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Abstract
Introduction: With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death
among people. One of the most promising assembly techniques in nano-technology is “scaffolded DNA origami”
to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis,
the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-
mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for
TB treatment using the DNA origami method
Methods: In this study, we presented an experimental research on a DNA drug delivery system for treating
Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed
by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with
a CanDo server.
Results: Synthesizing the product was imaged using transmission electron microscopy after negative-staining by
uranyl formate.
Conclusion: We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with
the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system
be used for other infectious diseases to target the pathogenic bacteria.
Keywords: DNA, nanomedicine, nanostructures, drug delivery Systems, tuberculosis

1. Introduction
TB is a contagious disease that threatens human health globally. One-third of the people in the world are infected with
Mycobacterium tuberculosis (MTB), the pathogenic agent of TB (1). According to the World Health Organization
(WHO), about 8.5 to 9.2 million new TB cases occur every year, and that number currently is increasing. About 1.5
million deaths are caused by TB annually (2). One of the most important factors that makes TB the leading infectious
cause of death is multi-drug resistant (MDR)-M. tuberculosis, which is difficult to control (3-6). Because of the global
health problems of TB, the increasing rate of MDR- M. tuberculosis, and the high rate of co-infections with HIV, the
development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently
needed (7). MPT64 (or protein Rv1980c) protein is a highly specific protein secreted by the MTB complex, which
includes M.tuberculosis, M. bovis, and M. africanum. This protein could be found with active Mycobacteria cells and
the pathogenic Mycobacteria genus. MPT64 or protein Rv1980c is expressed only from M. tuberculosis, which means
by existance of this relatively unique expression profile, this protein could be the diagnostic of choice for detecting
active tuberculosis infections (8). To cure a patient who suffers from tuberculosis by anti-microbial treatment, the
patient must take at least six months of chemotherapy. Because of the vague population of resistant M. tuberculosis
bacilli today, drugs have poor results in curing the patients (8). Therefore, drug delivery systems are important because
they can increase the effectiveness of the chemotherapy. One of the best new methods to treat multi-drug strains of
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M. tuberuclosis is the use of drug carriers. A drug carrier should safely deliver the drug to the right place at the right
time. Thus, it must have the ability to target the pathogenic bacteria and release the correct dosage of the drug where
it is needed. DNA has been used for rational design and construction of nano-scale objects for about 30 years. The
“DNA origami” method first was proposed and implemented by Paul W. K. Rothemund in 2006 (10). In this method,
the designed nanostructure is created by folding a long viral single strand DNA (ssDNA) molecule. Several researchers
have tried to develop a method to design a self-assembled DNA nanostructure. One of the most important was the
attempt by Yan et al. that reported information about creating a nano-array DNA structure. The structure was made
by a long scaffold that was shaped using some shorter strands (11). The problem was that they were unable to control
the shape and size of the structures. Another advanced development was published by Shih et al., who reported a self-
folding octahedron made by a long ssDNA and a group of smaller strands (12). They also suggested that self-folding
RNA molecules could be used to create self-assembled 3D nanostructures, and they called the process “RNA origami”
(13). The term origami comes from the Japanese art of creating special 3D shapes by folding paper, since the structure
in this method is made by folding an ssDNA into the designed structure with smaller pices of ssDNA holding the
structure together (14). The individual DNA origami structures typically range from approximately 50 to 400 nm in
length, depending on the cross sectional geometry of the structure (15). DNA origami structures are created using a
long, single-stranded “scaffold” and many short, single-stranded “staples.” At any position in a DNA origami
structure, one strand in the double-helix is contributed by the scaffold strand, which is a long circular piece of genomic
DNA derived from the M13MP18 bacteriophage virus. The scaffold is around 7000-8000 bases in length and has a
sequence that is fully known. The staple strands are much shorter, i.e., 30-50 bases in length, and they are designed to
be piecewise complimentary to the sections of the scaffold strand that may be distant along the primary base sequence.
During self-assembly, the scaffold must fold in order to spatially collocate sections of the scaffold that bind to a single
staple. Hence, the staple sequences determine the scaffold’s folding pattern. “Staple” strands are a group of small
DNA strands that are complementary to pieces of the long ssDNA. These staples join the long pieces of the strands
together to fold them into the desired 3D form. This manipulation “programs” the DNA to fold into a pre-designed
geometry (16). Then, these folded strands are heat-annealed with a specific buffer with high concentration of
magnesium to achieve the desired origami (17). DNA also can be one of the ideal materials to construct such devices.
These structures can be designed to do tasks, such as sensing, computation, and actuation (17). Inspired by recent
studies, we designed a three-dimensional DNA origami box that is capable of selectively interfacing with pathogenic
bacteria and releases the drug near them. The purpose of this study was to design a nano-scale drug carrier that can
find the threat and release one or more (up to three) drugs near the infected area to treat TB. Different three-
dimensional shapes of DNA structures were made to show that the complexity of these structures is endless (18-21).
One of the most interesting articles about using this method for drug delivery systems described an autonomous DNA
nano-robot that was capable of transporting molecular payloads to cells to treat cancer. They implemented several
different logical AND gates and demonstrated their efficacy in selective regulation of the nano-robot’s functions (22).
In this article, for the first time, we tried to use the DNA origami method to design a nano-scale drug delivery system
for the treatment of TB.

2. Material and Methods
Using a computer-aided design tool called caDNAno (23), we created a nano-robot. It is a square lattice structure that
can be non-covalently fastened by staples modified with DNA aptamer-based locks. Designed oligonucleotides fold
into its target shape during a thermal annealing ramp of rapid heating followed by slow cooling. Previously, DNA
locks and DNA keys were used to control the opening of the lid on a DNA box (24). To operate our structure in
response to pathogenic bacteria, we designed a DNA aptamer–based lock mechanism that opens the structure when
the target ligand is detected. We designed two aptamer-complement duplexes on the left and right sides of the front
of the nano-robot. For faster activation rates and keener sensitivity, shorter duplexes should be used, but this increased
the frequency of unplanned activations. To attach the drugs into the nano-robot, they first must be modified. To achieve
that goal, they should attach to a linker made of a 15-base ssDNA oligonucleotide by a covalent bond to the 5′ end of
it. In the inner-face of the nano-robot and near the middle, there are three attachment sites designed to enable the
places for different drugs and their linkers to attach to the nano-robot. The sites are staple strands with 3′ extensions
that attach to the linker sequence by complementary effect. The model can be described as two caps made from DNA
with drugs loaded between them, just two hands can be used to trap something. These caps lock together with two
pieces of DNA that react to a key combination (Figure 1). The nano-robot stay inactive until it encounters the correct
combination of ligand key sequences. When the keys are present, they open the lock combinations. When it is unlocked
the nano-robot opens, allowing the loaded drugs to bind with the bacteria’s surfaces and perform the desired function
(Figure 2). The idea of our lock system came from Dr. Shawn Doglas’ work, and he inspired it from aptamer beacons



Electronic physician

Page 1859

(25) and switching aptamers (26), which were studied for target-induced switching between an accompaniment duplex
and a target complex, both of which were made of aptamers. As soon as both aptamers recognize their targets, the
lock duplexes dissociate by attaching one of the strands to the key. Then, the caps are released, acting as an entropic
spring, and they try to reconfigurate to turn into its previously sequestered surfaces (Figure 3). The payload inside the
nano-robot was premodified by covalent attachment to the 5′ end of a 15-base single-stranded DNA oligonucleotide
linker. In the middle of the nano-robot, two inner attachment sites were arranged for the payload.

Figure 1. View of nano-robot in inactive (right) and active (left) mode, with the right key nano-robot activated and
opened so the active site of the drug can interact with defected cells.

Figure 2. Aptamer lock mechanism, that include DNA aptamer strand (blue) and a partially complementary strand
(gray). (A) These two DNA strands hold two caps together and keep the nano-robot deactivated. With right key that
may be an antigen (red) the lock can be stabilized in a dissociated state and active the nano-robot.

Figure 3. Side view shows guide staples (green) bearing 8- base toeholds help assembly of nano-robot. After folding,
guide staples are removed by addition of fully complementary piece of DNA
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The sites are staple strands with 3′ extensions that are designed to attach the linker by the complementary sequence.
In constructing a “spring-load” device, it is important to ensure high-yield assembly. Two 8-base staples were used to
attach the caps temporarily to keep the nano-robot from opening until the lock sequences bond to each other. These
staples are called “guides,” and they can be removed after the nano-robot is completely folded. Two keys were
designed for the nano-robots to verify that they were not activated by a non-ligand-based mechanism. To activate the
nano-robot, both locks must be opened together. The robot remains inactive when only one of the two locks is opened.
The robot could be programmed to activate in response to a single type of key by using the same sequence of aptamers
in both locks and, for that matter, by using two types of keys. Classical approaches to target that kind of signatures is
the use of peptides, proteins, and mainly antibodies. Recent studies have shown that oligonucleotides, known as
aptamers, can be used for this purpose with the same capacity. Complex, three-dimensional structures can be formed
by DNA or RNA. These folded, short, single-stranded oligonucleotides could be designed to target specific ligands.
Aptamers have a huge potential for developing biosensor devices and microbial drug delivery. First, a useful aptamer
for detecting and targeting pathogens must be isolated. One of the best methods to isolate an aptamer for a specific
target is to use random oligonucleotide sequence libraries in vitro-based screening process that is called Systematic
Evolution of Ligands by Exponential enrichment (SELEX). For selecting aptamers with the best specificity and yield
for a target protein, 11 aptamer candidate sequences were secured (Table 1). Still, no identical sequences were found
in the results. After sequences for locks were determined and with staples sequences, the assembly process could be
started. In this one pot process reaction, these single-stranded oligonucleotides combined rapidly with heating, and,
after that, they cooled slowly. This cooling process should be done in four stages, and the cooling should be slower
each time. With this heat treatment, all staples and scaffold strands attach to their complementary sequences, and the
structure folds into the predicted shape. To achieve that goal, the mixture and temperatures are quite sensitive, and
must be controlled carefully. The batch started with a buffer and salts. It should contain 2 mM EDTA, 6 mM Tris (pH
8 at20 °C), 17 mM MgCl and heated to85 °C. For thermal annealing the mixture, it should be cooled to 60 °C in 85
min. For the second stage, it was cooled to 40 °C over a 30-hr period. In the third stage, it was cooled to 30 °C in 50
hr. Finally, it was cooled to 24 °C in 100 hr. For the imaging process, the samples should be adsorbed onto glow-
discharged grids for 5 min and treated with 0.5 M MgCl . Then, the objects were stained with 2% uranyl formate and
about 1 min with 25 mM NaOH. Now, it was observed with an FEI Tecnai T12 BioTWIN at 120 kV.

Table 1. Aptamer sequences. Gibb's energy (ΔG) and melting temperature (Tm) of each sequence were calculated by
Mfold for predicted secondary structures. Guanine contents of identified 24-nt regions were shown

Name Sequence ΔG (kcal/mol) (°C) G (% )
MPT64-A1 CGGCACCCCGTCGCTATGTTGACC -2.02 50.6 25
MPT64-A2 CCCATATGCGCATCAAGATCTTCAT -2.6 46.5 64
MPT64-A3 GGGAGGGGCGGCGAAGGAGTGGCG -2.5 50.7 67
MPT64-A4 GGCGGAGGGGTTCGGGGTTGGCGC -1.8 44.3 63
MPT64-A5 GGGGGGGTGGCATTTTGGGGTGGG 0.53 17.9 67
MPT64-A6 GGGAGCAAATCCGGAATGTGGGGC -3.01 57.6 46
MPT64-A7 GGGGTTAGGCGAGGGGGGTGGGTG 1.4 -8.3 71
MPT64-A8 GGGGATAGCAGGACAATGAGGGGG -0.1 26.6 54
MPT64-A9 GGGCGGGGGGGGATTCCGAGGCGC -2.98 55.3 63
MPT64-A10 GGGGATAGCAGGACAATGAGGGGG -1.3 38.4 54
MPT64-A11 CGGACGGTAGGGAAGGGGGGGGCG 0.8 24.9 67

3. Results
To design the nano-robot, a square lattice was chosen due to its size and stability, whereas, for larger structures, the
honeycomb lattice was preferred, and, for the heavy strand, m13mp18 was chosen. After the strands’ sequences were
calculated, two strands were used as the linker to be attached in the middle of each cap. These strands were 15 bp 3'
DNA with the complementary sequence of the linker. The sequences chosen for the locks should add to the ends of
each cap for specific targeting. To create the model with the CanDo server (21), first, the model should be created
with caDNAno software. CaDNAno’s results in designing the DNA are shown in Figure 4. After the sequences and
structure were found, the CanDo server was used to create the model and the 3D shape of the nano-robot (Figure 5).
It was confirmed that the designed shape remained stable at the conditions of the human body, and it should be a stable
structure for carrying drugs and activating them near the target. After the simulation was completed, we constructed
the carrier, and it was imaged by TEM (Figure 6).
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Figure 4. Results of caDNAno software: (A) Map of square lattice for the nano-robot; (B) 3D shape of nano-robot;
(C) Map of DNA strands and sequences that can assemble the nano-robot

Figure 5. Results of CanDo server: (left) 3D shape of nano-robot; (middle) FEM model of structure; (right) 3D DNA
model of nano-robot
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Figure 6. TEM images of nano-robot in closed and open conformations: Left: activated nano-robot from side; Right:
inactive nano-robot from top

4. Discussion
In a related article, we found that shorter duplexes gave better sensitivity and faster activation rates, but at a cost of
increased spontaneous activation (22). Among reported lengths for lock duplex, 24 bp was found to be more reasonable
(22), because it has shown similar sensitivity to a shorter duplex, such as 16 bp, that was activated at 10 pM. The
length of the 24 bp lacks the unacceptable loss in sensitivity of longer duplexes, such as 30, 37, and 44 bp (activation
at 1 nM). To create container-like structures using DNA origami, one may fold single layers of helices (10). For space
filling shapes, the multi-layer approach often could be used (19). Single-layer objects assemble in a few hours, and
the yield is nearly 100%, but multi-layer objects take more time, as much as a week, and, according to their structure,
the yield may be in the range of 5 to 20%. Another difference between multi-layer and single-layer objects is their salt
requirement. According to the base shape selected for the structure, one may close-pack DNA double-helical domains
onto a square lattice or onto a honeycomb lattice. The term ‘square lattice’ means that each double-helical domain can
have four neighbors, whereas only three neighbors are present in the honeycomb lattice (22). Every double-helical
domain belongs to a particular lattice position by anti-parallel strand crossovers along the helical axis that connects to
the next double-helical domains. The spacing of crossovers depends on the lattice packing. Every B-form DNA double
helical twists 360ᵒ per 10.4 bp. In order to close-pack DNA double-helical domain onto a square lattice, cross-overs
must be placed to the four nearest neighbors, which are arranged in four-fold symmetry. Constant cross-over spacings
of 21 bp among particular pairs of neighboring helical domains exist when the native B-form DNA geometry is
applied. Therefore, an average spacing of 21/4 = 5.25 bp will be reached when cross-overs to the other three neighbors
in a square lattice are examined. Irregular cross-over spacing intervals must be used to achieve this. A square lattice
packing with constant cross-over spacing intervals could be achieved by assuming an average helicity of 10.67 bp per
turn in B-form DNA. The backbone of a strand rotated by 270° in intervals of 8 bp results in a fourfold symmetry.
Applying cross-overs to four neighbors in 32-bp intervals in a four-fold symmetry directs us to intervals of 8 bp in a
square lattice packing, causing underwinding of every double-helical domains from the natural 10.5 bp to the applied
10.67 bp per turn. This will result in twisting torques transmitted by cross-overs. The entire object will be twist-
deformed globally by the imposed internal torques. In order to eliminate the global twist for objects in square-lattice
packing, constant 8 bp spacing between cross-overs should be departed towards achieving effective double-helical
twist densities closer to natural 10.5 bp per turn. It was found that in 10.4 bp per turn case, elimination of global twist
occurs (18, 22). Creation of large torsional stiffness in the helical direction can also minimize the global twist in multi-
layer square lattice objects. In the case of single-layer square lattice DNA origami objects, the constant 16 bp spacing
between cross-overs to neighboring double-helical domains causes a twisted shape in solution. The twist deformation
might be abolished if adhesion interaction with surfaces occurs. The result would be objects lying flat on a surface
(20). Electrostatic immobilization can eliminate the twist deformation for single-layer DNA origami objects through
surface deposition. Therefore, densely-packed objects with rectangular features might be created by eliminating the
existing global twist deformation.

Straight and, at the same time, more porous structures are created by the honeycomb lattice packing. Connections of
double-helical domains in a DNA origami object could be restored better by both staple and scaffold strands. Two
cross-over reference frames that are shifted in the helical direction by 5 bp or 6 bp could be defined by accommodating
both staple and scaffold cross-overs. No global deformation would occur for multi-layer objects with cross-sectional
aspect ratios around 1 or sufficient thickness, keeping in mind that major and minor groove in B-form DNA have been
neglected in this approach. In order to avoid undesired rolling up of thinner objects, major and minor groove phosphate
position should be aware of. Also, this could be achieved by working with high densities of staple cross-overs rather
than scaffold cross-overs as much as possible. The dimensions of a DNA origami object might be estimated by rule
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of thumb as follows:  The length of double-helical domains is calculated via N*0.34 nm, where N is the number of
base pairs in the double-helical domain. Both for a single-layer square lattice and a multi-layer honeycomb lattice,
objects with the value of 0.34 nm per bp hold true. To calculate the width of a square lattice nano-robot along the
horizontal or vertical cross-sectional axis, this formula could be used: “2H + (H-1)g, ” where H is the number of
double helical domains that have a width of 2 nm and there is a gap between cross-overs that is called the inner helical
gap, which is g in the formula (16, 27, 28). To create a desired cuboid shape, first the size of the cargo must be known.
After that, the length of each DNA helix can be calculated. Now, the number of helices per layer must be decided.
With this information, the dimensions of the nano-robot are known, and it can be designed. One of the limitations in
designing for the maximum potential size of nano-robot is the length of the scaffold strand. To minimize undesired
multimerization, we used unpaired scaffold bases at the ends of the helices. If the scaffold strand has a circular loop
topology, a long, unpaired loop should be used to span the distance between the starting and ending points (20). Staple
strands are attached to the neighboring helices in cubic manner at the locations of two helices twist near each other in
the intersection planes. These cross-overs can be seen on the 2D scheme (Figure 4c) as thin lines and that is where the
phosphate backbones connect to each other (21). Finally, after placing every staple, the Watson crick complementary
sequences can be determined for the staples. With these sequences, the construction of the nano-robot was started.
After the construction process was completed, TEM should approve that the nano-robot was constructed as planned
(23).

5. Conclusions
We succeeded in designing and constructing square lattice 3D DNA nano-robot nanostructures using the scaffolded-
DNA-origami method. Since the density of the material in the square lattice is higher than honeycomb, we expect that
the stability of the square lattice objects should be greater and more resistant to compression. Drug carriers are used
to decrease the side effects of drugs used to destroy pathogenic bacteria thereby making the bacteria more targetable.
DNA is one of the best materials for drug delivery nanostructures. There are several techniques to design and
synthesize DNA nanostructures. One of the most promising assembly techniques in nano-technology is ‘Scaffolded
DNA origami.’ These objects can be more than simple nanostructures and have different functions to increase
targeting. In this article, we explained the details one needs to know to design a targetable DNA origami nano-robot.
The descriptive report of our design is enclosed.
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