et al. [21] to separate insignificant from moderate/advanced tumors based on an earlier
study by Stamey et al. [22], who outlined that the majority of prostate cancers smaller than 0.5ml are not
likely to reach clinical significance. Since then, multiple recent studies confirmed that low risk prostate
cancer is generally a low volume disease and a cut-off of 0.5 ml is commonly used to distinguish
insignificant from clinically significant cancer [15,27,28]. Smaller index lesions are often challenging for
visual analysis in daily clinical routine and may be overlooked, potentially resulting in lower cancer
detection rates. We analyzed this subgroup and found that radiomics achieved a cross-validated
AUC of 0.678 for task (i) and an AUC of 0.686 for task (ii), compared with AUCs of 0.890 and 0.873,
respectively, in the subgroup of large lesions (>0.5ml). In the small lesion subgroup, PI-RADS was
non-inferior to our model, which suggests that radiologist reassessment could measurably improve the
predictions. Previous studies commonly excluded lesions with volumes of less than 0.5 ml from their
analysis [19,26,29-32] or provided no information about the distribution of lesion volumes [20,33].

Our radiomics model detects and classifies prostate cancer with higher accuracy in the peripheral
zone than the transition zone. This is in agreement with recent reports showing a better performance of
diffusion-weighted imaging for peripheral zone lesion characterization [8]. Although the advantage of
quantitative measures (over qualitative clinical assessment) was also shown for the transition zone [34],
the limitation of quantitatively assessing prostate cancer in the transition zone is related to overlapping
features for cancers and nodules due to stromal benign prostatic hyperplasia [35]. This is also reflected
within the zone-specific assessment of the PI-RADS classification and its modifications during recent
years [8].

We found that the addition of clinical parameters, including DRE and PSAD to the radiomics model
yielded predictive performances superior to PI-RADS, in regard of AUC and sensitivity/specificity
for both considered tasks, although the differences did not achieve statistical significance in the
majority of comparisons. However, in our test set, the ensemble model incorporating PI-RADS and
clinical predictors (PSAD, DRE) did show an excellent predictive performance which was significantly
superior to mADC, an established quantitative imaging biomarker for clinical significance prediction.
Our results support the idea of an MRI-guided pathway for treatment planning [36] and underline
the potential of novel imaging-based radiomics and clinical biomarkers for patient risk stratification.
Automatic machine learning assessment of the prostate and characterization of suspicious index lesions
in MRI could provide more comprehensive imaging biomarkers for improved cancer detection and
risk stratification.

Our study has a number of potential limitations. First of all, the study is only of a medium
sample size. A larger patient cohort could improve the stability (especially for the subgroup analysis
of small prostate lesions) and enable a more precise estimation of population statistics. Secondly,
no external validation cohort was available for our study. Finally, we based the radiomics analysis on a
biparametric MRI protocol, while radiologists additionally use DCE MRI in daily clinical routine as
recommended in PI-RADS. Including other sequences in the analysis could potentially improve our
results in larger prospective studies.
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4. Materials and Methods

4.1. Patient Cohort

Our retrospective single-center study was approved by the ethics committee of Heidelberg
University, Medical Faculty Mannheim (approval no.: 2018-846R-MA). For this study, a database of 277
patients with a clinical indication of mpMRI from June 2014 to September 2018 was reviewed. Inclusion
criteria were: (a) clinical suspicion of prostate cancer, (b) mpMRI of the prostate performed in our
institution, and (c) systematic and targeted MRI/-ultrasound fusion biopsy performed within 3 months
of an MRI exam. Exclusion criteria were: (a) unavailability of MRI data, (b) limited image quality, or (c)
no visible index lesion on MRI. A study flow chart reflecting the exclusion criteria of patients can be
found in Figure 3. Of the 277 enrolled patients, 205 had an available mpMRI of the prostate. Of those,
5 patients had to be excluded due to limited image quality or motion artifacts. A further 9 patients
had to be excluded due to lack of an index lesion in consensus MRI reading. The final study cohort
comprised 191 men with a clinical indication for prostate MRI and suspicious prostate lesions.

Patients with a clinical indication for prostate
MRI and suspicious prostate lesions between
June 2014 and August 2018 (n=277)

L »| No MRIdata (n=72)

L »| Artifacts in MRI (n=5)

No lesion in consensus

> reading (n=9)

Y

Final study cohort (n=191)

Figure 3. Consort flow diagram for patient inclusion.

4.2. MRI Data Acquisition

All mpMR images were acquired on two different in-house 3-Tesla MRI scanners (Siemens
Magnetom Skyra and Trio, Erlangen, Germany) with pelvic phased array coils. Details of the
institutional mpMRI protocols are described in Supplementary Table S3. Biparametric MRI sequences
consisting of T2-weighted and DWI/ADC-imaging were subjected to further analysis. MpMR images
were quantitatively assessed by a board-certified radiologist (D.N. with 7 years of experience in prostate
cancer imaging) and board-certified urologist (N.W. with 7 years of experience in biopsy acquisition) in
accordance with PI-RADS classification standards. Cases with unclear lesions and/or PI-RADS scores
were reviewed in consensus. We classified lesions in the central zone and the anterior fibromuscular
stroma as transition zone lesions according to the PI-RADS recommendations and treated them as such
in subsequent analysis. For further analysis, we dichotomized PI-RADS by considering radiologist
evaluations as positive when the assigned PI-RADS score was 4 or 5, i.e., csPCa likely or highly likely.

Histopathologic findings from targeted prostate biopsy provided the standard of reference for the
presence and clinical significance of prostate cancer using an index lesion-based approach. MRI lesions
considered suspicious for malignancy were sampled by targeted MRI/transrectal ultrasound (TRUS)
fusion biopsies followed by a systematic 12-core TRUS biopsy. Biopsy specimens were further processed
and analyzed by local expert uropathologists according to consensus recommendations.
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4.3. Image Segmentations

For each patient, the whole prostate gland, peripheral and transition zones, as well as index
lesions of the prostate were manually segmented on T2-weighted images. Additionally, prostate lesions
were segmented separately on ADC images. Manual segmentations were performed by a medical
student (P.W., 2 years of experience in prostate mpMRI) using the Medical Imaging Interaction Toolkit
(MITK) and subsequently, reviewed and corrected in consensus by a board-certified radiologist (D.N.).
The three-dimensional volumes of interest (VOIs) were manually drawn on consecutive axial slices.
For patients with multiple tumor foci, only the index lesion (with the highest PI-RADS score or the
biggest lesion volume) was selected for analysis. All segmentations were performed blinded to the
PI-RADS score, clinical data, and histopathologic results. Figure 4 shows a representative PCa patient
with manual segmentations of the whole prostate, transition zone, and a segmented lesion in the right
peripheral zone (right apex), which was scored as PI-RADS4.

4.4. Radiomic Feature Extraction

Radiomic features were extracted using pyradiomics v3.0 [37], an open-source python package.
We extracted features from the volume of interest (VOI) derived from T2w and ADC images and
additionally, from the whole organ VOl in T2w to include more context. Three alternative feature setups
were compared, including all available feature classes (shape, first order, GLRLM, GLSZM, and GLDM,
in total, 232 features), as well as the features suggested by Schwier et al. as most repeatable in prostate
T2w images (in total, 90 features) [33] and feature classes suggested by a radiologist of our institute
(DN) with substantial experience in the field of radiomics (in total, 45 features). Supplementary Table
S4 describes the exact feature classes used for each setup. Furthermore, we employed the Maximum
Relevance Minimum Redundancy (mRMR) algorithm [38] to select a subset of the 15 most predictive
and least correlated features.

Figure 4. Representative segmentation of a 60-year-old man on axial T2-weighted and ADC-images
with an initial prostate-specific antigen level of 12.9 ng/ml, normal DRE result, and a highly
suspicious lesion located medio-apically in the right peripheral zone (PI-RADS category 4). Targeted
MRI/ultrasound-fusion biopsy confirmed the presence of PCa, Gleason 3+4, ISUP 2. The contours outline
the following manual segmentations: blue—whole organ, green—transition zone, red—index lesion.
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4.5. Model Development

Machine learning models were developed and evaluated on the training dataset in the setting of a
repeated 5-fold cross-validation with bootstrap bias correction (BBC-CV), which allows for both (i)
selection of the optimal model and (ii) unbiased estimation of its performance [39]. Four methods were
compared, namely logistic regression (LR), linear support vector machine (SVM), random forest (RF),
and XGBoost. Each of them performed classification based on the priorly extracted radiomic features.
The models were computed using scikit-learn (http://scikit-learn.org/stable/index.html). Convolutional
neural networks (CNN), which used images cropped to the lesion region, were also included in the
comparison. We followed the method described by Liu et al. [25] with T2w and ADC sequences
concatenated as input. Hyperparameter tuning and the model selection process within cross-validation
are described in the Supplementary Materials (Appendix A.1 and Table S5).

The radiomics model was compared with radiologist assessments represented by PI-RADS,
quantitative mADC values from diffusion-weighted imaging as well as clinical predictors including
PSAD and DRE within BBC-CV. Receiver operating characteristic (ROC) curves, as well as sensitivities
and specificities, were calculated. We selected the radiomics model, which performed best in the
cross-validation and created an ensemble classifier combining this model with logistic regression
models for PI-RADS, PSAD, and DRE by majority voting. The ensemble was evaluated on an
independent test cohort.

To address the problem of class imbalance, we created synthetic data for the minority class with
the adaptive synthetic (ADASYN) sampling approach [40], which reduces bias from class imbalance
and shifts the decision boundary toward the difficult cases.

4.6. Statistical Analysis

The performance of the machine learning model developed with radiomic features was compared
with the quantitative measurement of mADC, PI-RADS, PSAD, and DRE using the area (AUC) under
the receiver operating characteristic (ROC) curve. Age, PSA as well as prostate and lesion volumes
were checked for normality using the Shapiro-Wilk test. Univariable statistics are reported by p-value
determined via student’s t-test if applicable (Shapiro-Wilk and Levene test) or Wilcoxon’s rank-sum
test for continuous variables. A two-sided p-value < 0.05 was considered significant. The Spearman
correlation coefficient () was calculated to establish the correlation strength of the features used in the
radiomics model with ISUP grade.

ROC curves were generated for each independent variable using bootstrap and compared using the
DeLong test [41]. Cut-off values for the machine learning model and mADC were selected to match the
specificity of the radiologist in the training dataset, so as to select operating points with low false positive
rate. The sensitivity and specificity were compared for the machine learning model, quantitative
measurement of mADC, and PI-RADS utilizing the McNemar test [42]. The Holm-Bonferroni method
was applied to correct for multiple comparisons. Statistical analyses were implemented in the
programming language Python (version 3.6.8, Python Software Foundation, Wilmington, Delaware,
USA).

5. Conclusions

We showed that radiomics, using quantitative image data, is able to accurately characterize
index lesions of the prostate derived from mpMRI and performs comparably to radiologists for the
differentiation of (i) malignant from benign prostate lesions and (ii) csPCa from cisPCa. Machine
learning models developed with quantitative radiomic features extracted from mpMRI represent a
potential imaging biomarker, which, when combined with PI-RADS, PSAD, and DRE, predicts csPCa
more accurately than mADC. Prognostic machine learning models could assist in csPCa detection
and selection of patients for MRI-guided fusion biopsies. Further prospective, multicentric studies
are needed to evaluate the clinical performance of machine learning models as a supporting tool
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for radiologists to improve MRI-directed therapy planning and risk stratification of patients on an
individual level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1767/s1.
Table S1: All selected features for our radiomics signature, Table S2: Zonal subgroup analysis of the diagnostic
performance of the radiomics model, PI-RADS and mADC, Table S3: Multiparametric prostate MRI protocol,
Table S4: Radiomics feature classes used for each setup. Table S5: Model selection on the training set.
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Appendix A.

Appendix A.1. Details of Hyperparameter Tuning and Model Selection Process

We performed hyperparameter optimization in order to select the best configuration for each
method (LR, SVM, RF, and XGBoost) in terms of AUC, using Grid Search. The search was integrated
into the repeated 5-fold cross-validation with bootstrap bias correction and used bootstrap sampling of
the pooled predictions from all the 5 folds, separately for each task. The best configurations for each
method are presented in Table S5. We finally chose the optimized model with the highest AUC among
included models to be used in the ensemble model, which was evaluated on an independent test set.

It is worth noting that statistics for the training cohort were not calculated for the best-performing
model. For every repetition, the BBC-CV procedure bootstrapped the strategy for selecting the best
configuration and mean AUC was calculated on the samples not selected by the bootstrap (more details
in [39]).
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