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Abstract: Infection with HPV starts with the access of the viral particles to basal cells in the epidermis,
potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in
normal circumstances through a robust immune response from the host, as HPV infections are, in
general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in
cases where the host immune system is compromised are major risk factors for the development of
lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would
not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own
life cycle, but infection with these viruses is highly correlated with cancer and malignancy—as in
cancer of the cervix, which is almost always associated with these viruses. Despite this key associative
cause and the availability of very effective vaccines against these viruses, therapeutic interventions
against HPV-induced cancers are still a challenge, indicating the need for focused translational
research. In this review, we will consider the key roles that the viral proteins play in driving the host
cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7—the
not-so-good, the bad and the ugly—and discuss and summarize the major events that lead to these
viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
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Most human cancers are caused by agents that cause DNA damage and genomic
instability, leading to the deregulation of cellular homeostasis. Over the period of this
transformation, cancer cells acquire the major hallmarks of cancer and are able to sustain
proliferative signalling, evade growth suppressors, resist cell death, enable replicative
immortality, induce angiogenesis, activate invasion and metastasis, deregulate cellular
energetics and metabolism and avoid immune destruction. The acquisition of these eight
functional capabilities is primarily facilitated by two main traits of cancer—genome insta-
bility with consequent gene mutation and tumour-promoting inflammation (Figure 1) [1,2].
Among other causes (smoking, radiation, cancer-causing chemicals or carcinogens, hor-
mones, chronic inflammation, etc.), infectious agents like hepatitis B virus, hepatitis C virus,
human papillomavirus (HPV), Epstein-Barr virus, HIV-1, human T-cell lymphotrophic
virus-1, Merkel cell polyomavirus, Kaposi’s sarcoma herpesvirus, Helicobacter pylori, Schis-
tosoma haematobium and Opisthorchiasis viverrini are known to cause approximately 15% of
human cancers [3,4]. While most viruses have evolved to use host cellular machinery for
their life cycle, certain tumour viruses, such as HPVs, express viral oncogenes that directly
contribute towards cellular transformation and cancers. Although this multistep process
leading to a transformed cell phenotype is not a permissive event for the viral life cycle,
these viruses play a significant role in development and progression towards cancer and
malignancy.

HPVs cause almost one-third of the 15.4% human cancers attributable to carcinogenic
infections [3]. Cervical cancer charts as the second-most common cancer in women aged
15–44 years and the fourth leading cause of female cancer worldwide, and cervical cancer
is almost always associated with infection with HPVs [5]. Other anogenital cancers and an
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increasing number of head and neck cancers, including those of the oral cavity, oropharynx,
sinus, tonsil and larynx, are also caused by these viruses. HPVs belong to the Papillomaviri-
dae family; they are nonenveloped virions with a double-stranded DNA genome enclosed
in an icosahedral capsid composed of major (L1) and minor (L2) structural proteins. The
genome contains eight to nine ORFs, designated early (E1, E2, E4, E5, E6 and E7) and
late (L1 and L2) proteins according to the time of expression after infection. Based on L1
gene sequences, HPVs are classified into alpha, beta, gamma, mu and nu genera. These
viruses are mainly associated with the host epithelium, and those alpha-HPV types that
infect the mucous membranes have been grouped into high- and low-risk types. Infection
with low-risk types is characterized by benign lesions, whereas lesions caused by high-risk
types may progress to cancer. Although over 200 HPV types have been identified, only
a small group of specific types are known to cause cancer and are classified as high-risk
(HPV-16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 63, 73 and 82); probable high-risk types (26,
53 and 66) and low-risk (6, 11, 40, 42, 43, 44, 54, 61, 70, 81 and CP6108) by the International
Agency for Research on Cancer [6]. In this review, we will discuss how expression of the
viral proteins E5, E6 and E7 orchestrates the rewiring of cellular homeostasis, leading to
the development and progression to cancer and malignancy.

Figure 1. The hallmarks of cancer adapted from Hanahan and Weinberg 2016 [2]. A schematic illustrating eight distinct
functional capabilities and two facilitators that are necessary conditions for the manifestation of malignant disease—cancer—
and the expression of the HPV oncoproteins responsible for attaining these functions.

1. Carcinogenic Orchestration by E5, E6 and E7

Infection with HPVs is believed to occur through contact with infected genital skin,
mucous membranes or bodily fluids, and it can be sexually transmitted. Most (70–90%) of
these infections are asymptomatic and are resolved by the host immune system within 1 to
2 years; however in some (5–10%) infected individuals, where the infection is not cleared, a
persistent infection develops, which can ultimately lead to malignancy (Figure 2). Persis-
tent infection with HR-HPVs may lead to inadvertent integration of the viral episomes into
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the host genome [7,8]. This event is not only unfortunate for the virus, as it can no longer
complete its productive life cycle, but also to the host in promoting carcinogenesis [9].
Integration of the viral DNA often occurs at common fragile sites [10,11], while the event
can also induce host genome rearrangements that could lead to direct activation/repression
of oncogenes/tumour suppressors such as myc [12], perturbing cellular homeostasis. More
than 70% of HPV-mediated cancers are caused by high-risk types 16 and 18 alone, and in
the case of HPV-18-positive cancers, the HPV-18 genome is integrated in 100% of cases,
whilst in the case of HPV-16, the virus can remain episomal in up to 25% of cancers [13–15].
In most cases, the integration event disrupts the repressive function of the E2 gene on the
early promoter, leading to an overwhelming expression of E6 and E7, thereby rewiring
cellular functions towards a carcinogenic fate [16]. Indeed, blocking the expression of E6
and E7 has been shown to inhibit tumour cell proliferation, leading to senescence and
apoptosis [17–19]. Although the expression of E5 is mainly terminated by the integration
event, the expression of E5 can play a significant role in promoting carcinogenesis by avoid-
ing immune destruction. Furthermore, recent evidence in HPV-positive head and neck
squamous cell carcinomas (HNSCC), where the integration of HPV-16 into the host genome
is not often seen, suggests a dramatic increase in E5, together with E2 and E4, driving an
alternative mechanism of carcinogenesis with a minimal expression of E6/E7 [20]. The
concept of carcinogenic orchestration of HPV oncoprotein-mediated cancers is also backed
by the fact that HPV-positive cancers have fewer somatic alterations and changes in the
protein expression profile compared with HPV-negative cancers [21]. However, over the
period of persistent infection, this continued genomic instability and evasion of immune
destruction mediated by high-risk HPV oncoproteins results in an increasing accumulation
of cancer-promoting host cell mutations, leading to cancer and malignancy.
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Figure 2. From infection to the development of cancer and malignancy, mediated by HPV (adapted and modified from
References [22,23]. (A) Infection with HPV is normally cleared with 1 to 2 weeks; however, in certain individuals, persistent
infection and a lack of immune clearance can lead to deregulation of the viral life cycle and viral genome integration, making
them major risk factors for tumour development and progression towards cancer and malignancy. The progression towards
invasive cancer and metastasis involves several changes, including chromosomal abnormalities, epigenetic modifications,
genome instability and accumulating mutations and tumour-promoting inflammation, taking 2 to 20-plus years. (B) A
cartoon representing infection by HPVs and progression to cancer. Infection with HPV is thought to occur via microtraumas
in the epithelium, allowing access of the virus to the basal cell layer. HPV maintains its genome in the basal cells, and, as
these cell divide, there is coordinated expression of early viral proteins, including E6 and E7, that allows the differentiation-
determined cells to reinitiate the cell cycle. As these cells reach the upper squamous layers, with a concomitant expression
of viral late gene products L1 and L2, new virions are released upon desquamation. Various regions of the cervix composed
of stratified epithelium of the ectocervix, the transformation zone and the columnar epithelium of the cervix and endocervix
are indicated in the cartoon, suggesting major sites of productive infections leading to the release of viral particles and
abortive infection associated with deregulated HPV gene expression, potentially leading to squamous cell carcinoma and
adenocarcinoma.



Viruses 2021, 13, 1892 5 of 36

1.1. E5, E6 and E7 Oncoproteins—An Overview

Among the five genera of HPVs, only the alpha HPVs encode and express E5. HPV
E5s are small hydrophobic transmembrane proteins containing three hydrophobic trans-
membrane domains (TMD1-3), based on the molecular prediction and modelling analysis.
A schematic structure of HPV-16 E5 is shown in Figure 3. HPV-16 E5 can self-associate both
in vitro and in vivo and form oligomers by hydrophobic interactions [24–26]. Based on the
biochemical characteristics and protein evolution, E5s are classified into E5, E5β, E5γ and
E5δ, where those of high-risk HPVs fall in the E5α category and those of low risk fall in
to the E5β, E5γ or E5δ families [27]. High-risk HPV-16 E5α is an 83 amino acid protein,
localized mainly in the membranes of the endoplasmic reticulum, Golgi, nuclear membrane
and endosomes and, also, in the plasma membrane [28,29]. Indeed, the presence of the E5
gene in the viral genome correlates with the carcinogenic potential [27,30].

Figure 3. Schematic representation of HPV oncoproteins E5, E6 and E7. HPV16-E5 is an 83-amino acid-long transmembrane
protein with three transmembrane domains (TMDI-III). HPV-16 E6 is an 158 amino acid protein with two CXXC (Cys-
X-X-Cys,) motifs, which participate in coordinating with zinc ions and are indicated in the schematic. The C-terminus
PDZ-binding motif (PBM) sequence ‘ETQV’ is shown, which can be phosphorylated by AKT, Chk2 via PKA and Chk1
kinases. HPV-16 E7 is a cytoplasmic phosphoprotein. The position of the conserved regions (CR1, CR2 and CR3) and
CXXC (Cys-X-X-Cys) motifs, which participate in coordinating zinc ions, are also indicated. The LXCXE motif and CKII
phosphorylation site in the CR2 region are important for targeting the pRB and related pocket proteins.
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The HPV E6 proteins are approximately 150 amino acids in length and are zinc-binding
proteins with four CXXC motifs [31,32]. A schematic structure of HPV-16 E6 is shown in
Figure 3. Both E6 and E7 are expressed from a common early promoter. E6 is transcribed
either as a full-length (E6) mRNA or as one of several possible truncated E6 mRNAs (E6*)
based on a complex splicing pattern. The E6* transcripts described in HPV-16 are E6*I,
E6*II, E6*III, E6ˆE7, E6ˆE7*I, E6ˆE7*II, E6*IV, E6*V and E6*VI [33–36], while the four E6*
transcripts that have been described for HPV-18 are E6*I, E6*II, E6*III and E6ˆE7 [37–39].
The complete crystal structure of E6, including the N-terminal and C-terminal halves, has
been resolved, and a structure-functional analysis of E6 further suggests its plasticity in
interacting with a wide range of cellular substrates [40–43]. The C-terminus of the high-risk
E6 contains a unique signature sequence motif for interacting with PDZ (Post Synaptic
Density 95 (PSD95), Discs Large (Dlg) and Zona Occludens 1 (ZO-1) proteins, a PDZ-
binding motif (PBM)—and the presence of this motif has been suggested to correlate with
oncogenicity, based on predictions of the array of PDZ proteins with which it interacts [43].
Furthermore, this motif can further be modified post-translationally (refer to review [44])
by phosphorylation by various kinases, altering its ability to interact with several of its
targets and, hence, to modulate the host cellular functions [43,45–49].

HPV-16 E7 is a 98-amino acid-long heterogenous protein based on its structural and
dynamic properties [50]. The spliced E6*I transcript has been suggested to be responsible
for the translation of E7 [33]; however, recent evidence of circular RNA encompassing the
E7 oncogene (circE7) has been demonstrated to make a significant contribution to the E7
protein levels and transforming properties, despite being a less abundant species (~1–3% of
total E7 transcripts) [51]. The N-terminus of HPV16 E7 has sequence and functional homol-
ogy to a portion of CR1 and to the entire CR2 region of adenovirus (Ad) E1a and related
sequences in the simian vacuolating virus 40 large tumour antigen (SV40 TAg) [52–54].
A schematic representation of HPV-16 E7 is shown in Figure 3. The CR2 homology do-
main includes a LXCXE (X is any amino acid) motif, which is the interaction site for the
retinoblastoma tumour suppressor (pRB) and related pocket proteins [55,56]; however, the
optimum interaction requires the residues in the CR3 domain as well [57–59]. Adjacent to
this motif is a consensus phosphorylation site for casein kinase II (CKII) at serines 31 and 32
in the case of HPV-16 E7 [60,61]. Additionally, in the C-terminus, the CR3 region contains
two CXXC zinc-binding motifs separated by 29 amino acids [31,62]. Unlike the N-terminal
part of E7, which is intrinsically disordered and is characterized by high flexibility [63–65],
the C-terminus appears to be more structured and is also responsible for the formation
of a homodimer, as shown by the 3D structure of the E7 CR3 regions from HPV1-A [66]
and HPV-45 [64]. E7 has also been shown to form dimers [62,67,68], tetramers [69] and
higher order oligomers [70,71]. HPV-16 E7 was shown to be a cytoplasmic phosphoprotein
as early as 1987 [72]; however, nuclear pools have also been reported [73–76]. E7 has also
been shown to be present in different subcellular (ER, Golgi and nucleus) compartments,
based on immunofluorescence techniques using antibodies recognizing different epitopes
in HPV-16 E7 [77]. Furthermore, E7 is post-translationally regulated by the proteasome
and by phosphorylation (refer to review [44]).

1.2. Clues and Cues to Transformation and Cancer by HPV-Oncoproteins

The cellular transforming activity of high-risk HPV genomes was established in the
mid-1980s in rodent cell line transformation assays [54,78], and subsequently, E7 was rec-
ognized as the major transforming protein of high-risk HPVs, using mutational analyses in
transformation assays [52,79–84]. Later, using primary human keratinocytes, it was shown
that high-risk HPV genomes cause lifespan extension, inhibit keratinocyte differentiation
and lead to cellular immortalization [85–87]. Organotypic raft cultures expressing HPV
genomes were also shown to have similar cellular alterations and abnormalities in tissue
architecture as in high-grade HPV-associated clinical lesions [88,89]. Interestingly, HPV-16
E6/E7-expressing cell lines were immortalized but were not tumourigenic in nude mice, al-
though they could induce tumours after several passages or in cooperation with additional
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oncogenes such as ras or fos [79,90–92]. A further mutational analysis showed that E7’s
cooperation with E6 is necessary for these transforming activities in human keratinocytes,
while such transforming and immortalizing activities are highly decreased in the case of
low-risk E7s [93,94]. Similarly, co-transformation assays in murine kidney cells and human
mammary epithelial cells established that HPV-16 E6 has transforming properties, induc-
ing anchorage-independent growth and tumour formation in nude mice [95,96]; however,
low-risk E6 were unable to do so [97]. Indeed, both E6 and E7 cooperate in transformation,
where E7 drives the early tumourigenesis and E6 modulates the progression towards
malignancy [90,98].

Several lines of evidence suggest that there is also a significant role of HPV E5 in
contributing to oncogenic transformation. Early studies with BPV1 E5, the major transform-
ing protein in BPV1 [99], led to studies of the oncogenic potential of the HPV E5 proteins
in transformation assays. While HPV E5s display weak transforming activity in vitro in
contrast to BPV E5, nonetheless, HPV E5 can transform mammalian cells. Initial studies
with the expression of HPV-6 E5 in murine fibroblasts showed that it could induce the
formation of colonies in soft agar [100], and later, HPV-16 E5 was also shown to induce
anchorage-independent growth in murine keratinocytes and fibroblasts [101–103]. Further,
HPV-16 E5 was shown to be tumourigenic in nude mice [102] and to cooperate with E6
and E7 in its transforming abilities, including the proliferation of primary rodent epithe-
lial cells [104,105], immortalization of primary human keratinocytes [106] and enhanced
migration and invasion in the human keratinocyte cell line [107,108]. In addition, studies
in transgenic mice suggested that the expression of HPV-16 E5 in stratified squamous
epithelia led to a higher frequency of spontaneous skin tumours [109] and caused cervical
cancer when a prolonged oestrogen treatment was given [109,110]. As discussed earlier,
upon integration of the HPV genome in high-risk HPV-18, E5 is often disrupted; however,
in the case of HPV-16-positive cervical and oropharyngeal cancers, the expression of E5
is more likely and has been shown to be detectable [111–115], suggesting that E5 may
contribute to malignant progression of the cancer.

2. Role Played by the HPV Oncoproteins towards Attaining the Cancer Hallmarks

Clues to the carcinogenic fate mediated by HPV oncoproteins, they have, for several
decades now, led the search for mechanistic explanations, with the aim of determining
possible strategies for therapeutic interventions, and many studies have demonstrated that
several pathways are modulated by these oncoproteins in dysregulating normal cellular
homeostasis. HPV oncoproteins do not have intrinsic enzymatic activity and nor do they
share extensive sequence similarity with any host proteins [116,117], but they are able
to interact with and modulate many host cell proteins to contribute to all the cancer cell
hallmarks. Although most of these studies on the oncoproteins have been extensively
reviewed previously, we will try to summarize and mention some of the key targets and
pathways modulated by HPV oncoproteins during the process of carcinogenesis. Readers
are recommended to refer to reviews on HPV oncoproteins and the related original articles
for detailed descriptions [118–120].

2.1. Evading Growth Suppressors

The clonal regulation of human cells is unidirectional from stem cells to differentiated
cells, unless they are induced by events of repair, crisis or external factors. In the case
of the epidermis, the basal cells are responsible for continually replacing differentiated
keratinocytes that safeguard the inner cells and tissues from external harm or pathogens.
In epithelial differentiation, as the basal cell divides, the suprabasal daughter cell enters
the differentiation pathway and withdraws from the cell cycle [121]. The viral life cycle is
very closely linked with the epithelial differentiation program for the production, assem-
bly and release of viral particles; however, the virus also inhibits differentiation to allow
viral genome replication by inducing proliferation by targeting the pRB and p53 tumour
suppressors. Several members of both the Rb and p53 pathways are classified as tumour
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suppressor genes, based on their frequent loss-of-function via deletion, intragenic muta-
tions (e.g., p53 is mutated in almost 40% of all human cancers) or epigenetic alterations that
compromise these tumour suppressor pathways. However, in the case of HPV-mediated
cancers, both the p53 and pRB tumour suppressors are inactivated by the expression of
E6 and E7, respectively. The expression of HPV-E7 can override the G1-S checkpoint to
allow the cell to progress into the S phase by interacting with pocket family proteins (pRB,
p130 and p107) and initiating E2F-dependent transcription. While the rescheduled DNA
synthesis also allows activation of the p53 tumour suppressor, HPV-E6 can effectively
inactive this response (see below). These two functions are the central players for the
E6- and E7-mediated evasion of the cell’s growth suppressive functions. As discussed
earlier, persistent infection and an inability to clear the infection by host immune response
leads to integration of the viral DNA into the host genome, which, in turn, leads to a
high-level expression of E6 and E7 and consequent promotion of the development of cancer
and malignancy. Conversely, the silencing or repression of these oncoproteins activates
senescence and apoptosis of the HPV-transformed cells [17–19,122,123].

The pocket proteins and their interactions with members of the E2F family of tran-
scription factors play key roles in regulating the cell cycle and apoptosis [124]. In normal
cells, the association of pRB with E2F transcription factors prevents the transition of the
G1/S checkpoint until the cell receives a signal to divide [125]. The G1-specific pRB/E2F
transcriptional repressor complex is disrupted by the phosphorylation of pRB by cdk4/6
and cdk2 in late G1, and dissociated E2F acts as a transcriptional activator of the genes nec-
essary for S-phase entry and progression. In HPV-infected cells, high-risk E7 can bind the
G1-specific, E2F-bound pRB and disrupt this repressor complex, leading to uncontrolled G1
exit and S-phase entry [126]. E7 binds to pRB through the LXCXE motif in CR2, while the
sequences in the E7 CR3 region have also been shown to be important [58,59]. In addition,
high-risk HPV-16 E7 can destabilize pRB [127,128] through proteasomal degradation by
interacting with the cullin 2 ubiquitin ligase complex [129] (Figure 4). Sequences in the
E7 CR1 have also been shown to be necessary for pRB destabilization, in addition to the
LXCXE-binding motif [128].

High-risk and low-risk E7s have differential abilities to bind members of the pRB
family: low-risk E7 proteins bind to pRB with a much lower efficiency (approximately
10-fold less) than the high-risk HPV E7 proteins [55,130]. Again, only high-risk E7s can
target all three of the pRB family proteins for degradation. Therefore, it has been suggested
that the inability of low-risk HPV types to drive robust basal cell proliferation is because
they can only efficiently induce the degradation of p130, which regulates cell cycle entry in
the upper epithelial layers, but they cannot target p107 and p105, which regulate the cell
cycle in the basal and parabasal layers [127,131–137].
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Figure 4. Evading growth suppressors. Unlike normal cells, where the growth and proliferation are tightly controlled,
cells expressing HPV oncoproteins act to evade the key tumour suppressors pRB and p53. HPV-E7 can associate with pRB
and inactivate the repressive function of the pRB/E2F transcription complex, leading to the expression of S-phase genes
(cell cycle regulators, including cdc25a, cyclin E and A and replication enzymes and others) in otherwise cell cycle-exited
and differentiating keratinocytes, leading to re-entry to the S phase. Further, high-risk E7 can downregulate pRB via
proteasomal degradation via the cullin-2 ubiquitin ligase complex. HPV-16 E7 associates with cdk inhibitors p21Cip1

and p27Kip1, abrogates the inhibition of cdk2 activity and enhances the transcriptional activation of cdc25a, leading to
the dephosphorylation of inhibitory phosphorylation in cdk-2/cyclin E/A. This leads to activation of the p53 tumour
suppressor; however, high-risk E6 can inactivate and degrade p53 via the ubiquitin proteasome pathway involving the
E6AP ubiquitin ligase complex. ub—ubiquitin and pp—2-25 residue peptides.

G1/S Cell Cycle Checkpoint Deregulation by Other Mechanisms

In addition to the destabilization of pRB leading to perturbation of the pRB/E2F
complex, E7 further enhances G1/S transition by binding to both positive and negative
regulators of the cell cycle. Cyclin-dependent kinases (cdks) are drivers of the cell cycle. The
regulatory subunits of cdk2, cyclins E and A, which drive S-phase entry and progression,
are under the control of E2F, and it has been shown that cells expressing E7 maintain
high levels of both cyclin E and A as a result of pRB destabilization and increased E2F-
dependent transcription [138]. E7 can also directly associate with cdk2/cyclin A and cyclin
E complexes, resulting in increased cdk2 activity [139–141]. Furthermore, HPV-16 E7 also
causes an increase in the transcription of cdc25A (cell division cycle 25 A) phosphatase,
which is involved in removing the inhibitory phosphorylation of cyclin E and A complexes,
leading to the further activation of cdk2 activity [142]. More recently, E7-expressing cells
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were shown to have upregulated cdc6 [143], which promotes cell cycle progression by
activating cdk2 [144,145], and furthermore, cdc6 was shown to be important in the G1/S
transition in E7-expressing cells under hypoxic conditions [146].

HPV-16 E7 also associates with negative regulators of cell cycle and growth inhibitory
activities. During keratinocyte differentiation, loss of contact with the basal membrane is
accompanied by increased levels of cyclin-dependent kinase inhibitors (CKIs), subsequently
inhibiting cdk2 activity and, thus, inducing a G1 growth arrest. However, HPV-16 E7
abrogates the inhibition of cdk2 activity by interacting with CKIs, p21Cip1 [147,148] and
p27Kip1 [149], which are induced by antiproliferative signals, including growth factor
withdrawal [150], activation of p53 [151] and loss of cellular adhesion [152,153]. Although
E7 expression increases p21Cip1 through protein stabilization [154–156], cdk2 remains
active in HPV-E7-expressing cells [147,148,157]. Furthermore, the abrogation of p21Cip1
inhibition has been shown to require C-terminus sequences of E7, where zinc-binding site
mutants are shown to be proficient in targeting pocket proteins for degradation but are
yet unable to overcome growth arrest [133,158]. Furthermore, this abrogation of p21Cip1
activity is less efficiently done by low-risk E7 [145,146]. Thus, the ability of HPV E7 to
abrogate CKIs and disrupt pRB/E2F complexes, resulting in increased levels of cyclin A
and E, establishes a replication-competent cellular milieu in differentiating keratinocytes,
causing G1/S cell checkpoint deregulation that leads to continued proliferation.

Furthermore, HPV-16 E7 can target multiple members of the E2F transcription factor
family, including the transcriptional activator, E2F1 and the transcriptional repressor
E2F6 [159]. By interacting with E2F1, HPV-16 E7 can enhance E2F1-mediated transcription.
E2F1 plays a role in mediating the transcriptional control of the E2F6 gene, which is
upregulated in the G1/S-phase transition in order to repress E2F-responsive promoters,
thereby checking the cell cycle for differentiation [160]. At the same time, HPV-16 E7
associates with E2F6 and perturbs its ability to function as a transcriptional repressor [161].
Together, these functions of E7 allow cells that are committed to exit the cell cycle and
differentiation to remain in a S-phase-competent state, enabling them to initiate growth
and proliferative signalling. However, the resulting unscheduled DNA replication also
activates the cellular apoptotic pathways by a mechanism termed the ‘trophic sentinel
response’ [162], but this is efficiently inactivated by high-risk E6 proteins (see below).

One of the most well-studied interactions of E6 is with the p53 tumour suppres-
sor [163]. The p53 protein plays many roles in the cell, including cell cycle regulation,
activation of DNA repair pathways upon DNA damage and induction of apoptosis [164]. By
interacting with p53, E6 checks the transcriptional functions of p53, leading to the deregu-
lation of p53-dependent gene expression [165]. In addition, high-risk E6 binds to an LXXLL
motif on a cellular E3 ubiquitin-protein ligase, E6-associated protein (E6AP) [166–169],
forming the E6-E6AP complex, which recruits and ubiquitinates p53, mediating its degrada-
tion via the proteasome [170–172] (Figure 4). The E6–E6AP complex has also been shown to
be important for E6 stability, and the ablation of E6AP thus rescues p53 through two routes:
as a result of E6 destabilization and the loss of E6AP ubiquitin ligase activity [173,174]. Fur-
thermore, the interaction of E6 with E6AP has been shown to contribute to skin hyperplasia,
spontaneous skin tumours and tumour progression in transgenic mouse studies, where
mice harbouring a mutant HPV-16 E6, defective in binding E6AP, had greatly reduced
E6-induced phenotypes [175,176]. Although a major part of E6 function has been shown
to be associated with E6AP and its ligase activity, recent evidence suggests that E6 can
also target some of its targets (MAGI-1 and Scrib) independently of the E6AP enzymatic
activity [177].

The E6 interaction with p53 has been shown to perturb the binding of p53 to its
site-specific DNA sequences [178], possibly as a result of conformational changes in the
p53 protein upon interaction with E6, which, in turn, leads to an inhibition of the p53 DNA-
binding ability [179]. Furthermore, E6 perturbs the p53 function by sequestering p53 in the
cytoplasm, potentially by sterically hindering the p53 nuclear localization signal [180]. E6
has also been shown to abrogate the transactivation of p53-responsive genes via interactions



Viruses 2021, 13, 1892 11 of 36

with CBP/p300, [181–183], with hADA3 [184–186], and by destabilizing TIP60 [185]. Thus,
by inactivating and perturbing several modulators of these tumour suppressor pathways,
HPV-E6 and E7 are able to evade key growth suppressors of the cell. Evasion of the growth
suppressors allows and ensures continued cell proliferation under circumstances where
normal tissue homeostasis would have limited cellular proliferation. This, consequently
promotes tumour growth and is one of the several hallmarks of cancer [2].

2.2. Resisting Cell Death

Normal cells undergo apoptotic cell death upon extrinsic (e.g., the Fas ligand/Fas
receptor) or intrinsic signals (e.g., radiation, toxins, hypoxia, etc. and, also, the release of
proapoptotic signalling proteins, such as cytochrome c) and is one of the major cellular
homeostatic programs to defy aberrant cell growth. The attenuation of apoptosis is one of
the main hallmark features of cancers, and in the case of HPV infection, the infected cells
should be doomed to undergo apoptosis due to cellular stress signals; however, HPVs have
evolved potent mechanisms to avoid apoptotic cell death by abrogating multiple stages of
the pathway. Modulation of the antiapoptotic functions by HPV is summarized in Figure 5.

In addition to inactivation of the p53-dependent apoptotic response (discussed above),
E6 can further abrogate apoptotic signalling by interacting with the proapoptotic protein
Bak and mediating its degradation via the E6AP ubiquitin ligase [187–189]. E6 was also
shown to inhibit differentiation-induced apoptosis in human foreskin keratinocytes by
modulating the expression of antiapoptotic Bcl-2 and proapoptotic Bax proteins [190].
Furthermore, the inhibition of E6 was shown to result in the p53-dependent transcriptional
activation of the PUMA promoter, leading to the activation and translocation of Bax
to the mitochondrial membrane, causing cytochrome c release into the cytosol and the
activation of caspase 3. In addition, the inhibition of Bax expression in this context was
shown to efficiently revert the apoptotic phenotype, suggesting that perturbation of the
p53/PUMA/Bax cascade is an important antiapoptotic function of E6 in HPV-positive
cancer cells [191].

Moreover, E6 interacts with the Fas-associated death domain (FADD) and procaspase
8 to enable cells to escape from Fas-triggered apoptosis [192,193]. In addition, E6 has been
shown to evade apoptosis by downregulating the proapoptotic transforming growth factor-
β2 (TGF-β2) and, thence, downregulating the TGF-β2 responsive gene expression [194].
Evidently, resisting cell death is efficiently coordinated by high-risk E6 by targeting various
apoptotic pathways, which would otherwise have eliminated the HPV-infected cell.

HPV-E5 also plays a significant role in resisting cell death by targeting several play-
ers of apoptotic signalling. HPV-16 E5 promotes the degradation of the proapoptotic
Bcl-2 family member BAX upon oxidative stress [195]. The expression of HPV-16 E5
in primary human keratinocytes was also shown to defy ultraviolet (UV)-B radiation-
mediated apoptosis. The attenuation of apoptosis in this case required E5-dependent
EGFR activation, leading to enhancement of the PI3K-Akt and ERK1/2 MAPK signalling
pathways [196]. Furthermore, the expression of HPV-16 E5 prevents FasL- or TNF-related
apoptosis-inducing ligand (TRAIL)-mediated apoptosis by downregulating the expression
of Fas receptors and abrogating the recruitment of the Fas-associated protein with death
domain (FADD) to form the death-induced signalling complex (DISC) in raft cultures of
HaCaT cells stably expressing HPV-16 E5 [197]. Thus, HPV-16 E5 also abrogates apoptosis
by perturbing the regulators and effectors of apoptosis, contributing to the acquisition of
carcinogenic hallmarks.

High-risk E7, on the other hand, has been shown to have mainly proapoptotic roles,
rather than antiapoptotic roles; however, the expression of E6 efficiently counteracts the
apoptotic signals induced by E7. One example of an antiapoptotic role of E7 is the ability
of E7 to abrogate TNF-mediated apoptosis by obstructing the activation of pro-caspase 8 in
E7-expressing human fibroblasts [198]. However, the major role of E7 in resisting cell death
seems to lie in promoting the cell’s ability to survive and proliferate, even in the absence of
adherence to an extracellular matrix (discussed below).
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Figure 5. Resisting cell death. One of the major roles played by HPV oncoproteins in resisting cell death is evading apoptosis.
Both extrinsic and intrinsic apoptotic pathways are deregulated to attain this function by HPV-E5, -E6 and -E7. The extrinsic
apoptotic pathway is activated upon receptor trimerization and the subsequent recruitment of adaptor molecules and
procaspase 8 to the DISC. The activation of caspase 8 then leads to the activation of downstream executioner caspases
3 and 7, leading to cell death/apoptosis. The intrinsic apoptotic pathway is activated by external stimuli (UV-radiation,
oxidative stress, DNA damage, starvation, etc.), leading to the formation of pores in the mitochondrial membrane and
release of mitochondrial inner membrane proteins (cytochrome c, SMAC) into the cytosol. Released cytochrome c and
pro-caspase 9 form the apoptosome, leading to activating caspase 9, which, in turn, activates downstream executioner
caspases 3 and 7, leading to apoptosis. E5 can downregulate the Fas receptor and perturb the formation of the DISC
complex, thus abrogating the extrinsic apoptotic pathway. Further, E5 can perturb ROS-induced Bax activation and inhibit
the apoptotic response to UV B radiation. E6 can block extrinsic pathways by binding the death domain, leading to its
proteasomal degradation. E6 inactivates p53, Bax and Bak, thus abrogating MOMP and the release of cytochrome c and,
thus, inhibiting the intrinsic apoptotic pathway. E6 can also inhibit antiapoptotic c-IAP2, blocking the formation of the
apoptosome and activation of the executioner caspases. E7 seems to have a dual function in activating and abrogating
apoptosis; however, E7 has been demonstrated to perturb TNF receptor-induced apoptosis by upregulating c-IAP2 and
suppressing caspase 8. FADD—Fas-associated protein with death domain, TNF—tumour necrosis factor, TRAIL—FasL
and TNF-related apoptosis-inducing ligand, TRAF2—TNF receptor-associated factor 2, DISC—death-induced signalling
complex, c-IAP2—cellular inhibitor of apoptosis protein 2, RIP—receptor interacting protein and MOMP—mitochondrial
outer membrane permeabilization.

Resistance to Anoikis and Anchorage Independence

Anoikis is a form of apoptosis that is triggered in normal cells when they attempt to
divide in the absence of a matrix [199]. p600 has been implicated in the regulation of anoikis
signalling, and both high-risk and low-risk E7, as well as the E7 protein, from bovine papil-
lomavirus 1 (BPV1), have been shown to associate with p600/UBR4 via residues in the CR1
amino-terminal domain [200,201]. The interaction of E7 and p600 has been shown to be nec-
essary for the transforming ability of HPV-16 E7 [50,202]. In the case of BPV1 E7-expressing
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cells, the resistance to anoikis has been suggested to be the result of E7 expression [203].
More recently, the p600/UBR4 interaction with high-risk E7 was shown to be important
for the destabilization of PTPN14 [204,205]. In PTPN14-knockout keratinocyte cell lines,
the absence of PTPN14 expression was shown to be important for delaying differentiation
in keratinocytes upon detachment from the basement. This phenocopies the effect of
expressing high-risk HPV-16 E7, which inhibits differentiation upon cell detachment and
allows cells to proliferate in suspension, suggesting that targeting PTPN14 by high-risk E7
through p600 allows E7-expressing cells to survive anoikis and proliferate, irrespective of
their anchorage to the basement membrane [206,207], a characteristic hallmark of cancer
cells in resisting cell death.

2.3. Sustaining Proliferative Signalling

One of the key roles that HPV E5 plays towards development of cancer is to thwart
the activation of certain growth factor signalling pathways. These are tightly controlled
in normal cellular homeostasis, but most cancer cells acquire the ability to enhance the
proliferative signals relayed to cellular signalling pathways that regulate the cell cycle, cell
growth, cell survival and energy metabolism, often through cell surface receptors typically
containing intracellular tyrosine kinase domains. HPV-E5 has been shown to activate pro-
liferative signalling in a number of ways. Early studies with EGF stimulation in cultured
cells showed a transforming and mitogenic activity of HPV-16 E5 [101,102,208], and EGFR
signalling was shown to be required for E5-induced epithelial hyperplasia in transgenic
mice [109]. Indeed, several other studies have demonstrated elevated levels of EGFR at
the cell surface upon HPV-16 E5 expression [101,207–210]. A mechanistic explanation of
EGFR activation by HPV-E5 has suggested that it is dependent on the interaction of E5
with the vacuolar H+-ATPase (v-ATPase) abrogating endosomal acidification and reducing
EGFR degradation upon EGF stimulation [211]; however, this has been challenged by
other studies [212,213]. Furthermore, disruption of the E3 ligase c-Cbl and EGFR upon
HPV-16 E5 expression was shown to result in a decrease in ubiquitination and degrada-
tion of EGFR, thereby enhancing EGFR-mediated mitogenic signalling [214]. Another
growth factor signalling pathway that is affected by HPV-16 E5 is the G protein-coupled
endothelin receptors (ETA) pathway. The mitogenic signalling of endothelin-1 (ET-1), a
specific ligand of the G protein-coupled endothelin receptor (ETA), was demonstrated to
be enhanced by HPV-16 E5 binding to ETA in growth factor-starved keratinocytes, leading
to keratinocyte proliferation, and this was suggested to potentially augment proliferative
activity in conjunction with the EGFR pathways [215–217].

In addition, activation of EGFR signalling by HPV-16 E5 has also been linked to
the activation of the c-Met growth factor receptor, a potent oncogene that contributes to
the motility of HPV-containing cells [218]. Another epithelial receptor tyrosine kinase
modulated by expression of HPV-16 E5 is the antiproliferative keratinocyte growth factor
receptor/fibroblast growth factor receptor 2b (KGFR/FGFR2b). It is a major paracrine me-
diator of epithelial homeostasis and exerts a tumour-suppressive function. The expression
of HPV-16 E5 downregulates the expression of KGFR2b, enhancing the aberrant expres-
sion of the mesenchymal FGFR2c isoform, which promotes the epithelial–mesenchymal
transition (EMT), thus, in turn, potentially promoting malignant transformation [219,220].
Furthermore, HPV-16 E5 has been shown to activate mitogen-activated protein kinase
(MAPK) p38 and ERK1/2 in human keratinocytes in an EGF-independent manner [221]
via a receptor tyrosine kinase and protein kinase C (PKC) signalling pathway [222,223],
ultimately leading to the increased transcription of transcriptional factor AP-1 (activating
protein 1), which is composed of c-fos and c-jun and is responsible for promoting the
cell cycle [224,225]. As HPV has an enhancer that contains AP-1-binding sites, this may
further enhance the transcription of E6 and E7 oncogenes and, thus, contribute further to
cellular transformation [105,225]. In addition to these growth control pathways, HPV-16
E5 also uses transcriptional and post-translational mechanisms, in both fibroblasts and ker-
atinocytes, to downregulate the expression of p21WAF1/CIP1 and p27KIP1 cyclin-dependent
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protein kinase inhibitors, resulting in cell cycle progression and DNA synthesis [226,227].
Taken together, HPV-16 E5 can modulate several of the growth factor-mediated signalling
pathways to promote a proliferative state in keratinocytes, thus contributing towards
transformation, together with E6 and E7.

Modulation of Cellular Signalling Pathways

The E6 protein also modulates several survival pathways, including phosphoinositide
3-kinase (PI3K)/protein kinase B (AKT), Wnt and Notch. The PI3K/AKT pathway is a
major cancer survival pathway regulating a broad range of downstream targets, including
proliferation, cell growth, cell mobilization, angiogenesis and cell survival [228]. E6 has
been shown to inactivate PTEN, leading to increased pAKT and increased cell prolifera-
tion [229]. The mammalian target of the rapamycin (mTOR) kinase, a downstream target
of AKT, has been demonstrated to be activated by E6 via E6/E6AP-mediated degradation
of the mTOR inhibitor tuberous sclerosis complex 2 (TSC2) [230,231]. In addition, under
conditions of nutrient deprivation, HPV-16 E6 expression was shown to increase mTOR1
activity through the upstream activation of mTOR2 and 3-phosphoinositide-dependent ki-
nase 1 (PDK1), leading to the activation of AKT [232]. Furthermore, HPV-16 E6 expression
was shown to sustain the activation of receptor protein tyrosine kinases, including epider-
mal growth factor receptor (EGFR), insulin receptor beta, and insulin-like growth factor
receptor beta, mediated via the signalling adaptor protein Growth Factor Receptor-Bound
protein 2 (GRB2), which is upstream of the PI3K/AKT pathway [233].

Further, the nuclear accumulation of β-catenin has been shown to be associated with
E6 in activation of the Wnt pathway. The mechanism is dependent on E6’s ability to interact
with E6AP and independent of E6’s ability to target p53 for degradation or to bind to the
PDZ-containing E6 targets [234]. Another mechanistic explanation for E6’s activation of
Wnt pathways was shown to be through the downregulation of the seven in absentia
homologue (Siah-1), which is involved in the proteasomal degradation of β-catenin [235].
While mice expressing wild-type E6 under the Keratin 14 promoter (K14E6 mice) showed
enhanced nuclear accumulation of β-catenin and the accumulation of cellular β-catenin-
responsive genes, mice expressing E6 lacking the PDZ-binding domain (K14E6∆PDZ) did
not, indicating that E6 activation of Wnt signalling is, in part, PBM-dependent [236].

HPV-16 E6 has also been shown to activate the Notch pathway by interacting with
NFX1-123 and increasing its expression, which, in turn, increases the Notch-1 mRNA
levels in E6-expressing cells [237]. The modulation of Notch-1 by E6 was further shown to
be mediated via presenilin-1 in mouse and human primary cell lines expressing HPV-16
E6 [238], while the expression of HPV-16 E6 prevents the early fate commitment of human
keratinocytes towards differentiation and promotes cell proliferation at high cell densities
through a combined inactivation of p53 and Notch-1 [239]. Furthermore, studies on
cutaneous papillomavirus E6 oncoproteins have shown that E6 represses Notch signalling
by association with MAML-1, a coactivator and effector of Notch-induced transcription,
thereby delaying keratinocyte differentiation [240–243]. It is intriguing to note that E6
proteins from cutaneous HPV types target MAML through an LXXLL motif, while E6
proteins from mucosal HPV types target E6AP through the same mechanism. These
interactions seem to have arisen early in the evolution of these viruses and to be related to
their respective tropism for the mucosal or cutaneous epithelium, rendering the cellular
environment amenable for viral replication [41,240,241,243]. These pathways are the key
to cellular growth, proliferation and differentiation; thus, the continued expression of E6
and its targeting of these pathways forms a milieu where the perturbation of these signals
overrides the normal homeostatic pathways and pushes the cell towards a carcinogenic
phenotype.

2.4. Enabling Replicative Immortality

Normal cells have finite lifespan and can divide a limited number of times, known as
the Hayflick limit. Molecularly, this limit to division is due to the shortening of telomeres
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at the ends of chromosomes, which can then no longer replicate, leading to signalling to
activate the cellular apoptotic programme. To allow proper replication and cell division,
the cellular telomerase enzyme maintains the length of the telomeres of the chromosomes
and is tightly controlled in normal cells [244,245], and this is one of the main dysregulated
activities in cancer cells. In HPV-mediated cancers, high-risk E6 proteins can activate
telomerase in association with E6AP, and this was shown to be critical for immortaliza-
tion [246,247]. The activation of hTERT transcription is driven by the c-Myc oncogene
forming a heterodimer, c-Myc/Max, that binds to E-box sequences in the promoter of
hTERT [248–250]. Although upstream stimulatory factors (USF1 and USF2) also bind to the
same sites to disrupt the binding of c-Myc/Max, the expression of E6 downregulates the
binding of USF1/2 at the promotor, further activating hTERT transcription [251]. Further-
more, GC-rich sequences found throughout the hTERT promoter, flanked by E-boxes, can
enhance the activation of hTERT expression through SP1 transcription factors, and E6 has
been shown to activate the SP1-dependent transcriptional activation of hTERT [249,252].
In addition to transcriptional activation of the hTERT promoter, the acetylation of histones
at the hTERT promoter also enhances the telomerase expression. The continued passage
of E6-expressing cells was shown to enhance this acetylation, whereas the knockdown of
E6AP was shown to decrease the effect [253,254]. Thus, E6 in association with E6AP can
activate the transcriptional regulation of hTERT, both through activators and repressors, as
well as through epigenetic regulation. Furthermore, NFX-91, another transcriptional repres-
sor, originally identified in a yeast two-hybrid screen with HPV-16 E6 and E6AP, was found
to bind to a X1 box sequence in the hTERT promoter with co-repressor mSin3a, leading
to histone deacetylase activity to deactivate hTERT expression. In HPV-16 E6-expressing
cells, the levels of NFX1-91 are reduced through ubiquitin-mediated degradation by the
E6/E6AP complex [254,255]. Yet another mechanism of activation of hTERT expression in
E6-expressing cells is the expression of the splice variant of NFX1-123, which binds to the
cytoplasmic poly(A)-binding proteins via a PAM2 motif and interacts with the poly(A) tail
of mRNA, enhancing transcript shuttling via the nuclear-cytoplasmic route, recruitment
of translational machinery and stabilization of mRNA, ultimately increasing the expres-
sion of hTERT in E6-expressing cells [256]. Thus, the expression of high-risk E6 proteins
induces cellular changes that can lead to the replicative immortality of HPV-infected cells
via multiple mechanisms involving transcriptional, post transcriptional, epigenetic and
post-translational mechanisms.

2.5. Activating Invasion and Metastasis

The activation of invasive growth signals in cancer cells leads them to invade the
surrounding tissue and the circulatory system, ultimately disseminating the cancer cells
to distant anatomical sites. The regulation of this complex program often requires mecha-
nisms involving a developmental program referred to as epithelial–mesenchymal transition
(EMT) [1]. HPV oncoproteins E6 and E7 have been shown to activate EMT-inducing tran-
scriptional factors—Slug, Twizt, ZEB1 and ZEB2—resulting in an increase in mesenchymal
markers such as N-cadherin, fibronectin and vimentin and a decrease in epithelial cell mark-
ers like E-cadherin [257,258]. Furthermore, matrix metalloproteases (MMPs)—enzymes that
are zinc-dependent endopeptidases playing crucial roles in various physiological processes,
including tissue remodelling, organ development and the regulation of inflammatory
processes—have been shown to be modulated in many cancers, including HPV-mediated
cancer [259]. In the development and progression of HPV-mediated cancers, various mem-
bers of the MMP family, including MMP-2, MMP-9 or MT1-MMP, have been shown to be
upregulated both at the RNA and protein level in high-grade CIN, compared with normal
cervix or low-grade CIN. Furthermore, the upregulation of MMP1, MT1-MMP, MMP2 and
MMP9 has been shown to be due to the expression of HPV E6 and E7 oncoproteins in
various cellular models of cervical cancer [260–264]. Mechanistically, the activation of AKT
signalling by high-risk E7 has been linked to the downstream activation of transcription
factors leading to mmp gene expression [260,265,266]. AKT activation has been further
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linked to CKII phosphorylation of high-risk E7, leading to the secretion of MMP1 and
MMP13 associated with an invasive phenotype of HPV-18-positive C4-1 cervical cancer
cells [267].

Role of E6 PDZ Binding Motif (PBM) and Polarity Deregulation

One of the unique features of high-risk E6 proteins is the presence of a PDZ (Post
Synaptic Density 95 (PSD95), Discs Large (Dlg) and Zona Occludens 1 (ZO-1))-binding
motif (PBM) (X-(S/T)-X-(V/I/L)-COOH) in the C-terminus, which is absent from E6
proteins of the low-risk HPV types [268,269]. The PBM is involved in binding to cellular
proteins that have PDZ domains [270]. Over 20 different PDZ domain-containing proteins
have been identified as targets of the high-risk E6 proteins [271]; amongst them are discs of
large tumour suppressor (hDlg) [268,269], scribble tumour suppressor (hScrib) [272] and
Membrane-associated guanylate kinase inverted 1 (MAGI-1) [273,274]. hScrib is involved
in epithelial tight junctions and mediates the adhesion of basal cells to the extra-cellular
matrix (ECM). Similarly, hDlg is involved in epithelial tight junctions, cell-to-cell junctions
and epithelial polarity, while MAGI-1 has been suggested to colocalize with components of
adherens junctions and tight junctions, and its expression probably promotes the assembly
of macromolecular junctional complexes. hDlg, hScrib and MAGI-1 are tumour suppressors;
the loss of these proteins facilitates cancer formation (reviewed in [275,276]), and all high-
risk E6 proteins target them for proteasome-mediated degradation [272,277,278], most
likely leading to the loss of cell polarity and facilitating tumour formation [279,280]. The
affinities of interaction between different E6 PBMs and PDZ proteins are diverse, with
single amino acid changes in the PBM switching the degree of preferred interaction, for
example, HPV-16 E6 PBM (-ETQL) preferentially interacts with hScrib and HPV-18 E6
PBM (-ETQV) with Dlg [281]. Furthermore, the extent of promiscuity of the E6 PBM in
interacting with several PDZ proteins has been shown to have strong correlation with
the degree of carcinogenicity of the HPV type in cervical cancer [43]. Indeed, the degree
of interaction with hScrib and another member of the apico-basal polarity (ABP) core
component—the tight junction (TJ) protein ZO-2—is highly associated with a stronger
cancer association (HPV-16, -18, -31, -35 and -51), suggesting that perturbation of the Scrib
ABP complex is one of the crucial steps towards malignant transformation driven by E6
oncoprotein [282]. Cellular polarity deregulation in context of the viral life cycle also seems
indispensable, as viruses defective in binding to polarity proteins are dampened in their
ability to produce viral progeny and have deregulated viral genome maintenance, leading
to a higher likelihood of the genome integrating into host DNA [283–285], thereby inducing
deregulated expression of HPV oncoproteins and their carcinogenic orchestrations.

As discussed earlier, loss of PBM or perturbation of polarity protein targeting has
been shown to induce integration of viral DNA into the host chromosome, the reason for
which is yet unknown, however, it could potentially be a byproduct of a mishap in cell
division, trying to uncouple cell polarity regulation in a proliferating cell. Asymmetric cell
division of the basal cell with strict control of ABP regulation, mitotic spindle orientation
and proper formation of cell-cell junctions are characteristic features of normal epithe-
lial differentiation [286,287]. However, the E7-induced re-entry into cell cycle leading to
aberrant proliferation, together with deregulation of Scrib and Par polarity complexes by
HPV-E6 in the expanding population of infected cells in the mid-epithelial layer, potentially
leads to enhanced symmetrical cell division, as expression of E7 alone has been suggested
to induce aberration in spindle pole formation [288,289] and disruption of polarity com-
plexes perturbs mitotic spindle orientation [290,291]. Taken together, HPV E6 and E7 by
modulating EMT, extra-cellular matrix proteins, and cellular polarity regulators enhance
cell plasticity in attaining invasive and potentially metastatic phenotypes.

2.6. Inducing Angiogenesis

Normal tissues and cells are continually supplied with nutrients and oxygen together
with evacuation of metabolic waste and carbon dioxide. The vascular system finely works
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this out with proper morphogenesis and control throughout embryogenesis. After proper
development, vasculogenesis and angiogenesis remain largely in a quiescent state unless
reactivated by wound heading mechanisms or female reproductive cycling, but, again,
only briefly. Tumours, like normal cells, also require the ‘services’ of the vascular system
and often activate otherwise quiescent angiogenesis mechanisms to help sustain expand-
ing neoplastic growths via an ‘angiogenic switch’ [292]. The angiogenic switch is tightly
regulated and is often the result of countervailing activators or inhibitors, such as vascu-
lar endothelial growth factor-A (VEGF-A) and thrombospondin-1 (TSP-1), respectively.
High-risk E6 and E7 oncoproteins have been implicated in modulating these regulators
to induce angiogenesis via targeting p53 and pRB tumour suppressors. Inactivation of
p53 by high-risk E6, also downregulates angiogenic inhibitors, TSP-1 and maspin, while
upregulating VEGF-inducing angiogenesis [293–297]. VEGF is negatively regulated by
p53 through HIF-1α and, as p53 is inactivated by E6, VEGF is induced to promote angio-
genesis; however, VEGF can also be activated by p53-independent mechanisms through
Sp1 transcription [298]. Furthermore, activation of AP1-dependent transcription by E7 can
also induce VEGF through its AP1 binding site [299,300]. Additionally, RRM2-dependent
induction of angiogenesis via ROS-ERK1/2-HIF-1α-VEGF has also been shown to be medi-
ated via upregulation of RRM2 by E7 [301], and high-risk HPV-E7-dependent upregulation
of hTERT has also been associated with upregulation of VEGF, potentially contributing to
VEGF dependent angiogenesis [302].

2.7. Deregulating Cellular Energetics and Metabolism

Evading cellular growth control pathways leads to uncontrolled cellular proliferation
and thus also imposes a substantial requirement for cellular energetics and metabolism to
adjust to respond to the increasing cell numbers. Normal cells under aerobic conditions
metabolize glucose to pyruvate via glycolysis and to carbon dioxide in mitochondria, while
in anaerobic conditions glycolysis is more favoured, slowing down much of the oxidative
metabolism of pyruvate; however, cancer cells can switch glucose metabolism chiefly to
glycolysis even in the presence of oxygen, a process known as ‘aerobic glycolysis’ [303].
One mechanism of this preference for aerobic glycolysis in HPV-mediated cancer could
be due to the expression of high-risk E7. Using mammalian cells expressing HPV-16 E7,
Zwerschke et al. showed that E7 expression increases the intracellular concentrations of
phosphoenolpyruvate (PEP) and fructose 1,6-bisphosphate (FEP) metabolites, upstream
of the glycolytic enzyme type M2 (M2-PK). M2-PK occurs in a tetrameric form with a
high affinity for PEP and a dimeric form with low affinity for PEP. While FEP induces
the reassociation of the dimeric to tetrameric form of M2-PK, expression of E7 shifts this
equilibrium to the dimeric state, although there is a significant increase in FEP levels in
E7-expressing cells, thus leading to aerobic glycolysis these cells [304]. On the other hand,
binding of high-risk E6 oncoprotein to Sorting Nexin 27 (SNX27), an important regulator of
the endosomal retromer complex, has been shown to upregulate glucose uptake by cancer
cells by modulating the expression of GLUT1 [305], leading to increased glycolytic flux in
cervical cancer cells. While, switching to aerobic glycolysis from oxidative phosphorylation
is less likely to be a binary switch mechanism, cancer cells are rather efficient in continuing
to use oxidative phosphorylation in addition to incorporating variable rates of glycolysis,
which again might be dependent upon cancer cell location in different subregions within
a tumour and its microenvironment [2]. For instance, in HNSCC, HPV-positive tumours
were shown to display increased levels of oxidative phosphorylation and higher rates of
aerobic glycolysis in the tumour core in contrast to HPV-negative tumours. This differential
metabolism was linked to increased centrally localized staining of glucose transporter 1
(GLUT1), lactate dehydrogenase B, monocarboxylate transporter 1 and cyclooxygenase
5B in HPV-positive tumours compared with more peripheral staining in HPV-negative
tumours [306]. Taken together, these data suggest that in HPV-positive tumours expres-
sion of E6 and E7 seem to be cooperatively driving aerobic glycolysis in the tumour to
sustain induced proliferation. Moreover, expression of HPV-16 E6 can activate mTORC1
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signalling and increase protein synthesis both under normal and limited growth factor
conditions [232,233]. This would increase the need for building blocks for sustained prolif-
eration, potentially more so in an environment such as a poorly vascularized tumour core,
which presumably is more restricted for nutrients and energy sources than the tumour
periphery.

2.8. Genome Instability and the Consequent Mutation of Hallmark-Enabling Genes

Despite the fact that expression of high-risk oncogenes in primary human keratinocytes
can cause cellular immortalization, with the cells exhibiting many characteristics of prema-
lignant lesions, these cells do not form tumours when injected into nude mice. Additional
oncogenic events are necessary for malignant progression to occur, such as expression of
oncogenes like ras or fos, or accumulation of oncogenic mutations over prolonged passaging
in culture [307–310]. A major contributor to genomic instability has been suggested to
be expression of high-risk HPV E7 [311]. HPV-16 E7 has been shown to induce centro-
somal duplication errors, leading to multipolar mitoses, chromosome mis-segregation
and aneuploidy, independently of its RB-inactivating activity [312]. Further, HPV-16 E7
was shown to associate with the centrosomal regulator, γ-tubulin, altering its recruitment
to the centrosome in HPV-16 E7-expressing cells, suggesting a role for E7 in abnormal
centrosomal amplification and disruption of centrosome homeostasis [313]. Abnormal
centriole multiplication was also shown to correlate with up-regulation of Polo-like kinase
4 in HPV-16 E7-expressing cells [314].

Furthermore, HPV-16 E7 expression was shown to induce the delocalization of dynein
from mitotic spindles [315]. It was also shown that the interaction of HPV-16 E7 with
nuclear mitotic apparatus protein 1 (NuMA) corelated with induction of defects in chro-
mosome alignment during prometaphase, irrespective of normal centrosome numbers,
indicating that disruption of the NuMA/dynein network results in mitotic errors that
would make an infected cells more prone to accumulation of aneuploidy, even in the
absence of supernumerary centrosomes [316].

In addition, high-risk E7 targets ATM/ATR DNA damage response pathways: HPV-
31 E7 was shown to bind ATM, inducing its phosphorylation and activating Chk2 [317],
while HPV-18 E7 was shown to induce increased levels of phosphorylated ATM and the
downstream kinases Chk1, Chk2 and JNKs (c-jun N-terminal kinases) [318]. In addition,
high-risk E7 was shown to target claspin, a key regulator of the ATR-Chk1 pathway that is
activated in response to replications stress. HPV-16 E7 also attenuates mitotic checkpoint
control by upregulating cellular factors involved in destabilization of claspin—a positive
regulator of the mitotic checkpoint; this activity is primarily dependent E7’s inactivation of
pRB, as most of the factors involved in turnover of claspin are regulated by E2F transcription
factors [319]. Thus, E7-induced accelerated degradation of claspin in G2/M leads cells to
initiate checkpoint recovery, even in the presence of DNA damage that could potentially
lead to genomic instability [319].

Furthermore, HPV oncogenes hinder the homologous-recombination repair pathway,
where HPV E7 impairs RAD51 localization to transient lesions (double strand breaks
[DSB]), impairing DSB repair, and contributing to genomic instability [320]. More recently,
HPV E7 has been shown to hijack the E3 ubiquitin ligase RNF168, which is critical to
proper DSB repair, in order to promote the viral replication cycle. This interaction perturbs
cellular DSB signalling, leading to disruption of host chromatin response to DNA breaks
and promoting genomic instability that drives oncogenesis [321].

An initial event in the induction of genomic instability in HPV infection, and probably
responsible for cases of co-existing episomal and integrated HPV DNA, is the upsetting
possibility of ‘onion skin’ type of HPV DNA replication, caused by activation of the viral
origin of replication multiple times within a single cell cycle, leading to single- or double-
strand breaks and recruitment of the DNA repair machinery, thus potentially promoting
chromosomal defects [322]. In addition to the genomic instability induced by HPV proteins,
HPV-mediated cancers are frequently found to have somatic mutations, including those
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driven by apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC), copy
number variations and large chromosomal rearrangements. Some of the key genes often
mutated in HPV-associated cancers are in PIK3CA (phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha), PTEN (phosphatase and tensin homologue), HLA-A and
HLA-B (human leukocyte antigen A and B), TGFβ (transforming growth factor beta), and
components of the NOTCH1 and RAS/EGFR/ERK pathways; in contrast mutations are
very rarely found in p53 and pRB [13,21]. Additional mutations in these genes that regulate
several homeostatic processes further augment carcinogenic progression, however, how
these often-detected somatic mutation contribute to HPV-mediated carcinogenesis and
how HPV-infection ultimately leads to these mutational signatures is not fully understood.

2.8.1. HPV E7 and Epigenetic Reprograming

Alterations in DNA methylation are associated with a number of human diseases and
are one of the hallmarks of cancer. The HPV-16 E7 oncoprotein has been shown to bind
directly to DNMT1 and stimulate its methyltransferase activity [323]. Furthermore, HPV
E7 proteins have been shown to interact with both HATs and HDACs. HPV-16 E7 is known
to interact with p300/CBP-associated factor (PCAF) histone acetyltransferase [324] and
this activity can contribute to downregulation of IL-8, which might, in turn, contribute to
the ability of infected cells to avoid the host immune response [325].

HPV E7 has also been shown to interact with HDAC1 and HDAC2 through the Mi2β
protein [326]: both Mi2β and HDAC1/HDAC2 are components of the NuRD chromatin
remodelling complex. This interaction has been demonstrated to modulate histone mod-
ification and transcription of cellular genes relevant to cell cycle deregulation [327] or
immune evasion [328]. HPV-16 E7 interacts with interferon regulatory factor-1 (IRF-1),
which activates the IFN-β gene; however, by recruiting HDAC to abrogate the transacti-
vation function of IFR-1, E7 has been suggested to suppress a cellular immune response
to HPV infection [328]. Furthermore, the association of HPV-31 E7 and HDACs in dif-
ferentiated cells is involved in activation of E2F2 gene transcription, facilitating HPV-31
replication [329]. HPV E7 has also been shown to enhance HIF-1α-dependent transcription
by inducing dissociation of HDAC1, HDAC4 and HDAC7 from HIF-1α, which might also
contribute to tumour angiogenesis [330].

HPV E7 has also been shown to induce expression of histone H3 lysine 27 demethylase,
KDM6A and KDM6B, enzymes responsible for H3K27me3 demethylation [331]. Further,
KDM6B induction mediates increased expression of the cervical cancer biomarker p16INK4A.
Higher expression of p16INK4A caused by HPV-16 E7 mediated KDM6D upregulation
represents an E7-triggered oncogene-induced senescence (OIS) response. This response, as
RAS/RAF cause KDM6B upregulation, leads to de-repression of p16INK4A transcription,
followed by inhibition of CDK4/6 activity and inhibition of pRB phosphorylation. The
ultimate effect is G1 cell cycle arrest and senescence; however, HPVs have evolved to
target pRB for ubiquitin-dependent proteasomal degradation, which is why p16INK4A

upregulation in HPV-positive cancer cells does not inhibit proliferation [332–334]. Further,
KDM6A- and KDM6B-responsive Homeobox (HOX) genes are expressed at significantly
higher levels, suggesting that ectopic expression of HPV-16 E7 results in reprogramming of
host epithelial cells [331]. Furthermore, increased KDM6A in response to high-risk HPV
E7 expression was shown to cause de-repression of the cell cycle and DNA replication
inhibitor p21CIP1 and this activity was shown to be required in high-risk E7 expressing
cells for p21CIP1’s ability to inhibit DNA replication through PCNA binding [335].

The polycomb group of proteins forms polycomb repressive complexes (PRC) that
repress gene transcription [336]. PRC2, for instance, silences genes by trimethylating the
lysine residue 27 of histone H3, while PRC1 binds to H3K27me3-marked chromatin and
further silences gene expression by monoubiquitinating lysine K119 of histone H2A. HPV-
16 E7 associates the E2F6 factor with multiple polycomb protein, including BMI1, PCGF2
(MEL-18), CBX4 (hPC2), RING1, MGA, and L3MBTL2, to abrogate the repressive activity
of E2F6 on its target genes [159]. HPV-16 E7 has also been shown to induce expression
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of H3K27 histone methyltransferase EZH2 (enzymatic component of PRC2), enhancing
PRC4 complex formation [337], which has been demonstrated to cause histone H1K26
deacetylation and methylation [338].

2.8.2. Modulation of MicroRNAs by HPV E7

Among many other factors, microRNAs (miRNAs) are also known to regulate the
expression and activities of cellular proteins by acting as post-transcriptional regulators
of gene expression [339]. These are small RNA molecules (18–25 nucleotides), transcribed
by RNA polymerase II. HPV E7 has been shown to downregulate miRNA203, which is
normally expressed at higher levels in differentiating cells to downregulate the p63 family
of transcription factors, thereby inhibiting cell proliferation. However, E7-mediated down-
regulation of miRNA203 appears to be necessary for genome amplification and productive
replication in differentiating cells [340]. A number of other microRNAs are also modulated
by expression of E6 and E7 oncoproteins, singly or in combination. For instance, miR-33b-
3p, -542-3p and -33-3p—are upregulated and miR-193b-3p is downregulated in HPV-16
E6/E7 expressing HFKs. Specifically, upregulation of miR-16-2-3p and downregulation of
miR-197-3p and -1249 in HPV-16 E6/E7 expressing HFKs is driven by E7 expression [341].
These microRNAs, together with others that are modulated by HPV oncoproteins, seem to
affect several of the cellular signalling pathways including p38 MAPK signalling, G1/S
checkpoint regulation, and ATM signalling, contributing towards rewiring of cellular
regulatory pathways to oncogenic transformation [341,342].

2.9. Avoiding Immune Destruction

Another facet of the development and progression of tumours and cancers is compro-
mised immune detection. Immunological surveillance for virus-infected cells is constantly
monitored by our ever-alert immune system, to resist and eradicate the formation and pro-
gression of incipient neoplasias. However, high risk-HPV oncoproteins play a significant
role in perturbing this surveillance system by perturbing the expression and trafficking
of several immune receptors and mediators, essential for detection and targeting of virus-
infected cells. Foreign antigen presentation on major histocompatibility complex (MHC)
class I molecules is important for T-cell recognition of virus-infected cells, but HPV E5
proteins from several HPV types (16, 2a and 83) have been demonstrated to specifically
downregulate this class of surface molecules (HLA-A and HLA-B) [343,344]. Mechanis-
tically, this has been linked to interaction of HPV-16 E5 with MHC class I through E5’s
first helical transmembrane domain (TM1), and to E5’s location in Golgi/ER, possibly
interfering with the trafficking of MHC molecules to the cell surface, as dislocation of E5
from Golgi/ER leads to the abrogation of MHC I downregulation [345,346]. Furthermore,
a ternary complex with calnexin, HPV-16 E5 and the heavy chain of HLA-I, via the first
hydrophobic region of the E5 protein, has been suggested to be responsible for retention
of HLA-I molecules in the ER of the cells [347]. In addition, maturation of MHC class II
molecules in human foreskin keratinocytes upon interferon gamma treatment has also been
suggested to be perturbed by expression of HPV-16 E5. This function was demonstrated
to occur through HPV-16 E5’s inhibition of endosome acidification, which prevents the
breakdown of invariant chain and blocks formation of peptide-loaded MHC class II dimers,
leading to decreased surface expression of MHC class II molecules, thus disrupting anti-
gen presentation to effector T-cells [348]. Similarly, HPV-16 E5 perturbs the expression of
CD1d, which is yet another surface receptor important for immune surveillance by natural
killer cells. Upon HPV-16 E5 expression in both C33A cancer cell line and normal human
keratinocytes, CD1d levels were downregulated via proteasomal degradation, with the
inhibition of calnexin-related CD1d trafficking potentially protecting HPV-infected cells
from immunological surveillance [349]. Interestingly, a recent study in head-and-neck
squamous cell carcinoma (HNSCC) has shown evidence of E5-mediated immune evasion
by suppressing the MHC complex and interfering with antigen presentation in both murine
models and patients’ tumours. These tumours, expressing HPV-16 E5 were resistant to
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anti-PD-1/PD-L1 immunotherapy, however, use of the antiviral E5 inhibitor, rimanta-
dine, improved the response of this checkpoint blockade immunotherapy, suggesting that
HPV-E5 might be evading the T-cell response by abrogating its effector mechanism via
PD-L1 expression [350]. Interferons are one of the primary immune defence mechanisms
to viral infection and signal antiviral strategies in nearby cells. However, HPV-16 E5 can
dysregulate interferon (IFN) signalling by suppressing STAT1, leading to suppression of
downstream IFN-stimulated genes (ISGs) in human keratinocytes. Mechanistically, abro-
gated ISG expression was shown to depend upon E5-induced EGFR signalling, which in
the absence of E5 would otherwise have led to TGFBR2 signalling, resulting in increased
production of IFN [351].

High-risk E6 and E7 also contribute to modulating the immune response to infection.
HPV-16 E6 interaction with IFN regulatory factor 3 (IFR3) has been suggested to prevent
the transactivation of IFN-beta expression [352]. In HPV-18 E6 expressing cells, JAK/STAT
signalling has been shown to be impaired by affecting activation of non-receptor tyrosine
kinase 2 via direct interaction with the kinase [353]. High-risk E6 proteins can also attenuate
Retinoic acid-inducible gene I (RIG-I)-mediated signalling by promoting ubiquitination and
degradation of TRIM25, an activator of RIG-I signalling, thus dampening type-I interferon
production [354]. Furthermore, high-risk E6 proteins have also been demonstrated to
inhibit transcription of kappa interferon (IFNκ), specific to keratinocytes, by methylation
of its promoter, thereby attenuating activation of antiviral ISGs and pattern recognition
receptors (PRRs) [355]. Host cell PRRs are major targets for immune evasion by HPV
and HPV oncoproteins have been demonstrated to repress this innate immune response.
High-risk HPV-18 E7 can directly bind to STING via the pRB binding motif, resulting
in inhibition of the cGAS-STING pathway, involving recognition of foreign DNA [356].
Additional epigenetic mechanisms active in HPV-positive cancers, leading to suppression of
the cGAS-STING pathway, have also been suggested, involving E7-induced upregulation
of SUV39H1 methyltransferase and downregulation of histone demethylases KDM5B
important for cGAS-STING expression [357,358]. Furthermore, double-stranded DNA
sensor Toll-like receptor 9 is also efficiently silenced by recruitment of KDM5B and histone
deacetylase HDAC1 to the TLR9 promoter, abrogating type-1 interferon secretions [359].
Taken together, these studies show that the efficient action of HPV oncoproteins in evading
immune responses allows HPVs to avoid destruction and is one of the major steps towards
persistent and/or chronic infection potentially leading to carcinogenesis.

2.10. Tumour-Promoting Immune Cell Infiltration (Inflammation)

Cellular, innate, and adaptive immune responses, with an array of secreted cytokines,
play a significant role in progression of both infection and cancer. Inflammation is a
host defence strategy against foreign agents, actively mediated to the site of breach (or
stimulus) and involves the release of cytokines and mediators that act to facilitate recruit-
ment of effector cells to the site of injury. In most instances, the inflammatory process is
disabled upon clearance of the stimulus, however, if it persists, inflammation can tend
to become chronic and can lead to cancer. Expression of high-risk HPV oncoproteins
can induce an inflammatory response by upregulating pro-inflammatory cytokines and
chemokines [360–362]. Very often tumours are infiltrated by a variety of cell types called
infiltrating immune cells or IIC [2], and increase in IIC at the HPV-associated lesions
correlates with high-grade lesions [362–364]. Using an HPV-16 transgenic mice model,
it has been shown that macrophage recruitment at the lesion site was dependent on CC
chemokine ligand-2 (CCL2) and its receptor CCR2. B-cell responses in this case were shown
to aggravate the condition to chronic inflammation and to promote tumour progression
due to extracellular matrix deposited by E6/E7 expressing cells [365–367]. Another effect
of the inflammatory response upon tumour progression is the associated DNA damage in
the infected tissue. In high-grade HPV-positive cervical lesions, higher accumulation of
mutagenic DNA lesion 8-nitroguanine was observed, caused by nitric oxide and reactive
oxygen species produced by inflammatory cells [368]. Furthermore, Langerhans cells, the
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major antigen presenting cell population of the skin, were demonstrated to be reduced in
numbers in HPV-associated lesions, potentially via down regulation of E-cadherin expres-
sion mediated by E6. In addition, Langerhans cells were also found to be unable to initiate
T-cell responses when exposed to chimeric HPV-16 virus like particles via a mechanism
dependent on phosphatidylinositol kinase-3 [369–372] suggesting that expression of HPV
oncoproteins in the infected epithelium deregulates inflammatory responses in order to
sustain viral persistence. There is a concomitant failure of IICs to eliminate virus-infected
cells, thus aggravating the response to chronic inflammation and potentially leading to
tumour progression. In addition, certain studies have also indicated that other sexually
transmitted viral or bacterial pathogens, such as herpes simplex virus type 2 (HSV-2) or
Chalmydia trachomatis, may well serve as cofactors for the development of the intense
chronic inflammatory response leading to HPV-associated disease [373,374].

3. Conclusions

The expression of HPV E5, E6 and E7, taken together, results in the abrogation of
multiple cellular homeostasis pathways or, often, in their re-direction towards growth and
proliferation, immune evasion, differentiation delay, inhibited apoptosis, genome instabil-
ity and, consequently, immortalization. Although the primary function of these proteins
early in viral life cycle is simply to produce a cellular milieu conducive for viral replication.
As with many cancers, HPV-mediated cancers are the result of deregulation of multiple
cellular functions, ultimately and unfortunately leading to accumulation of mutations in
the host genes, further unbalancing the normal homeostasis mechanisms and leading to
cancer and malignancy. Excellent vaccines are the keys to prevent initial infection; however,
as discussed earlier, for cases of persistent infection there is a likelihood of development
of cancer and malignancy over several years, orchestrated by expression of E5, E6 and
E7—the not-so-good, the bad and the ugly—in terms of their molecular prognosis/outcome,
as discussed above. Despite a multitude of data regarding the mechanisms behind the
carcinogenic effects of these viral oncoproteins, many mechanisms still remain to be un-
covered (refer to review [375]), and specific therapeutic agents against HPV-mediated
cancer have not yet been found. However, ongoing clinical trials of promising therapeutic
agents against specific targets, and more studies further elucidating the mechanisms of
carcinogenic orchestration by these oncoproteins, will eventually aid in the development
of therapy against HPV-mediated disease and carcinogenesis. Furthermore, the unique
insights that E5, E6 and E7 are providing into the underlying mechanisms of carcinogenesis
will also have major implications for our overall understanding of cancer development
in general.
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