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Abstract

Motivation: Current studies in extractive question answering (EQA) have modeled the single-span extraction setting,
where a single answer span is a label to predict for a given question-passage pair. This setting is natural for general
domain EQA as the majority of the questions in the general domain can be answered with a single span. Following
general domain EQA models, current biomedical EQA (BioEQA) models utilize the single-span extraction setting
with post-processing steps.

Results: In this article, we investigate the question distribution across the general and biomedical domains and dis-
cover biomedical questions are more likely to require list-type answers (multiple answers) than factoid-type answers
(single answer). This necessitates the models capable of producing multiple answers for a question. Based on this
preliminary study, we propose a sequence tagging approach for BioEQA, which is a multi-span extraction setting.
Our approach directly tackles questions with a variable number of phrases as their answer and can learn to decide
the number of answers for a question from training data. Our experimental results on the BioASQ 7b and 8b list-
type questions outperformed the best-performing existing models without requiring post-processing steps.
Availability and implementation: Source codes and resources are freely available for download at https://github.
com/dmis-lab/SeqTagQA.

Contact: aronlagerberg@gmail.com or kangj@korea.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

Despite recently increased interests in the field of BioQA, re-

1 Introduction
search on the characteristics of biomedical questions and corre-

Extractive question answering (EQA) is the process of finding
answers to questions from given passages. Biomedical Question
Answering (BioQA) is a branch of QA where both the subject of the
question and the passage has a biomedical context (Fig. 1). EQA has
the potential to assist in the management of the deluge of textual
data arising from scientific research, as it can be deployed upon vast
datasets of scientific literature that are impractical for individuals or
teams of scientists to digest. The use of pretrained transformer archi-
tectures such as BERT, GPT or RoBERTa have yielded rapid
improvements in the general domain EQA datasets, even outper-
forming humans in SQuAD datasets (Rajpurkar ez al., 2016, 2018).
Accordingly, such models have also shown promise in the BioQA
domain. Yoon et al. (2019b) utilized BioBERT (Lee et al., 2020),
with an expanded span detection configuration to solve biomedical
questions. This architecture produced the best performance for both
factoid and list question on the BioASQ 7b dataset.

©The Author(s) 2022. Published by Oxford University Press.

sponding passages is rare. As Friedman et al. (2002) and Molla and
Vicedo (2007) suggested, semantics and syntactic structures of speci-
alized domains, such as biomedical literature, are different from gen-
eral domain corpora. The existence of such differences implies that
rapid advancements in general domain QA may not transfer well to
BioQA. We believe that a deeper understanding of these differences
will guide the development of methods in BioQA. As an effort to
understand the difference, we conduct a preliminary study on the
characteristics of biomedical questions and find that the proportions
of list questions (i.e. questions that have multiple answers; a list of
answers) are more abundant in biomedical questions than in general
domain questions.

The single-span extraction setting, or ‘start-end span prediction’
setting, is common in existing general domain EQA and Biomedical
EQA (BioEQA) models (Jeong et al., 2020; Wiese et al., 2017; Yoon
et al., 2019b). Single-span prediction setting is widely used as it is
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[Factoid] Question : Which is the most common gene
signature in Rheumatoid Arthritis patients?

Passage: ... Patients with systemic lupus erythematosus,
Sjogren's syndrome, dermatomyositis, psoriasis, and a fraction
of patients with rheumatoid arthritis display a specific
expression pattern of interferon-dependent genes in their
leukocytes, termed the interferon signature. Here, in an
(6] (6] (6] B I O O O..
attempt to understand the role of type I interferons in the
pathogenesis of autoimmunity, we review the recent ...

[List] Question : Which are the clinical characteristics of
isolated Non-compaction cardiomyopathy?

Passage: ... The form of presentation was heart failure in

(0] B I [0
53% of subjects, syncope in 20%, ventricular arrhythmias
O O (@] B O O B 1

in 13% and stroke in 7%. Left ventricular end-diastolic ...
O O O B (6]

Fig. 1. Examples of two types of BioEQA. Factoid questions require a phrase as
an answer while list questions require multiple phrases as their answer. Answers
are underlined in the corresponding passage and annotated using BIO tagging
scheme

straightforward and effective approach for single answer questions.
However, this approach has limitations. For questions where more
than one answer spans exist within the given passage, a model
trained in the single-span prediction setting will only treat one an-
swer candidate as true label and the others as noise, despite the other
answers also being correct. Previous works on list questions require
complex post-processing steps to determine the number of predicted
answers. As an example, Yoon et al. (2019b) and Jeong et al. (2020)
applied a fixed probability threshold strategy which needed to be
learned using a validation dataset, and rule-based query processing
to detect the number of answers existing in the question. Related to
this issue, the BioASQ dataset classifies questions into categories
such as factoid-type question (single answer) or list-type question
(multiple answer). However, in a real-world setting, such metadata
is generally unavailable. Therefore, a more flexible assumption is
that all questions will produce a list of answers (even if the list is
empty, or only contains a single answer).

In order to alleviate the shortcomings of single-span extraction
setting, we propose to reformulate the task of BioEQA as sequence
tagging (i.e. a multi-span extraction setting). We empirically verify
that the sequence tagging approach is beneficial for answering list-
type questions, as models are able to learn to tag multiple answers at
once rather than being restricted to extract one answer span at a
time. Furthermore, our setting is an end-to-end approach for list-
type QA task that the model can learn to output the ideal number of
answers for a given question, without using the rather complicated
external processes of previous works. Adopting our sequence tag-
ging strategy to BioEQA tasks showed that our model can achieve
state-of-the-art (SOTA) performance for list-type questions. Average
performance improvements over baseline model are 3.80% and
6.22% for BioASQ 7b and 8b List questions, respectively (F1 score).

2 Related work

In this section, we briefly summarize previous works related to the ques-
tions in QA datasets and various modeling approaches for QA tasks.

2.1 Question answering datasets

A number of general domain QA datasets are available as of today.
SQuAD v1 and v2 (Rajpurkar et al., 2016, 2018) are composed of
Wikipedia articles and questions generated by crowdsourcing, and
become one of the most visited datasets for EQA task. In contrast to

the aforementioned studies where the questions are generated by
annotators, some works focus on how questions are collected. MS
MARCO (Nguyen et al., 2016), DuReader (He et al., 2018) and
Natural Questions (NQ) (Kwiatkowski et al., 2019) datasets use
search engine queries submitted by users to collect questions as an
effort to harmonize the distribution of question to the needs of real
user questions; these questions are often referred as ‘naturally posed’
questions in contrast to questions generated artificially by annota-
tors. Another branch of QA datasets includes yes/no questions
(Clark et al., 2019) and cloze style questions (Hermann et al.,
2015). However, yes/no and cloze questions are rarely covered by
models with EQA settings.

In comparison to the general domain, only a small number of
QA datasets are currently publicly available for Biomedical NLP.
The QA dataset of the BioASQ competition (Tsatsaronis et al.,
20135) is considered as one of the richest source for BioEQA models.
The BioASQ dataset offers factoid, list, yes/no and summarization
questions along with passages and answers. Besides EQA datasets, a
multiple-choice QA dataset focused on Alzheimer’s disease
(Morante et al., 2013) is released as a pilot task of the Question
Answering for Machine Reading Evaluation (QA4MRE).
PubMedQA (Jin et al., 2019) created a QA dataset that can be used
as yes/no or query-focused summarization. Cloze style QA datasets
are also proposed in the domain of BioNLP (Kim ez al., 2018;
Lamurias et al., 2020; Pappas et al., 2020).

In contrast to the pool of accessible BioQA datasets, naturally posed
biomedical questions have rarely been considered as research material.
Analogous to google queries for NQ dataset (Kwiatkowski ez al.,
2019), a one-day log of PubMed queries is available in raw-data format
(Herskovic et al., 2007). Yet, so far the PubMed queries have not been
refined and analyzed as a source of questions. A group of researchers
released a collection of questions, namely Clinical Questions Collection
(CQC) Data, which consists of question that are asked by physicians
while caring for their patients (D’Alessandro et al., 2004; Ely et al.,
1999, 1997). We will discuss naturally posed questions in Section 3.

2.2 Question answering models

QA models in BioNLP Wiese et al. (2017) applied the FastQA
model (Weissenborn ef al., 2017) for BioQA and saw a gain in per-
formance. To the best of our knowledge, Wiese et al. (2017) was the
first attempt to use a neural network (NN)-based QA model to
achieve first place for the EQA problems of the fifth BioASQ chal-
lenge Task b—Phase B. BioBERT (Lee et al., 2020) is a BERT model
trained on biomedical data and showed a large performance im-
provement over preceding models for the BioEQA. Yoon et al.
(2019b) and Jeong et al. (2020) won the seventh and eighth BioASQ
challenges, respectively, using BioBERT as a core building block for
the factoid, list and yes/no questions (Nentidis et al., 2020a, b). The
aforementioned NN-based models for BioEQA (Jeong et al., 2020;
Lee et al., 2020; Wiese et al., 2017; Yoon et al., 2019b) formulated
the training objective of their models as a single-span prediction.

QA and other NLP tasks A number of researchers have utilized
the methods of QA frameworks to solve various NLP tasks.
Recently, Li et al. (2020, 2019) exhibited benefits of the QA frame-
work for the Named Entity Recognition (NER) and Relation
Extraction (RE) tasks. Li et al. (2020) utilized single-span extraction
setting for the NER-task while Li et al. (2019) tackled the RE task
by using an NER-like sequence tagging approach, in order to predict
multiple phrases from a sample. Both work from Li et al. (2020,
2019) benefitted from pre-trained language models such as BERT.
Apart from the recent QA approaches, Yao et al. (2013) used
Conditional Random Field (CRF)-based model with the Tree Edit
distance feature for QA-task and applied a sequence tagging ap-
proach to predict the location of answer tokens in candidate senten-
ces. Segal et al. (2020) utilized a multi-head model approach and
tag-based span extraction for question answering task in general do-
main and reached state-of-the-art performance.

To the best of our knowledge, no preceding works have applied
sequence tagging approaches to tackle the BioEQA tasks, nor
studied the difference of question distributions between general and
biomedical domain.
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3 Biomedical questions

In this section, we elaborate on our preliminary study on the distri-
bution of biomedical questions. We collected biomedical questions
from existing literature that provide naturally posed questions asked
by medical doctors and PubMed search engine users. The questions
are categorized by required answer types: factoid, list, yes/no and
summarization. Preliminary findings support our hypothesis that
models which can generate one or more responses for a given input
will improve the performance on BioEQA tasks.

3.1 Types of questions
We first hypothesize that biomedical questions have a tendency to
require multiple answers than their general domain counterparts
since biomedical concepts tend to involve collections of multiple
entities. For instance, diseases often have multiple symptoms, bio-
chemical pathways involve multiple genes and a variety of drugs are
often used to treat a given disease. To provide supporting evidence
for our assumption, we analyze the characteristics of biomedical
questions. Specifically, our objective of the analysis is to empirically
reveal the different distributions of naturally posed biomedical ques-
tions and general domain questions.

Referring to the Natural Questions (NQ) (Kwiatkowski et al.,
2019) and BioASQ datasets for QA (Tsatsaronis et al., 2015), we
created the following question categories:

* Long answer only: A question that requires a sentence-length de-
scription as an answer. Corresponds to Summary questions of
BioASQ.

* Short answer—single phrase or Factoid: A question that requires
a phrase as an answer set. Corresponds to Factoid questions of
BioASQ.

*  Short answer—multiple phrases or List: A question that requires
more than one phrase as an answer set. Corresponds to List ques-
tions of BioASQ.

* Binary answer or Yes/No: A question that is answerable with ei-
ther Yes or No. Corresponds to Yes/No questions of BioASQ.

*  Others: A question that is not answerable with current settings.
Corresponds to Bad- and ‘No answer’-questions of NQ.

3.2 Sources of questions
The sources of questions we have analyzed are the following:

Clinical questions collection Clinical Questions Collection
(CQQ) is a series of datasets (D’Alessandro et al., 2004; Ely et al.,
1999, 1997) that are collected by observing healthcare professionals
such as primary care physicians, faculty of university hospitals and
residents and medical students during clinical sessions (https:/www.
nlm.nih.gov/databases/download/CQC.html). We select Iowa IC
QUESTIONS as our source of questions as it is collected from the most
diverse set of physicians among the CQC datasets. The Iowa IC
QuEsTIONS dataset contains 1,062 questions that were collected by
observing 48 physicians for a half-day.

PubMed queries We use the PUuBMED QUERY LoG DATASET collected
by Herskovic et al. (2007), which consists of logs of naturally posed
questions by PubMed users collected over one day. (More details
including query screening algorithm in Supplementary Appendix.)

Corresponding passages or answers are not provided for both
biomedical question datasets as they are not originally built for QA
tasks. We use the Natural Questions (NQ) dataset as a question
dataset in the general domain setting.

3.3 Results and meanings of the preliminary study

We classify a set of randomly chosen biomedical questions (7= 100;
50 for each biomedical question dataset) manually. For general do-
main questions, we counted questions using the given answers of the
NQ dataset. Figure 2 shows the distribution of naturally posed ques-
tions in the general domain (NQ) and biomedical domain (CQC and
PubMed).

List
10,
R List
21.9% Long answer
37.5%
YesNo Factoid
Factoid 2.5% 12.5%
63.4%
YesNo
28.1%

Natural Questions Biomedical Questions

Fig. 2. Distribution of naturally posed questions in the general and biomedical
domains

Our study shows that the proportion of factoid questions (i.e.
questions which can be answered with a single phrase) is lower in
biomedical questions than in questions in the general domain. In
other words, the number of list-type questions among EQA ques-
tions, specifically factoid and list-type questions, is significantly
higher in the biomedical context than in the general context. This
finding verifies our hypothesis that biomedical questions have a ten-
dency to require multiple answers.

While annotating the types of questions, we observed that fac-
toid questions often have alternative valid answer spans. In most
cases, they are varied forms of the originally annotated answer, such
as synonyms or abbreviations. The prevalence of synonyms and
abbreviations for biomedical entities (Sung et al., 2020), which form
most of the answers, makes it natural to shift the conventional ap-
proach of BioEQA question and answers being in a one-to-one
structure to a one-to-many structure (We will provide access to our
question collection online.).

4 Sequence tagging for question answering

In this section, we describe our strategy for BioEQA. EQA aims to
detect the answer spans in a provided passage given a question.
Instead of the conventional single-span extraction setting, or start-
end prediction strategy, we applied a sequence tagging framework
to the QA task in order to detect a variable number of answer spans.

4.1 Contextualized representation for biomedical NLP

tasks
Biomedical Language Models (LMs) are language representation
models that are pre-trained on biomedical literature such as articles
from PubMed and PubMed Central. They are the primary building
blocks of multiple BioNLP tasks, such as NER, RE and QA tasks,
and provide contextualized representations of the input sequences.
In our experiments, BioBERT (Lee et al., 2020), BlueBERT
(Peng et al., 2019) and PubMedBERT (Gu et al., 2021) are used as a
biomedical LM for our model. BioBERT is the first Bidirectional
Encoder Representations from Transformers (BERT) model pre-
trained on the biomedical corpora. Pre-training of BioBERT
and BlueBERT is continued from BERT (Devlin et al., 2019) and
therefore the vocabulary of BioBERT and BlueBERT is identical
to the BERT models. PubMedBERT is pre-trained from scratch
with the vocabulary built from the biomedical corpora. BioBERT
used the Cased model, whereas BlueBERT and PubMedBERT used
the Uncased model: for the latter one, input sentences are lower-
cased during the pre-processing steps.

4.2 Sequence tagging for question answering
Figure 3 illustrates the overall structure of our model for EQA.

4.2.1 Input sequence

Following BERT and BioBERT, we concatenate the question to the cor-
responding passage to form an input sequence and use the WordPiece
tokenization (Wu et al., 2016) to alleviate the out-of-vocabulary
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4
Predicted Tags

The last layer

of BioBERT

BioBERT
‘E[CLS]‘ ‘Ewhich Eenzyme Eis E(argeted Eby HEEvoloc Eysumab E? ‘E[SEP]‘ ‘ EThe Esing\e Ecel\ ‘ E##— ‘ Espased E3D ‘ Eorgan ‘ Embelddings
‘ [CLS] HWhich enzyme is targeted ‘ by I Evoloc ##umabH ? H [SEP] H A ‘ methodH to \ measure | | prop l ‘##rote ##in ‘ \ Input token
Which enzyme is targeted by Evolocumab? A method to measure proprotein convertase ... Input Text

Question

Passage

Fig. 3. Overview of the BioBERT model performing QA as sequence tagging. A question and passage from a sample forms the input token sequence after tokenization. The in-
put sequence is fed into BioBERT to output the contextualized representations. The final layer of the model is a sequence tagging layer which predicts a tag/label for each token

representation

problem. Special tokens [CLS] and [SEP] are added at the beginning of
the sequence and between the question and the passage, respectively.
The output of the final layer of BioBERT is fed into the sequence
tagging layer to produce the final tags.

4.2.2  Sequence tagging layer

We used neural network-based sequence tagging structures as the
final layer. Any structure predicting token-level labels can be used
for the final layer. In our experiments, we selected a feed-forward
network as the sequence tagging layer. In additions to this, the per-
formance of Bidirectional Long Short-Term Memory (BiLSTM)
(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997)
and BiLSTM networks with a Conditional Random Field layer
(BiLSTM-CRF) (Huang et al., 2015)-based models are evaluated
(Section 5.5).

Following NER tasks, we used the BIO tag schema to denote an-
swer spans, where B stands for the ‘beginning’ of an answer span, I
for ‘inside” and O for ‘outside’.

When calculating loss and gradients, we exclude tags predicted
at the positions of special tokens and question tokens: this means
that the model will not be penalized for predicting wrong tags for
these tokens. Tokens that we ignored predictions are as follow:
[SEP], [CLS], tokens that compose questions and broken sub-word
tokens.

4.2.3 Post-processing

We apply minimal post-processing steps to the output of a tagged se-
quence. The output of the final layer (i.e. the sequence tagging layer)
is a sequence of tokenized words and their corresponding tags. The
main purpose of the post-processing step is to detokenize the output
of the final layer to restore tokenized strings into their original
forms, including reconstruction of sub-word tokens and proper re-
moval of whitespace around punctuation marks. Other essential
task-specific post-processing steps are taken to fit our output to the
official evaluation scripts for the datasets. For example, answer can-
didates of list questions of BioASQ can be prepared by simple con-
catenation of predictions of the passages that belong to a question.
For the approach where BILSTM-CRF layer is used as the Sequence
Tagging Layer, we choose answer candidates by using the Viterbi al-
gorithm, and rank candidates based on the probability scores of the
LSTM network.

5 Experiments

In this section, we first elaborate on our experimental settings. For
the rest of the section, we report our experimental results and com-
parisons between the models with different settings.

Table 1. Statistics of list-type questions in the original BioASQ data-
sets and two different version of pre-processed datasets

Train Test
Dataset Config. Question  Sample  Question  Sample
BioASQ 7b  Original 556 5324 88 393
Single-span 529 7722 88 393
Seq-Tag 527 3610 88 393
BioASQ 8b  Original 644 5717 75 383
Single-span 614 8416 75 383
Seq-Tag 610 3914 75 383

Note: The column Sample denotes the number of data points that are com-
posed of a question and passage pair.

5.1 Datasets

The BioASQ datasets are directly derived from the BioASQ
Challenge which is an annual competition for biomedical semantic
indexing and QA (Tsatsaronis et al., 2015). Every year, test exam-
ples for the BioASQ Challenge are created by biomedical experts
and made available to the public as a form of a testing dataset after
minor revisions (Nentidis ez al., 2020a, b). The training dataset is in-
crementally built by combining the training and testing datasets of
previous versions. For example, the BioASQ 7b training dataset
encompasses the training and testing datasets of BioASQ 6b. We
used the training and testing sets of BioASQ 6b for hyperparameter
searching, and further used those hyperparameters on our experi-
ments conducted on BioASQ 7b. BioASQ 8b experiments are carried
out in an analogous fashion.

A single sample contained in the BioASQ datasets contains the
question and URL of relevant articles and snippets (http://partici
pants-area.bioasq.org/general_information/Task7b/). Following Lee
et al. (2020); Yoon et al. (2019b); Jeong et al. (2020), we retrieved
the PubMed articles using provided URLs and used a pair of title
and abstract as a passage.

Statistics of list-type questions and data points for the BioASQ
datasets are described in Table 1. We formulated a question-passage-
answer triplet (Q, P, A) as a sample for training and testing. A triplet
contains only one item for a question and a passage element. The
number of items for an answer element in a triplet is only one for
single-span extraction configuration, while for a sequence-tagging
configuration, an answer element can contain multiple items.
Specifically, for a list-type question O with a set of relevant passages
{P1,...,Pi}, and a list of answer phrases {A1,...,A;}, the number of
training samples (i.e. data points) for a question is 7 * j for a single-
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Table 2. Performance comparison among the models on the BioASQ 7b and 8b list question datasets

BioASQ 8b

BioASQ 7b

List-type question

Recall F1 Prec. Recall F1

Prec.

System

Language model

0.4295 (0.0069) 0.4476 (0.0186) 0.3275 (0.0101) 0.3382 (0.0115)

0.4364 (0.0093)
0.4498 (0.0116)

0.3869 (0.0069)
0.3966 (0.0074)
0.5772 (0.0125)

0.5941 (0.0072)
0.5911 (0.0181)
0.4247 (0.0112)

Yoon et al. (2019b)

BioBERT (Lee et al., 2020)

0.3428 (0.0054)
0.4355 (0.0083)

0.3335 (0.0049)

0.5936 (0.0126)

0.4581 (0.0071)
0.3888 (0.0105)

Jeong et al. (2020)
Ours (Seq-Tag Linear)

0.3656 (0.0057)
0.3917 (0.0068)

0.3668 (0.0050) 0.4031 (0.0065) 0.4941 (0.0077) 0.3535 (0.0053)
0.4538 (0.0047) 0.3368 (0.0089) 0.5698 (0.0066)

0.6171 (0.0072)

0.5408 (0.0107)
0.4048 (0.0064)

Yoon et al. (2019b)
Ours (Seq-Tag Linear)

BlueBERT (Peng et al., 2019)

0.3622 (0.0070)
0.4254 (0.0085)

0.5709 (0.0099) 0.3964 (0.0070) 0.4328 (0.0067) 0.4754 (0.0115) 0.3502 (0.0055)
0.6276 (0.0102) 0.4758 (0.0088) 0.5855 (0.0077)

0.4260 (0.0099)

Yoon et al. (2019b)
Ours (Seq-Tag Linear)

PubMedBERT (Gu et al., 2021)

0.3775 (0.0122)

Note: Reported scores were micro-averaged across the 10 testing batches. Standard deviations are denoted in the parenthesis. F1 score is the official metric for the list questions of the BioASQ dataset. Note that we used full

abstracts as input passages for all systems.

span extraction configuration, and i for a sequence-tagging configur-
ation. For the training dataset, we excluded passages from which we
could not find any matching answers. We defer details regarding pre-
processing to the Supplementary Appendix.

The official evaluation metrics for BioASQ datasets differ
according to the question type (http://participants-area.bioasq.org/
Tasks/b/eval_meas_2018;  https:/github.com/BioASQ/Evaluation-
Measures). Each example of list-type questions is evaluated based
on the precision, recall and F-1 measures. The scores are averaged
over the list-type questions and reported as the final score for the
system.

5.2 Sequential transfer learning

Following Lee et al. (2020) and Yoon et al. (2019b), we employed
sequential transfer learning by first initializing the model’s weights
using BioBERT weights that were pre-trained on SQuAD v1 dataset
(Rajpurkar et al., 2016). We subsequently fine-tuned the pre-trained
model on the BioASQ datasets using a smaller learning rate. We ex-
pect that this sequential transfer learning strategy will alleviate the
data scarcity of the BioASQ datasets.

5.3 Experimental details

We used BioBERT v1.1l, bluebert pubmed uncased L-12
and PubMedBERT-base-uncased-abstract where each has
identical parameter settings with the BERTyase model, as the con-
textualized representation of our model. Therefore, we have ap-
proximately 108 million trainable parameters. We set 512 tokens as
the maximum sequence length, and sequences with the length after
tokenization exceeds 512 were truncated. A training batch size of 18
was selected. Training samples were randomly shuffled at the start
of each epoch. A learning rate of Se-5 was selected for training
SQuAD dataset and Se-6 was selected for the BioASQ datasets.
Maximum training steps were 80 000 for BioASQ7b and 84 000 for
BioASQ8Db respectively (approximately 400 epochs). We used a sin-
gle NVIDIA Titan RTX (24GB) GPU for fine-tuning (single run)
and the training process took less than 24 h for an experiment.

5.4 Results

In this section, we report the experimental results and verify that our
approach to reformulate QA as sequence tagging improves the per-
formance of existing QA models on list-type questions.

Table 2 shows the experimental results of our approach and the
baselines. In order to minimize the randomness added by the initial-
ization step, we conducted 10 independent runs with identical
hyperparameters but with different random seeds, and reported
average performances across the runs and the standard deviations of
them.

5.4.1 Baselines

Our baseline model from Yoon et al. (2019b) is a challenge-winning
model (BioASQ 7b) and can be described as an expanded version of
the BioBERT model that can answer list-type questions by adding
additional post-processing steps to decide the number of answers: a
thresholding approach; and a rule-based number of answers detec-
tion from question strings for such questions containing a number.
On top of the previous model, Jeong et al. (2020) further added an
additional transfer learning step using natural language inference
(NLI) datasets and achieved performance improvement over the pre-
ceding models.

The original models of Yoon et al. (2019b) and Jeong et al.
(2020) (full abstract model) use the same neural network architec-
ture. They both essentially add a linear token-level classification
layer on top of a BioBERT backbone model. They differ in how
post-processing and training were conducted. In addition to
BioBERT version models, we have experimented with the model
from Yoon et al. (2019b) using BlueBERT (Peng et al., 2019) and
PubMedBERT (Peng et al., 2019) as a backbone model and reported
the results.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac397#supplementary-data
http://participants-area.bioasq.org/Tasks/b/eval_meas_2018
http://participants-area.bioasq.org/Tasks/b/eval_meas_2018
https://github.com/BioASQ/Evaluation-Measures
https://github.com/BioASQ/Evaluation-Measures
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Table 3. Performance of the sequence tagging approach with different sequence tagging layer on BioASQ 8b task

BioASQ 8b List questions
Tagging Layer Precision Recall F1 score
Linear 0.3984 (0.0051) 0.6016 (0.0037) 0.4402 (0.0047)
BiLSTM 0.4015 (0.0146) 0.5787 (0.0231) 0.4370 (0.0121)
BiLSTM-CRF 0.3868 (0.0126) 0.5925 (0.0072) 0.4312 (0.0084)

Note: Averages and standard deviations of five independent runs are reported in the table. Standard deviations are denoted in the parenthesis.
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Fig. 4. Frequency polygon and histograms of the number of answers (predicted and golden). The predicted answer number distributions of the model predictions are marked as
Yoon et al. (2019b) and SegTag (Ours). The answer number distributions of the gold standard (testing dataset) are marked as Answer. The size of a bin is 2.0 and the y-
axis indicates the number of questions in the given bin. The number of predicted answers of the baseline model shows the highest population at the first bin [1, 3) whereas our

model and the golden answers show the highest population at the second bin [3,5). Questions predicted as having 0 answers are excluded in this graph

5.4.2 Sequence tagging approach

Our experimental results using the fully connected linear layer as
Sequence Tagging Layers are displayed in Table 2. Without any as-
sistance from rule-based post-processing steps or complicated three-
step transfer learning, our models displayed strong improvement on
answering list-type questions. When compared to the model of
Yoon et al. (2019b), our model using BioBERT, BlueBERT and
PubMedBERT as underlying LM achieved performance gains of
2.03%, 5.07% and 4.30% on list questions in BioASQ 7b and
9.73%, 2.61% and 6.32% on BioASQ 8b, respectively (absolute
improvement).

5.5 Sequence tagging layer
Previous research papers have shown that the application of
Recurrent Neural Networks (RNN), such as LSTM, and CRF layer
can boost the accuracy of popular sequence tagging tasks, such as
NER or part-of-speech tagging (Habibi et al., 2017; Huang et al.,
2015; Yoon et al., 2019a). Since our model uses a modified structure
of sequence tagging tasks, we explored the effects of RNN-based
approaches. Our experimental results using linear, BiLSTM and
BiLSTM-CRF models as Sequence Tagging Layers are displayed in
Table 3. Following our main experiments, we conducted five inde-
pendent runs and reported statistics of them. Sequential transfer
learning is applied and the model is initiated from SQuAD vl
trained LMs. Special token exclusion (Section 4.2.2) is not applied
to these experiments due to CRF layers (For the same reason, we
used TensorFlow v1.5 framework for experiments in this section.
The rest of the experiments are implemented with pytorch v1.7.).
Our experimental results present that adding LSTM or LSTM-
CREF layer does not show significant performance gain over using
simple linear layer as output layer. This suggests that solving QA
tasks with sequence tagging may have different nature from trad-
itional sequence tagging tasks in the NLP fields. RNN cells encode
an input token sequence recurrently. When encoding a token, RNN

cells store information of previous input tokens as a fixed-size vector
and use the vector in encoding the next token. As suggested by Seo
et al. (2016), attention flows between question tokens and context
tokens are important for solving EQA tasks. Since RNN encodes
tokens that compose a question, into a fixed-size vector, the model
using RNN/RNN-CREF layer loses the benefits of the transformer
structure, where the attentions of each token are connected and
share information between them.

6 Discussion

In this section, we elaborate on the experimental results from the
previous section and analyze the strength of our approach.

6.1 Results analysis

The experimental results in Table 2 show that our approach con-
stantly outperforms the previous approach in the Recall metric.
These observations correspond to one of the strengths of the pro-
posed model, that the model does not need to rely on thresholding
when deciding the answer candidates. For a model using threshold-
ing (threshold = ) on the probability, the number of answers is lim-
ited to a maximum of 1/¢. On the other hand, our model can predict
answers as many as the model needs, lifting the unnatural regula-
tions on the number of questions.

Figure 4 shows the distributions of the number of predicted
answers of baseline (Yoon et al., 2019b) and SeqTag model on
BioASQ list datasets. As stated in the previous paragraph, baseline
models are restricted to predict less than a certain number of
answers, resulting in a tendency to predict a smaller number of
answers. As a result, the distributions of baseline were inconsistent
with the distribution of the testing dataset (denoted as Answer). The
number of answers is most frequent in the first bin ([1, 2] section)
for the baseline, but in our model and the testing dataset, the second
bin ([3, 4] section) was the most frequent, providing circumstantial
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evidence that our model can learn the proper number of answers for
a given question.

6.2 Limitations of previous works

In addition to the thresholding, Yoon ez al. (2019b) and Jeong et al.
(2020) utilized the rule-based post-processing steps, namely number
of answers detection, to handle list-type questions. For example, in
order to answer the question “What 2 biological processes are regu-
lated by STAMP2 in adipocytes?’, the model detects any number in
the question, two (2), and outputs answers as many as the detected
number. However, models with number of answers detection are
susceptible to the proportion of questions with answers that have
numbers. For the BioASQ 8b testing dataset, the proportion is near-
ly half than that of BioASQ 7b (Table 4). We credit the extra per-
formance gains of our model on BioASQ 8b to not using rule-based
post-processing steps and the robustness attained from it.

The testing dataset for the BioASQ challenge provides both
document identifiers, namely PMID’s, and snippets which are manu-
ally curated sentences within the provided document. Participants of
the BioASQ challenge can choose which data to use. Jeong et al.
(2020) won the BioASQ 8b challenge by using snippets as the source
of the passage and exhibited significant performance gains.
However, in this article, we do not consider snippets as the passage
since the use of snippets may not sufficiently fulfill the final goal of
EQA to build an automated process of finding an answer from the
given document. (We defer more details regarding the snippet ap-
proach to the Supplementary Appendix.)

6.3 Universal modeling for extractive QA

Employing sequence tagging for EQA enables a single unified model
to answer factoid- and list-type questions without any task-specific
layer modification. In order to experiment on the usability of our
model on the universal setting, we simply amalgamated two datasets
and trained our model on the merged dataset. More specifically, our
setting is similar to multi-task learning in the sense that we use vari-
ous data sources, but does not require task-specific layers.

Table 5 shows the performance and the utility of sequence tag-
ging models trained on different training dataset combinations.
Model of Experiment (1) is a standard sequence tagging model
trained on the BioASQ List 8b dataset (Identical to the Seq-Tag
BioBERT model in Table 2). Likewise, model of (2) is trained on the
BioASQ Factoid 8b dataset. Model of Experiment (3) has an identi-
cal structure with Model of (1) and (2) but is trained on the amalga-
mated dataset (List + Factoid). Without any further fine-tuning

Table 4. The proportion of list-type questions with the number of
answers in the question, out of list questions in testing datasets

Dataset Test question Question with number Proportion
BioASQ 7b 88 23 26.1%
BioASQ 8b 75 10 13.3%

Table 5. Performance of our model on multiple data

steps, Model (3) showed competitive performance with model (1)
on list questions, suggesting that our modeling can be used for a uni-
versal approach for both factoid and list questions (i.e. all questions
regardless of the expected number of answers). Our question-type
agnostic approach provides additional benefits for applications of
QA models to real-world use, as metadata (or prior knowledge) of
naturally posed biomedical questions are not given in general.

7 Conclusion

In this article, we proposed a sequence tagging approach for
BioEQA. In our preliminary study, we displayed that list-type ques-
tions, which are questions with multiple phrases as an answer set,
are more abundant in the biomedical context than questions in the
general domain, and take up a significant portion of questions.
Stemming out from the preliminary study, we stress that solving list-
type questions are a key building block for modeling robust BioEQA
systems.

We proposed and demonstrated the advantage of the sequence
tagging approach in predicting a variable number of phrases as
answers for a question. Our proposed approach outperformed base-
line models in a large gap, regardless of the backbone models
(BioBERT, BlueBERT and PubMedBERT). Average performance
improvements over baseline model (Yoon et al., 2019b) were 3.80%
for BioASQ 7b List questions and 6.22% for BioASQ 8b List ques-
tions (F1 score). Moreover, the sequence tagging approach enables
models to handle both list and factoid questions using a unified
structure, suggesting that list questions can be viewed as a general-
ized version of factoid questions.
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BioASQ 8b test

Training data List-F1

Factoid-MRR

Utility

(1) List 8b 0.4310 (0.0056) — Focused on multi-answer questions (Requires metadata)

(2) Factoid 8b — 0.3759 (0.0034) Focused on single-answer questions (Requires metadata)

(3) List 8b + Factoid 8b 0.4148 (0.0081) 0.3795 (0.0183) Universally usable regardless of expected number of answers
Difference -0.0162 0.0036

Note: Our sequence tagging approach enables to train a universal model that can predict questions without knowing metadata on the given question. Statistics

on five individual runs are reported in the table.
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