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Introduction

Glaucoma is an optic neuropathy characterized by

Purpose: The study was conducted to evaluate threshold smoothing algorithms to
enhance prediction of the rates of visual field (VF) worsening in glaucoma.

Methods: We studied 798 patients with primary open-angle glaucoma and 6 or more
years of follow-up who underwent 8 or more VF examinations. Thresholds at each VF
location for the first 4 years or first half of the follow-up time (whichever was greater)
were smoothed with clusters defined by the nearest neighbor (NN), Garway-Heath,
Glaucoma Hemifield Test (GHT), and weighting by the correlation of rates at all other
VF locations. Thresholds were regressed with a pointwise exponential regression (PER)
model and a pointwise linear regression (PLR) model. Smaller root mean square error
(RMSE) values of the differences between the observed and the predicted thresholds
at last two follow-ups indicated better model predictions.

Results: The mean (SD) follow-up times for the smoothing and prediction phase were
5.3 (1.5) and 10.5 (3.9) years. The mean RMSE values for the PER and PLR models were
unsmoothed data, 6.09 and 6.55; NN, 3.40 and 3.42; Garway-Heath, 3.47 and 3.48; GHT,
3.57 and 3.74; and correlation of rates, 3.59 and 3.64.

Conclusions: Smoothed VF data predicted better than unsmoothed data. Nearest
neighbor provided the best predictions; PER also predicted consistently more
accurately than PLR. Smoothing algorithms should be used when forecasting VF
results with PER or PLR.

Translational Relevance: The application of smoothing algorithms on VF data can
improve forecasting in VF points to assist in treatment decisions.

lessen their chances of visual disability, as opposed to
slower progressing patients who may be spared the
costs and morbidity of treatment.’

Exponential and linear models have been used to

progressive functional and structural deterioration.'
The ability of clinicians to accurately estimate rates of
functional decline with visual fields (VF) is an
important basis for making management decisions.”
Because of the confounding effect of variability
between VF tests and the inherent lack of external
validation, several prediction techniques have been
developed.™ Visual field indices that consider sensi-
tivity at individual locations are more sensitive to
change than global VF indices.”® Measurement of
glaucoma decay rates helps identify fast progressing
patients who may need more aggressive treatment to

fit and predict visual field behavior. The exponential
model assumes a constant multiplicative rate of
change while the linear model assumes a constant
additive rate of change. A validated pointwise
exponential regression (PER) technique has been
described recently”® and measures visual decay rates
of all locations of the VF across a wide spectrum of
disease severity. Pointwise exponential regression was
used to partition VF points into fast and slow
components; it was observed that the faster progress-
ing points clustered in a pattern consistent with the
anatomy of the retinal nerve fiber layer (RNFL).?
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Recent studies demonstrated that VF cluster analysis,
as opposed to individual test locations, dampens the
effects of longitudinal VF Variabili‘[y,9 facilitates the
identification of early glaucomatous damage.,”'' and
increases the specificity of glaucoma diagnosis.'”

A strategy to reduce VF measurement variability
without additional testing or the exclusion of unreli-
able tests is post hoc application of a spatial filters to
VF data."”'* Spatial filtering, a technique used
commonly in digital image processing, can smooth
the data and reduce the noise by applying mathemat-
ical processes that exploit the spatial relationship
between neighboring numeric values.'* As the VF is a
numerical matrix, the same rationale may be applied
to VF data. With this approach, the measured
threshold sensitivity of each test location within the
VF is replaced by a “weighted” value, which is
estimated with neighboring sensitivity values.'”

The aim of this study was to enhance VF
forecasting with PER and PLR models by investigat-
ing four different smoothing algorithms based on
spatial clustering. We hypothesized that such an
approach may improve the VF signal-to-noise ratio
and enhance predictions of VF behavior.

Patients

A total of 798 eyes of 588 patients from two
cohorts was available for the study and represented
a wide spectrum of glaucoma severity. The first
cohort included 409 eyes of 279 University of
California, Los Angeles (UCLA) patients diagnosed
with primary open-angle glaucoma (POAG). The
second cohort included 389 eyes of 309 Advanced
Glaucoma Intervention Study (AGIS) patients. The
AGIS study design and methods have been de-
scribed in detail previously.'®'” Tests were per-
formed with the Humphrey VF analyzer (Carl Zeiss
Ophthalmic Systems, Inc., Dublin, CA) with a 24-2
test pattern, size I1I white stimulus, and with either
the full threshold strategy or the ad Swedish
Interactive Threshold Algorithm (SITA) Standard
strategy. The 24-2 test pattern recorded sensitivities
from 54 points of the VF including the physiolog-
ical blind spot.

Additional inclusion criteria for eyes in the study
are: eyes with adequate VF reliability defined as
having <30% fixation loss, false-positive and false-
negative response rates, and eyes with 6 or more
years of follow-up that underwent 8 or more VF

examinations. Each eye’s VF series contained either
all SITA or all full threshold examinations; the
algorithms were not mixed for any eye, nor were they
based on a decision made by the examiner. This
study was approved by the UCLA Human Research
Protection Program, was performed in accordance
with the tenets set forth in the Declaration of
Helsinki, and complied with Health Insurance
Portability and Accountability Act (HIPAA) regu-
lations.

VF Location Clustering

Each of the 54 VF points were grouped as clusters
defined by the following four models: (1) a nearest
neighbor weighting model (NN), (2) the Garway-
Heath model,’ (3) the glaucoma hemi-field test model
(GHT)," and (4) a correlation of rates'” model. The
raw sensitivity values (dB) at each VF location for the
first 4 years or the first half of the follow-up time
(whichever was greater) were weighted individually
based on distance influences from each of the other
locations for each of the four models.

VF Clustering models (Fig. 1)

NN Model

In this model the sensitivity of each point was
weighted based on distance and sensitivity of adjacent
neighboring points. The minimum number of possible
neighbors was 4 and the maximum number of
possible neighbors was 8.

Garway-Heath Model

Garway-Heath et al.' defined six VF clusters based
on the structure—function correlations between RNFL
bundle defects on fundus photographs and VF defects
observed in a group of normal-tension glaucoma
patients.

GHT Model

The 54 VF test locations were divided into 10 GHT
clusters corresponding to RNFL anatomy as de-
scribed by Asman and Heijl.'® There were five clusters
in the superior hemifield and five mirror-image
clusters in the inferior hemifield.

Correlation of Rates Model

This weighting model was based on the correlation
of longitudinal rates of decay at each VF test
locations with all the other VF test locations using
hierarchical cluster analysis. It was shown that
correlated rates of change, in patients with glaucoma,
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Garway-Heath

Nearest Neighbor

a)

Correlation of Rates

Figure 1. Visual representation of the four clustering techniques
used for smoothing. (a) Nearest neighbor weighted the sensitivity
of each point based on distance and sensitivity of adjacent
neighboring points; three examples of nearest neighbor locations
are shown. (b) Garway-Heath defined six visual field clusters based
on structure-function correlations between RNFL bundle defects
on fundus photographs and VF defects observed in a group of
normal-tension glaucoma patients. (c) GHT defined 10 clusters
corresponding to RNFL anatomy. (d) Correlation of rates uses
correlation of longitudinal rates of decay at each VF test locations
with all the other VF test locations using hierarchical cluster
analysis; one location’s (solid circle near fixation above horizontal)
color scale representation of its correlation of rates is shown.

cluster into regions consistent with RNFL bundle
patterns.w

Distance Weighting and Correlation
Weighting

Calculating the smoothed VF locations based on
distance was defined as:

N —

Weighted Location = (V' Focation)

n
1 E 1 (W X VFNeighbor)

2 n Y
PN
where d = distance = 1 (for adjacent VF locations),
w = weight = 1/d*, n = number of neighboring VF
locations, VF} scation = dB value of VF location being
weighted, and VFneighbor = dB value of neighboring
VF location.

Calculating the smoothed VF locations based on the
correlation of rates was defined as:

Correlation of Rates Weighted Location

n
1 g 1(C>< V Fxeighbor)
E n 3
2,

where ¢ = correlation value. The final follow-up for
the smoothed locations required at least two years’
duration from the first follow-up to be predicted.

_l’_

1
== ( VFLocation) 5

VF Regression and Prediction

The two test locations at the physiological blind
spot and the locations at which the first three initial
measurements were zero dB were excluded from the
regression analysis. The raw and cluster-weighted
(smoothed) 54 VF point sensitivities in decibels (dB)
were regressed with PER and PLR for the first four
years or half of the follow-up time (whichever was
greater) and regression coefficients were obtained.
The mathematical models used in the regressions
were:

1. PER: y = "7~ or equivalently, n(y) = a + fx
2. PLR: y=a+ fix

The variable y represents threshold sensitivity in
dB and x represents follow-up time in years. The
variables o and f are parameters estimated by the
models, where « is the intercept and f is the regression
coefficient.

Regression curves, representing pointwise decay,
for each model were created from these coefficients
for the smoothed and unsmoothed VF locations.
These curves were used to predict the sensitivity (dB)
of the last follow-up visit and were compared to the
observed VF sensitivity (average of the final two
follow-up visits). The root mean square errors
(RMSE) of the difference of the predicted and
observed sensitivities were calculated. This was done
for the smoothed clustered (4 prediction models)
locations and the raw nonclustered locations.

n

Z (Xobs,i - Xmodel,i)z

RMSE = \| =! ,
n

where X, = average sensitivity (dB) of the final 2
follow-up visits of the observed points, Xpodel =
predicted sensitivity (dB) of the last follow-up of the
smoothed points, » = number of visual field points,
and i = eye.

Only locations with a negative regression coeffi-
cient were predicted. The linear model predictions
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Table 1. Patient Demographics and VF Series Characteristics

Eyes, n 603
Patients, n 473
Mean age = SD, y 688 £ 114
Mean smoothed follow-up * SD, y 53+ 15
Mean smoothed VFs = SD, n 10.5 = 3.9
Mean total VF follow-up = SD, y 10.8 = 34
Mean total VFs = SD 189 £ 7.0

were censored at 0 dB. The model with the best
predictive ability was assessed with values of RMSE.
Since there is no formal statistical test to determine
the level of significance between models, the RMSE of
the models were ranked from the lowest to highest.
The model with the lowest RMSE was considered the
best predictor of the observed final sensitivity. All
statistical analyses were done in the open source
programming language R.”

Patient Data

We included in the study 603 eyes of 473 patients
with POAG (6932 VF locations). The mean (=SD)
duration and number of VFs used to construct the
prediction were 5.3 (*1.5) and 10.5 (*+3.9) years,
respectively. The mean (*SD) total duration and
number of VFs were 10.8 (*£3.4) years and 18.9
(£7.0), respectively (Table 1). The VF test strategies
for the UCLA group included SITA standard (88%)
and full threshold (12%) exams. The VF test strategies
for the AGIS group were all full threshold exams.

Prediction and RMS

The mean RMSE values of the differences between
the observed and the predicted thresholds at last

follow-up for each VF location for the PER were 6.09
dB for the unsmoothed data, 3.40 dB for NN, 3.47 dB
for the Garway-Heath clusters, 3.57 dB for GHT, and
3.59 dB for the correlation of rates (Table 2).

The mean RMSE values of the differences between
the observed and predicted thresholds at last follow-
up for each VF location for the PLR were 6.55 dB for
the unsmoothed data, 3.42 dB for NN, 3.48 dB for the
Garway-Heath clusters, 3.74 dB for GHT, and 3.64
dB for the correlation of rates (Table 2).

Absolute differences in the sensitivity (dB) between
the smoothed and observed values for each of the four
models are shown in Figure 2. All P values between
the smoothed and unsmoothed differences in sensi-
tivities were P < 0.001. The resultant RMSE values
ranked from lowest to highest (dB) are shown in
Table 2.

Discussion

The smoothing algorithms enhanced the predictive
ability of the PER and PLR models by integrating
weighted spatial contributions from neighboring VF
test locations within the specific cluster. Although
differences between the VF PER and PLR predictions
with the four smoothing models and the raw
predictions were not large, the NN had the lowest
RMSE for the exponential and linear models (Table

Table 2. Comparison of the RMSE Values of the Difference Between the Observed and Predicted Threshold for

PER and PLR Models

Exponential Linear
RMSE, dB Average, dB® RMSE, dB Average, dB?
Raw data 6.09 413 6.55 442
Nearest neighbor 3.40 241 342 2.39
Garway heath 347 242 3.48 2.40
GHT 3.57 245 3.74 2.52
Correlation matrix 3.59 2.67 3.64 2.64

@ Absolute (predicted — observed).
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Figure 2. Absolute differences in the sensitivity (dB) between the
smoothed and observed values per cluster model for PER and PLR
models. Outliers have been removed from the graph.

2) and, thus, provided the most favorable predictions.
The boxplots of the absolute difference of the
predicted and observed for each smoothing algorithm
are comparatively shorter than the boxplot for the
raw data (Fig. 2). There is a larger spread in the
absolute difference of the predicted and observed for
the raw data. The use of the unsmoothed, raw VF
location values yielded the least accurate predictions
(highest RMSE values) for the exponential and linear
models. Analysis of variance (ANOVA) with random

effects was used to compare all four smoothing
techniques and the raw data; the result was significant
for PER and PLR (P < 0.001). An ANOVA with
random effects also was used to compare all four
smoothing techniques excluding the raw data, and the
result also was significant for PER and PLR (P <
0.001). While the means among the four smoothing
techniques are significantly different, due to the large
sample size, the clinical significance between the
smoothing techniques is admittedly marginal.

The relationship among test locations across the
VF has been the subject of many studies, some
suggesting that clustering is essential for early
detection of damage in glaucoma.,”'' and others
observed that clusters are correlated to the optic nerve
head' and RNFL anatomy.'”?' Clustering of abnor-
mal VF points in an arcuate pattern is more specific
for glaucoma rather than if the abnormal points are
scattered.'” Requiring progressing points to belong to
the same GHT cluster increases the specificity to
recognize significant change.”” Traditional progres-
sion analysis techniques, such as pointwise linear
regression (PLR) or glaucoma probability analysis
(GPA), do not nominally require individual progress-
ing points to belong to a specific cluster.

It has been suggested that using change in a single
location as a criterion for progression leads to high
false-positive rates, and that assessing fields with a
cluster-based approach enhances specificity.'”****
Mandava et al.,” with 11 clusters in a set of 76
Octopus program G1 VFs, reported that VF cluster
analysis performed better than global indices (mean
defect or MD) for the detection of localized VF
progression and had less long-term VF fluctuation
compared to pointwise analyses. The clustered MDs
had a sensitivity of 90% and a specificity of 93% while
the global MD had a sensitivity of 81% and a
specificity of 91%. The authors observed that cluster
analysis was effective in detecting localized loss and in
dampening long-term fluctuation, and pointed out the
use of clusters to distinguish normal from glaucoma-
tous as well as stable from deteriorating VFs.

Another study introduced a novel clustering
method consistent with RNFL anatomy and showed
improved detection and prediction of progression
with correlated pointwise rates of decay.'” Various
mapping and clustering techniques''**"-**2° have
been designed with a variety of algorithms. These
techniques also established relationships between
functional and structural glaucoma changes and
attempted to elucidate this relationship objectively,
particularly with regard to VF progression. The use of
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customized perimetric maps has been reported re-
cently.”’ Spatial averaging with the use of such
customized maps may provide additional benefits to
enhance the accuracy of predicted VF sensitivities,
and should be investigated.

Our results showed that PER and PLR coupled
with any of the four smoothing models provided
more accurate predictions of future VF behavior
than was achieved with the unsmoothed VF
sensitivities. Based on the RMSE (Table 2), the
four smoothing algorithms, as compared to raw or
unsmoothed data, likely improved the VF signal-to-
noise ratio, and provided more accurate predic-
tions. We initially expected that the NN model
would be least predictive versus the others, given its
lack of anatomical basis; however, it provided the
best VF predictions, probably solely due to
lowering variability through strictly localized aver-
aging.’

One limitation of this study was the VF algo-
rithms used by the 2 cohorts were not uniform (full
threshold and SITA standard algorithms were used),
though never mixed in the same series; we then
would consider these results a “worst-case scenario.”
However, one study showed no difference in the
generated MD values between full threshold and
SITA standard algorithms.”® The differences in
RMSE and absolute dB values between the tech-
niques was small, so that the clinical relevance
between the smoothing techniques is limited; still,
improvements to VF variability and prediction
should be incorporated in clinical research whenever
possible.

In summary, among glaucoma patients with a wide
spectrum of severities, application of smoothing
algorithms to PER and PLR models improved
prediction of VF behavior compared to the use of
raw data. Although the differences among the VF
PER and PLR predictions among the four smoothing
algorithms and raw predictions is small, all performed
considerably better than the unsmoothed data. The
best predictions were provided by NN; PER also
predicted consistently more accurately than did PLR.
Smoothing algorithms should be used when forecast-
ing VF results with PER or PLR. Such enhancements
of VF analyses, by more accurately approximating the
rates of worsening glaucoma patients, improve VF
progression predictions and may assist the identifica-
tion of fast progressors, so that appropriate treat-
ments can be applied to lessen their chances for visual
disability.

Acknowledgments

Disclosure: E. Morales, None; J.M.S. de Leon,
None; N. Abdollahi, None; F. Yu, None; K. Nouri-
Mahdavi, None; J. Caprioli, None

References

1. Garway-Heath DF, Poinoosawmy D, Fitzke FW,
Hitchings RA. Mapping the visual field to the
optic disc in normal tension glaucoma eyes.
Ophthalmology. 2000;107:1809—-18135.

2. Azarbod P, Mock D, Bitrian E, et al. Validation
of point-wise exponential regression to measure
the decay rates of glaucomatous visual fields.
Invest Ophthalmol Vis Sci. 2012;53:5403-54009.

3. Werner EB, Bishop KI, Koelle J, et al. A
comparison of experienced clinical observers
and statistical tests in detection of progressive
visual field loss in glaucoma using automated
perimetry. Arch Ophthalmol. 1988;106:619-623.

4. Katz J, Congdon N, Friedman DS. Methodolog-
ical variations in estimating apparent progressive
visual field loss in clinical trials of glaucoma
treatment. Arch Ophthalmol. 1999;117:1137-1142.

5. Wild JM, Hussey MK, Flanagan JG, Trope GE.
Pointwise topographical and longitudinal model-
ing of the visual field in glaucoma. Invest
Ophthalmol Vis Sci. 1993;34:1907-1916.

6. Chauhan BC, Drance SM, Douglas GR. The use
of visual field indices in detecting changes in the
visual field in glaucoma. Invest Ophthalmol Vis
Sci. 1990;31:512-520.

7. Caprioli J. The importance of rates in glaucoma.
Am J Ophthalmol. 2008;145:191-192.

8. Caprioli J, Mock D, Bitrian E, et al. A method to
measure and predict rates of regional visual field
decay in glaucoma. Invest Ophthalmol Vis Sci.
2011;52:4765-4773.

9. Mandava S, Zulauf M, Zeyen T, Caprioli J. An
evaluation of clusters in the glaucomatous visual
field. Am J Ophthalmol. 1993;116:684—691.

10. Chauhan BC, Drance SM, Lai C. A cluster
analysis for threshold perimetry. Graefes Arch
Clin Exp Ophthalmol. 1989;227:216-220.

11. Katz J, Sommer A, Gaasterland DE, Anderson
DR. Comparison of analytic algorithms for
detecting glaucomatous visual field loss. Arch
Ophthalmol. 1991;109:1684—-1689.

TVST | 2016 | Vol. 5 | No. 2 | Article 12



translational vision science & technology

12.

13.

14.

15.

16.

17.

18.

19.

20.

Morales et al.

Asman P, Heijl A. Arcuate cluster analysis in 21.

glaucoma perimetry. J Glaucoma. 1993;2:13-20.
Fitzke FW, Crabb DP, McNaught Al, Edgar DF,
Hitchings RA. Image processing of computerised
visual field data. Br J Ophthalmol. 1995;79:207-
212.

Crabb DP, Fitzke FW, McNaught AL, Edgar DF,
Hitchings RA. Improving the prediction of visual
field progression in glaucoma using spatial
processing. Ophthalmology. 1997;104:517-524.
Strouthidis NG, Scott A, Viswanathan AC,
Crabb DP, Garway-Heath DF. Monitoring
glaucomatous visual field progression: the effect
of a novel spatial filter. Invest Ophthalmol Vis Sci.
2007;48:251-257.

Ederer F, Gaasterland DE, Sullivan EK, Inves-
tigators. AGIS. The Advanced Glaucoma Inter-
vention Study (AGIS): 1. Study design and
methods and baseline characteristics of study
patients. Control Clin Trials. 1994;15:299-325.
The Advanced Glaucoma Intervention Study
(AGIS): 4. Comparison of treatment outcomes
within race. Seven-year results. Ophthalmology.
1998;105:1146—-1164.

Asman P, Heijl A. Glaucoma Hemifield Test.
Automated visual field evaluation. Arch Ophthal-
mol. 1992;110:812-819.

Nouri-Mahdavi K, Mock D, Hosseini H, et al.
Pointwise rates of visual field progression cluster
according to retinal nerve fiber layer bundles.
Invest Ophthalmol Vis Sci. 2012;53:2390-2394.

R Core Team R: A language and environment for
statistical computing. R Found Stat Comput
Vienna Austria. 2013. Available at: http://www.
R-project.org/.

22.

23.

24.

25.

26.

27.

28.

Asaoka R, Russell RA, Malik R, Crabb DP,
Garway-Heath DF. A novel distribution of visual
field test points to improve the correlation
between structure-function measurements. Invest
Ophthalmol Vis Sci. 2012;53:8396-8404.
Nouri-Mahdavi K, Caprioli J, Coleman AL,
Hoffman D, Gaasterland D. Pointwise linear
regression for evaluation of visual field outcomes
and comparison with the advanced glaucoma
intervention study methods. Arch Ophthalmol.
2005;123:193-199.

Heijl A, Bengtsson B, Lindgren G. Visual field
progression in glaucoma. Br J Ophthalmol. 1998;
82:1097-1098.

Ferreras A, Pablo LE, Garway-Heath DF,
Fogagnolo P, Garcia-Feijoo J. Mapping standard
automated perimetry to the peripapillary retinal
nerve fiber layer in glaucoma. Invest Ophthalmol
Vis Sci. 2008;49:3018-3025.

Zhang X, Raza AS, Hood DC. Detecting
glaucoma with visual fields derived from frequen-
cy-domain optical coherence tomography. Invest
Ophthalmol Vis Sci. 2013;54:3289-3296.
Nilforushan N, Nassiri N, Moghimi S, et al.
Structure-function relationships between spectral-
domain OCT and standard achromatic perimetry.
Invest Ophthalmol Vis Sci. 2012;53:2740-2748.
Ballae Ganeshrao S, Turpin A, Denniss J,
McKendrick AM. Enhancing structure—function
correlations in glaucoma with customized spatial
mapping. Ophthalmology. 2015;122:1-11.
Demirel S, De Moraes CGV, Gardiner SK, et al.
The rate of visual field change in the ocular
hypertension treatment study. Invest Ophthalmol
Vis Sci. 2012;53:224-227.

TVST | 2016 | Vol. 5 | No. 2 | Article 12


http://www.R-project.org/
http://www.R-project.org/

	Introduction
	Methods
	e01
	e02
	e03
	f01
	Results
	Discussion
	t01
	t02
	f02
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28

