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Epigenetic dysregulation drives many of the hallmarks of cancer by enabling aberrant gene expression programs 
which underlie cancer cellular plasticity and tumor heterogeneity phenotypes that promote cancer initiation, 
progression, metastasis and drug resistance1. Indeed, one of the key findings of the genomics era in cancer 
biology has been that most cancer genomes are epigenetically abnormal and mutations in genes that regulate 
DNA methylation, such as DNMT3A/B, TET1-3 and IDH1/2, are prevalent2,3. Together, these observations 
suggest that epigenetic dysregulation promotes cancer but may also represent a targetable vulnerability. As such, 
there has been substantial interest in the development of anti-cancer strategies which modulate cancer associated 
epigenetic programs and dependencies4–6. One such promising strategy which has shown success in the context 
of certain subtypes of acute myeloid leukemia (AML) is to inhibit the activity of key enzymes required for 
maintenance and regulation of DNA methylation by small molecule drugs, such as decitabine, resulting in global 
DNA hypomethylation. There is clear evidence of clinical benefit of decitabine treatment for AML patients who 
have cytogenetic abnormalities associated with unfavorable risk, TP53 mutations or both (defined hereafter as 
high-risk AML patients)7,8. Unfortunately, despite this benefit, most AML patients eventually progress following 
decitabine treatment with a median overall survival of less than 1 year. Problematically, relatively little progress 
has been made on improving the clinical activity of DNA hypomethylating agents (HMA) such as decitabine in 
AML or other cancers in part because the molecular determinants of response to HMAs are unclear.

A recent clinical study of molecular determinants of response to decitabine in AML patients has suggested 
that mutations in DNMT3A, IDH1/2 and TET2 are not correlated with response to decitabine8. In the same 
study, it was noted that TP53 mutations are also not correlated with poor clinical response to decitabine. These 
findings are unusual in two ways. First, it had previously been hypothesized that tumors with mutations that drive 
aberrant DNA methylation profiles may be more susceptible to HMAs. Secondly, TP53 mutations are generally 
associated with drug resistance and poor prognosis in many cancers, so it is unexpected that TP53 mutations in 
AML seem to not play a role in determining clinical outcomes following treatment with decitabine. This result 
suggests that decitabine’s anti-cancer activity in AML occurs through a TP53 independent mechanism. Given 
the central role TP53 plays in canonical apoptotic BCL2 family protein dependent programmed cell death, at one 
level this study appears to contradict recent clinical trial results in AML which demonstrated superior clinical 
outcomes from the combination of HMAs and venetoclax, a BCL2 inhibitor thought to drive programmed cell 
death in cancer cells9. One explanation that could account for both sets of clinical observations is that HMAs 
may drive cell death via an unknown TP53 independent apoptotic pathway. A more robust understanding of 
decitabine’s mechanisms of anti-cancer activity in TP53-mutant tumors could enable innovative therapeutic 
strategies and a better understanding of patients who do and do not respond robustly to HMAs. An alternate 
hypothesis for how HMAs kill cancer cells arises from the observation that treatment with HMAs results in 
accumulation of non-canonical transcripts including inverted SINE elements, endogenous retroviral elements 
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and cryptic transcription start sites encoded in long terminal repeats which collectively act to induce immune 
activation10–14. Lastly, it has also been suggested that HMAs induce cellular differentiation in AML which may 
contribute to therapeutic efficacy15.

To identify genes that modulate decitabine’s anti-cancer activity in high-risk AML in an unbiased manner, 
we performed genome-scale CRISPR genetic screens and integrated this data with multiomics measurements of 
decitabine response in AML cells. Our results recapitulate multiple known factors which modulate response to 
decitabine, including DCK, SLC29A1, MCL1 and BCL2, indicating the utility and robustness of our approach for 
interrogating the biology of decitabine in AML9,16–22. Central to our study was the finding that epitranscriptomic 
RNA modification and RNA quality control pathways effectively modulate response to decitabine in AML cells. 
In short, we have identified unexpected regulatory connections between DNA methylation, RNA methylation 
and RNA quality control pathways, which may provide further insight into decitabine’s mechanism(s) of action.

Results
A genome-scale CRISPRi screen in AML cells identifies genes modulating decitabine 
sensitivity and resistance
We set out to perform a genome-scale genetic screen using our previously described CRISPR interference 
(CRISPRi) functional genomics platform to identify genes that regulate cancer cell response to decitabine 
(Fig. 1a), a clinically approved HMA23,24. For this, we used the HL-60 cell line, which is an established model 
of AML. The cell line is TP53, NRAS and MYC mutant and captures the biology of high-risk AML and more 
generally of an aggressive human cancer. To begin, we generated an HL-60 CRISPRi cell-line model that stably 
expressed the dCas9-BFP-KRAB fusion protein. We validated that the resulting CRISPRi HL-60 cell line, 
hereafter referred to as HL-60i, is highly active for targeted gene knockdowns (Supplementary Fig. 1a).

Decitabine (5-aza-2’-deoxycytidine) is a pro-drug that is converted intracellularly into 5-aza-2’-deoxycytidine 
monophosphate17,19,22. This nucleoside analogue is in turn incorporated into DNA during replication, where it 
is thought to irreversibly and covalently trap and inhibit DNA methyltransferases DNMT1/DNMT3A/DNMT3B 
(Fig. 1a). Trapping of DNMTs renders them enzymatically inactive, resulting in global DNA hypomethylation 
and dysregulated gene expression. This broad reprogramming of the gene expression landscape results in cell 
cycle arrest or cell death through poorly characterized molecular mechanisms. At high doses, decitabine also 
causes DNA replicative stress and DNA damage. To further characterize decitabine’s activity in an AML cell 
model, we used publicly available data to analyze changes in genome-scale DNA methylation patterns in HL-
60 cells treated for 120 h with a low dose of decitabine (Supplementary Fig. 1b–d)25. As expected, we observed 
global hypomethylation of CpG dinucleotides and hypomethylation of differentially methylated regions (DMRs) 
following treatment with decitabine. This confirms the expected activity of decitabine, a non-specific DNMT 
inhibitor, in AML cells. As discussed above, there is a hypothesis raised by clinical results that perhaps decitabine 
induces TP53 independent but BCL2 family protein dependent apoptosis. To address this, we next assessed 
whether decitabine treatment induces caspase 3/7 dependent apoptosis in our HL-60 model. We observed a 
dose dependent increase in caspase 3/7 activation upon treatment with low concentrations of decitabine 
(Supplementary Fig.  1e). Together, our results indicate that decitabine induces TP53-independent apoptosis 
and DNA hypomethylation in a model of high-risk AML and further supports our notion that this model could 
provide insight into decitabine’s mechanism(s) of action.

For the genome-scale CRISPRi screen design and all subsequent experiments, we chose to treat cells with 
a clinically relevant low dose of decitabine (~ IC30; 100 nM)26. At this concentration, decitabine’s anti-cancer 
activity is thought to predominantly arise due to global DNA hypomethylation rather than via DNA replication 
stress27,28. The genome-scale pooled genetic screen was performed by transducing the cell line with a human 
genome-scale CRISPRi sgRNA library at a low multiplicity of infection such that a single sgRNA is expressed 
in most cells, and then cells were selected with puromycin to remove uninfected cells from the population 
(Fig. 1b)24. In addition to time-zero samples, we also collected samples after growing the library in the presence 
and absence of decitabine (in biological duplicates). Next-generation sequencing was used to quantify the 
relative abundance of cells expressing each sgRNA in each sample. We then used measurements across the 
entire library to calculate sgRNA- and gene-level phenotypic scores (Supplementary Fig. 2a)24. Results obtained 
from the replicate screens were highly correlated with high data quality in both the DMSO and decitabine 
experiments (Supplementary Fig. 2b–e). Analysis of our decitabine screen data revealed a large number of genes 
that modulate cellular response to decitabine (1293 genes with Mann–Whitney p-value < 0.05 and absolute 
value of rho score > 0.1) (Fig. 1c and Supplementary Table 1). These results may reflect the pleiotropic nature of 
DNA methylation biology.

Initial inspection of top hits from our decitabine CRISPRi screen in HL-60 cells recapitulated a number 
of genes whose knockdown is known to impact drug resistance and sensitivity (Fig. 1c). For example, the top 
resistance hit was DCK, which phosphorylates decitabine resulting in conversion of the pro-drug to the active 
drug18,19. Another top resistance hit was SLC29A1, which is a solute carrier protein required for decitabine entry 
into cells18,19. Lastly, DCTD is thought to play a role in the metabolism of decitabine and is revealed as a strong 
resistance hit as well29. We also observed that knockdown of BCL2 and MCL1 sensitizes HL-60i to decitabine, 
as expected from the clinical literature which suggests decitabine induces BCL2 family protein mediated cell 
death20,21. The recapitulation of known positive control hits in our screens indicate the utility and robustness of 
our approach for interrogating the biology of decitabine in AML.

RNA dynamics modulate response to DNA hypomethylation induced by decitabine in AML 
cells
Buoyed by these positive endogenous controls, we next examined the remaining CRISPRi hits to search for 
new biological insights and to generate hypotheses on the cellular mechanisms of decitabine action. First, we 
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noted that the pathway-level analysis of our screen identifies mRNA processing pathways as a top-scoring 
enriched term (Supplementary Fig.  2f. and Supplementary Table 2)30,31. Further analysis of these top hits 
revealed a strong enrichment for two specific RNA biological processes. Specifically, we observed that repression 
of RNA decapping enzymes such as DCP1A, DCP2 and DCPS sensitizes HL-60 to decitabine (Fig.  1c). We 
also observed that repression of multiple genes (METTL3, YTHDF2, ZC3H13 and CBLL1) that regulate RNA 
methylation marks, specifically N6-methyladenosine or m6A, promoted resistance to decitabine. Together, these 
observations suggest that modulation of specific RNA regulatory pathways is a key determinant of response 

Fig. 1. A genome-scale CRISPRi screen reveals gene knockdowns that confer sensitivity or resistance to 
5-aza-2’-deoxycytidine (decitabine). (a) The chemical structure of decitabine. (b) Schematic of a genome-
scale CRISPRi screen performed in HL-60 cells. (c) Volcano plot of gene-level rho (ρ) phenotypes and 
Mann–Whitney p-values. Negative rho values represent increased sensitivity to decitabine after knockdown, 
and positive rho values represent increased resistance. (d–e) Validation of top screen hits. HL-60i cells 
were transduced with a control sgRNA (black) or an active sgRNA (red or blue) and treated with DMSO or 
decitabine, and the proportion of sgRNA + cells in the decitabine condition relative to DMSO was observed 
over time. Data are shown as means ± SD, two sgRNAs per gene and two replicates per sgRNA. (f) Scatter plot 
showing the correlation between screen rho phenotype and validation phenotype (day 14–15 post-infection) 
for each validated sgRNA. (g) A cleaved caspase 3/7 assay shows the fraction of apoptotic HL-60 cells at 
day 5 following treatment with DMSO or decitabine ± RG3039. Data are shown as means ± SD for three 
replicates. (h) A cell cycle assay shows the fraction of HL-60 cells at different phases of the cell cycle at day 5 
following treatment with DMSO or decitabine ± RG3039. Data are shown as means ± SD for three replicates. 
(i) Normalized counts for genes in GO:1,903,557 (positive regulation of tumor necrosis factor superfamily 
cytokine production) upregulated upon decitabine and RG3039 treatment.
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to DNA hypomethylation induced by decitabine. To independently validate the results from our screen, we 
chose 10 hit genes from our decitabine HL-60 CRISPRi screen (2 sgRNAs/gene) and used a mixed competition 
fluorescence cell survival CRISPRi knockdown assay to measure how perturbation of individual genes modulates 
response to decitabine. Our validation experiments demonstrated the reproducibility of our CRISPRi genome-
scale screen measurements across all the resistance and sensitivity genes tested (Fig. 1d–f and Supplementary 
Fig. 2g). Interestingly, we observed that repression of PTEN, a tumor suppressor gene that is commonly mutated 
in cancer, sensitized HL-60 cells to decitabine (Fig. 1e).

We were intrigued by the connection between decitabine and RNA decapping quality control processes. To 
begin, we confirmed that repression of DCP2 sensitizes cells to decitabine (Fig. 1e). We chemically validated 
that RNA decapping is a pro-survival dependency by combining RG3039, a clinical grade chemical inhibitor of 
DCPS, with decitabine32,33. We observed the combination of decitabine and RG3039 had synergistic anti-cancer 
activity in vitro in two independent AML cell models (Supplementary Fig. 3a,b). We also observed that the 
combination of decitabine and RG3039 synergistically induced caspase 3/7 activation and cell cycle arrest in HL-
60 (Fig. 1g,h). Lastly, we profiled the transcriptional consequences of treating cells with DMSO, decitabine alone, 
RG3039 alone or decitabine and RG3039 together. Because previous literature has demonstrated HMAs can 
induce expression of endogenous retroviral elements, we mapped both protein coding transcript expression and 
ERV transcript expression. We observed that treatment with decitabine or RG3039 alone drives a transcriptional 
response, and that the combination of decitabine with RG3039 induces transcriptional responses shared with 
the single drug conditions but also drug combination specific transcriptional changes (Supplementary Fig. 3c,d). 
Gene ontology analysis comparing decitabine to decitabine plus RG3039 or DMSO to decitabine plus RG3039 
demonstrated up regulation of term enrichment for biological processes such as myeloid differentiation and 
immune function, as well as down regulation for biological processes relating to methylation and protein 
translation (Supplementary Fig. 3e). For example, we observed the upregulation of positive regulators of TNFα 
cytokine production specifically in the decitabine plus RG3039 condition relative to decitabine alone (Fig. 1i). 
Additionally, we further examined myeloid differentiation as a top enriched process and observed broadly that 
treatment with decitabine or RG3039 alone induced a signature of differentiation relative to DMSO, and that this 
was further induced by the combined treatment of decitabine plus RG3039, suggesting that AML differentiation 
occurs from treatment with decitabine or RG3039 alone as well as in combination (Supplementary Fig. 3f–j). 
Lastly, prior studies have shown decitabine treatment alone can induce expression of atypical transcripts which 
in turn can induce an inflammatory response10,34. Our analysis of ERV transcriptional changes demonstrated 
that the combination of decitabine plus RG3039 strongly induced specific ERV transcripts, such as LTR67B 
(chr6:36,350,628 − 36,351,191), relative to DMSO or each single drug alone (Supplementary Fig. 3k–l). Notably, 
most ERVs do not change expression, and changes in expression are often not concordant across families or 
classes of ERVs. Together, this data suggests that RNA decapping is one of multiple processes which can affect 
response to decitabine in AML cells.

Decitabine induces m6A hypermethylation of mRNA transcripts in AML cells
As highlighted above, we observed that repression of multiple genes encoding m6A methylation machinery 
promotes cellular resistance to decitabine (Fig. 1c,f). Top screen hits included the m6A-writer METTL3, the 
m6A-reader YTHDF2 and the methyltransferase complex components ZC3H13 and CBLL1. We validated that 
repression of METTL3, YTHDF2, and ZC3H13 promotes resistance to DNMT inhibition by decitabine treatment 
in HL-60i over a time course using a mixed competition fluorescence cell survival CRISPRi knockdown assay 
(Fig. 2a). This result suggests regulation of RNA methylation modulates AML cell survival upon treatment with 
decitabine.

To systematically examine the molecular effect of decitabine treatment on m6A RNA methylation, we next 
performed methylated RNA immunoprecipitation sequencing (MeRIP-seq), a method for detection of m6A 
modifications (Fig. 2b and Supplementary Fig. 4a)35. To assess the quality of this dataset, we first performed peak 
calling in control DMSO-treated samples followed by downstream analysis to recapitulate known features of the 
RNA modification sites across the transcriptome. We also performed a motif-enrichment analysis to ensure the 
enrichment of the RGAC ([AG]GAC) motif sequence, a known m6A motif, among predicted peaks (Fig. 2c)36,37. 
Finally, we confirmed the preferential localization of RNA methylation peaks near the stop codon, which is 
consistent with prior literature (Fig. 2d)38.

To then identify decitabine-induced hyper- and hypomethylated sites, we performed differential RNA 
methylation analysis to compare treatment with decitabine to DMSO controls39. Interestingly, we observed a 
significant increase in m6A RNA methylation peaks across mRNAs of protein coding genes upon decitabine 
treatment (Fig.  2e and Supplementary Table 3). Specifically, our analysis identified 2064 decitabine induced 
hypermethylated peaks (logFC > 1 and p-value < 0.005) but only 1399 hypomethylated peaks (logFC <  − 1 and 
p-value < 0.005) (Supplementary Fig. 4b–d).

Additionally, it has been observed in AML cell lines and patient data that treatment with different HMAs 
such as decitabine induces transcriptional upregulation of different ERVs including retroposons, LINEs and 
SINEs12,40,41. It has also been shown that m6A RNA methylation regulates the levels of ERVs42. To evaluate the 
effect of decitabine treatment on ERV RNA methylation, we mapped our MeRIP-seq data to relevant annotations 
and followed similar analyses as discussed above to examine differential RNA methylation changes in ERVs43. 
Interestingly, we observed a significant enrichment of m6A methylation peaks across retroposon, LINE and 
SINE transcripts upon decitabine treatment (Supplementary Fig. 4e–f). Specifically, our analysis here identified 
37, 180 and 131 hypermethylated peaks (logFC > 1 and p-value < 0.005) but only 9, 45 and 48 hypomethylated 
peaks (logFC <  − 1 and p-value < 0.005) for retroposon, LINE and SINE transcripts, respectively.
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Fig. 2. Decitabine treatment of HL-60 cells results in global m6A hypermethylation. (a) Validation of CRISPRi 
decitabine screen hits shows that knockdown of m6A-reader/writer complex genes promotes resistance to 
decitabine treatment in HL-60i cells. HL-60i cells were transduced with a control sgRNA (black) or an active 
sgRNA (red or pink) and treated with DMSO or decitabine, and the proportion of sgRNA + cells in the 
decitabine condition relative to DMSO was observed over time. Data are shown as means ± SD, two sgRNAs 
per gene and two replicates per sgRNA. (b) Schematic of MeRIP-seq experimental design and computational 
workflow. (c) The FIRE algorithm (in non-discovery mode) shows the known m6A motif RGAC ([AG]
GAC) is enriched among predicted MeRIP-seq peaks relative to randomly generated sequences with similar 
dinucleotide frequencies. Data are shown as a heatmap, where yellow indicates over-representation and blue 
represents under-representation. Color intensity indicates the magnitude of enrichment. (d) Metagene plot 
shows distribution of m6A sites along transcripts with differential regional methylation and enrichment of 
m6A sites near the end codon. Transcripts are grouped into CDS (protein coding region), 5’ UTR (untranslated 
region) and 3’ UTR methylation based on the identified m6A sites. (e) Differential methylation analysis shows 
significant changes in RNA methylation peaks in HL-60 cells treated with decitabine (relative to DMSO). Peaks 
are called using the RADAR algorithm and visualized as annotated volcano plots. Wilcoxon and t-tests are 
used to assess statistical significance of global hypermethylation.
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Taken together, our findings suggest that treatment of AML cells with decitabine results in global CpG DNA 
hypomethylation along with a concomitant increase in m6A RNA methylation, and that HMA anti-cancer 
activity in AML cells may be modulated by genes that regulate m6A RNA methylation.

A multiomics approach identifies genes regulated through m6A modifications
RNA methylation has been implicated in various aspects of the RNA life cycle in the cell, from RNA processing 
to RNA stability to translation, and more recently, crosstalk between epitranscriptome and epigenome44–52. 
To further understand the connection between global DNA hypomethylation and RNA dynamics in AML 
cells, we set out to interrogate, via an integrated multiomics approach, the effects of decitabine-induced RNA 
hypermethylation on AML cells. Here, we aimed to integrate comparisons between treatment with decitabine 
or DMSO from the following datasets: RNA-seq for differential gene expression and RNA stability, MeRIP-
seq for RNA methylation, Ribo-seq for protein translation efficiency, and genome-scale CRISPRi functional 
genomics screening data. We first performed an RNA-seq time course experiment in the HL-60 AML model 
(Supplementary Fig. 5a) at 6, 72 and 120 h following treatment with decitabine or DMSO. We used this data 
to perform differential gene expression analysis across conditions. We also used REMBRANDTS, a method we 
have previously developed for differential RNA stability analysis, to estimate post-transcriptional modulations in 
relative RNA decay rates (Fig. 3a,b)53–58. We performed gene set enrichment analysis of differential mRNA stability 
and expression across all three time points for the HL-60 cell line (Supplementary Fig. 5b,c)59. For expression, 
we observed enrichment for largely expected ontologies, such as immune receptor activity and regulation of 
cell killing10,12,14,34. Interestingly, for post-transcriptional modulations in RNA stability, we observed previously 
unexplored terms, such as sterol biology. Moreover, to also capture patient heterogeneity, we performed RNA-
seq on a panel of five additional AML cell lines treated with decitabine or DMSO. Across all six AML cell lines, 
we observed that decitabine treatment induced widespread changes in RNA transcript abundance and RNA 
stability with varying degrees of concordant RNA expression and stability changes (Fig. 3c,d).

Given that RNA m6A methylation marks have been previously implicated in translational control, we used 
Ribo-seq to measure changes in the translational efficiency landscape of HL-60 cells treated with decitabine 
or DMSO47,60. Treatment with decitabine had little effect on translation efficiency, and we did not observe a 
concerted change in the translation efficiency of hypermethylated mRNAs (Supplementary Fig. 6a–d). In other 

Fig. 3. An analysis of differential gene expression and RNA stability across multiple AML cell lines and 
time points following decitabine treatment. (a,b) RNA-seq reveals genes with significant changes in (a) gene 
expression and (b) RNA stability in HL-60 cells following treatment with decitabine vs. DMSO. Data are 
shown as heatmaps displaying counts (of two replicates) row-normalized into Z-scores, grouped by treatment 
condition and time. Differential RNA expression was calculated using our Salmon-tximport-DESeq2 pipeline. 
RNA stability was predicted using the REMBRANDTS algorithm and differential RNA stability was calculated 
using limma. (c,d) RNA-seq shows varying degrees of concordance of differential (c) gene expression and 
(d) RNA stability across a panel of six AML cell lines. The correlation analysis was performed on the logFC 
values from (c) DESeq2 and (d) limma results for cells treated with decitabine vs. DMSO. Data are shown as 
correlation matrices with Pearson’s correlation coefficients (PCC).

 

Scientific Reports |        (2024) 14:25940 6| https://doi.org/10.1038/s41598-024-77314-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


words, changes in translation efficiency of mRNAs that are differentially methylated in decitabine-treated cells 
are not likely to be responsible for cellular sensitivity to this drug.

Having ruled out translational control as the mechanism through which RNA methylation may be involved, 
we next sought to identify genes whose RNA hypermethylation drives cellular sensitivity to decitabine through 
other post-transcriptional regulatory programs. Since m6A RNA methylation has been shown to reduce RNA 
stability and expression, we intersected our set of decitabine-induced hypermethylated genes with those that 
are downregulated in decitabine treated cells, and their lower expression is associated with higher sensitivity 
to decitabine in our functional CRISPRi screen61. In this analysis, we observed ten genes that were sensitizing 
hits in the CRISPRi screen and upon decitabine treatment, showed RNA hypermethylated peaks and lower 
mRNA levels (Fig. 4a,b and Supplementary Fig. 7). We observed that these genes collectively regulate nuclear 
processes (INTS5, INO80D, ZNF777, MYBBP1A, RNF126, RBM14-RBM4)) or metabolism (SQLE, DHODH, 
PMPCA, SLC7A6). From this list we selected SQLE and INTS5 and first validated that repression of each gene 
by CRISPRi conferred sensitivity to decitabine treatment in HL-60 cells (Fig. 4c). We then validated that their 
mRNA abundance is decreased and m6A methylation is increased following decitabine treatment (Fig. 4d and 
Supplementary Fig. 7a,b). Consistently, we observed that SQLE and INTS5 pre-mRNA levels do not change, 
showing that the decreased mRNA levels are not due to a decrease in transcription. Additionally, we further 
examined mRNA stability of each gene in decitabine-treated cells by using α-amanitin to inhibit RNA polymerase 
II and observed that mRNA decay rates were significantly higher upon decitabine treatment (Fig. 4e). Lastly, 
we were intrigued by whether the increase in m6A methylation from decitabine occurred through METTL3 
given the methyltransferase’s direct role in regulating m6A methylation. Interestingly, we observed that upon 
METTL3 knockdown, decitabine treatment no longer resulted in a significant increase in m6A methylation, 
suggesting that the decitabine-induced hypermethylation of these transcripts occurs through METTL3 (Fig. 4f). 
These results together suggest that we have identified a small number of mRNAs that are downregulated upon 
decitabine treatment, likely through post-transcriptional processes including increased m6A methylation that is 
mediated by METTL3, and that these genes may be functionally important for cellular response to decitabine.

To extend our observations, we also identified genes that (i) were downregulated upon decitabine treatment 
across our panel of six AML cell lines, (ii) sensitizing hits in our HL-60 CRISPRi screen, and (iii) showed 
hypermethylated peaks upon decitabine treatment in our MeRIP-seq HL-60 data (Fig.  4g,h). Although this 
analysis converges on a very small number of genes, we were nevertheless intrigued by the possibility that several 
nominated genes could serve as a link between RNA methylation and the cell death induced by decitabine.

Comparative CRISPRi functional genomics experiments reveal common and specific genes 
modulating cellular response to decitabine in additional AML models
Given the known heterogeneity of AML, we chose to perform genome-scale CRISPRi screens in two additional 
AML models to further examine the degree of common and specific mechanisms across cell lines that regulate 
cellular response to decitabine. For this we used SKM-1 and MOLM-13 cells, which are established models of 
AML. Comparing the known driver mutations in these AML models, we noted that SKM-1 is TP53 and KRAS 
mutant, which similarly to HL-60, captures the biology of high-risk AML and more generally of an aggressive 
human cancer. Meanwhile, MOLM-13 is FLT3-ITD and MLL-fusion but TP53 wild-type. We also examined the 
genetic status of the RNA-related genes of interest from our HL-60 screen and noted that these genes are not 
commonly mutated across AML (Supplementary Fig. 8a,b). We engineered CRISPRi cell lines for each model 
and performed genome-scale CRISPRi screens to identify genes that regulate response to decitabine (~ IC30; 
15–100 nM) as described above and compared the results with the HL-60 screen (Supplementary Fig. 8c–f).

Similar to the HL-60 screen, we observed that the SKM-1 and MOLM-13 screens also captured mRNA 
processing as an enriched term across top hits and positive control genes whose knockdown is known to impact 
drug resistance, namely DCK, SLC29A1 and DCTD (Supplementary Fig.  8d–f and Supplementary Tables 
4,5)18,19,29. Additionally, we observed that repression of METTL3 promoted resistance to decitabine across 
all three cell lines. As expected from the heterogeneity of AML, we also observed differences across cell lines 
with respect to genes that modulate response to decitabine. Interestingly, the two cell lines classified as TP53-
inactive (HL-60 and SKM-1), and are representative of the high-risk AML patient cohort that benefits from the 
combination therapy of decitabine and venetoclax, revealed BCL2 and MCL1 as sensitizing hits in the presence 
of decitabine, while the TP53-wild-type cell line (MOLM-13) did not20,21. Additionally, repression of genes 
encoding RNA decapping enzymes such as DCP2 and DCPS sensitized HL-60 and SKM-1 cells, but not MOLM-
13 cells, to decitabine treatment.

In summary, comparison of genome-scale decitabine CRISPRi screens in three AML models reveals common 
and unique regulators of response. These findings are in line with our understanding of the heterogeneity of AML 
biology and suggest that therapeutic strategies in AML should be evaluated in multiple models representative 
of diverse tumors.

Discussion
Our experiments identify previously known and unknown genes and pathways that modulate cellular response 
to decitabine, a clinically approved HMA with poorly understood cellular mechanisms of action. Our results 
unexpectedly reveal a key role for RNA dynamics in modulating the response to DNA hypomethylation induced 
by decitabine.

Specifically, we observed that genes which are thought to regulate mRNA decapping promote cellular 
resistance to decitabine. One hypothesis for why loss of RNA decapping enzyme activity sensitizes AML cells to 
decitabine is that this RNA quality control pathway becomes an induced dependency upon decitabine treatment 
due to repressed or aberrant transcripts that accumulate upon decitabine-induced DNA hypomethylation. 
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Alternatively, some RNA decapping proteins are also key regulators of splicing, so it may be that this biology is 
more complex with respect to transcription than currently appreciated62,63.

We also found that genes responsible for writing and reading m6A RNA methylation mediate cellular 
response to decitabine. While emerging evidence suggests potential cellular crosstalk between DNA and 
RNA methylation, the direct connection between the two processes, particularly in the context of m6A RNA 
methylation and DNMT inhibitors, remains underexplored50,52,64. Our results demonstrate that decitabine 
treatment induces global m6A hypermethylation in AML cells, and that inhibition of a key adenosine 
methyltransferase METTL3 promotes resistance to decitabine. Given that METTL3 has been previously shown 
to be a potential therapeutic vulnerability in AML65,66, it is intriguing to posit why its inhibition may promote 
resistance to a drug used in clinic to treat high-risk AML. Given all known human methyltransferase enzymes 
use S-adenosyl methionine (SAM) as a cofactor for transfer of methyl groups, one hypothesis arises in which 
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treatment of cells with decitabine results in global inhibition of DNMTs, resulting in increased SAM levels and 
subsequently hypermethylation of mRNAs leading to transcript instability and cell death. To our knowledge, 
crosstalk between methyltransferase enzymes and different macromolecular substrates is not known, and this 
hypothesis may merit further investigation.

Our efforts may have several translational implications for AML patients who are treated with decitabine. 
First, we experimentally confirm that decitabine induces TP53 independent apoptosis in experimental models. 
In line with this, our results genetically re-nominate a clinically efficacious combination therapy of decitabine 
and a BCL2 inhibitor, which together likely induces synergistic apoptosis20,21. We also demonstrate through both 
genetic and chemical approaches that RNA decapping pathways promote the survival of AML cells treated with 
decitabine in vitro. Lastly, we observe dysregulation of specific transcripts that may have therapeutic relevance, 
such as SQLE, where studies in various cancer models have suggested that its inhibition may suppress tumor 
growth, or DHODH, which has previously been implicated in AML and currently has an inhibitor in clinical 
trials for relapsed/refractory AML67–71.

We anticipate that our study serves as an integrated multiomics resource for understanding AML cellular 
response to decitabine and nominates new connections between cell death, DNA methylation and RNA 
dynamics.

Methods
Cell culture and reagents
HL-60 and KG-1 cells were obtained from the American Type Culture Collection. SKM-1, MOLM-13 and 
OCI-AML3 cells were obtained from the Leibniz Institute DSMZ (German Collection of Microorganisms 
and Cell Cultures). MOLM-14 cells were obtained from the Shannon Lab at the University of California, San 
Francisco (UCSF). HEK-293 T cells were obtained from the Weissman Lab at UCSF. HL-60, OCI-AML3 and 
KG-1 cells were cultured in Iscove’s Modified Dulbecco’s Medium (Gibco) supplemented with 20% fetal bovine 
serum (Seradigm), 100 U/mL penicillin (Gibco), 100 ug/mL streptomycin (Gibco) and 0.292 mg/mL glutamine 
(Gibco). SKM-1, MOLM-13 and MOLM-14 cells were cultured in RPMI-1640 medium (Gibco) supplemented 
with 20% FBS, penicillin, streptomycin and glutamine. HEK-293 T cells were cultured in Dulbecco’s Modified 
Eagle Medium (Gibco) supplemented with 10% FBS and penicillin, streptomycin and glutamine. All cell lines 
were grown at 37 ℃ and 5% CO2 and were tested for mycoplasma contamination using the MycoAlert PLUS 
Mycoplasma Testing Kit (Lonza) according to the manufacturer’s instructions.

Decitabine powder was obtained from Selleck Chemicals and stored at − 20 ℃. A stock solution of decitabine 
was created by reconstituting decitabine powder in dimethyl sulfoxide (DMSO) at a final concentration of 
10 mM. The stock solution was aliquoted and stored at − 80 ℃ until experimental use. RG3039 and α-amanitin 
were obtained from MedChemExpress.

DNA transfections and lentivirus production
HEK-293 T cells were transfected with pMD2.G, pCMV-dR8.91 and a transfer plasmid using the TransIT-LT1 
Transfection Reagent (Mirus Bio) and 8 ng/uL polybrene. Culture medium was exchanged with fresh medium 

Fig. 4. Charting genes likely downregulated due to m6A hypermethylation in HL-60 cells treated with 
decitabine and validating SQLE and INTS5. (a) Venn diagram visualization of three sets of genes across 
multiomics datasets (i.e., CRISPRi screen, RNA-seq and MeRIP-seq) for HL-60 cells treated with decitabine vs. 
DMSO. 10 overlapping genes were shown to have (1) a sensitizing phenotype in our CRISPRi screen, (2) RNA 
hypermethylation upon decitabine treatment and (3) downregulation of mRNA upon decitabine treatment. 
(b) Normalized RNA-seq counts for SQLE and INTS5 in HL-60 cells treated with decitabine vs. DMSO at 6 h, 
72 h and 120 h. Data are shown as two replicates and p-values were generated using a likelihood ratio test in 
DESeq2 comparing the decitabine and DMSO conditions at 72 h. (c) Validation of CRISPRi decitabine screen 
hits show that SQLE and INTS5 knockdown promotes sensitivity to decitabine treatment in HL-60i cells. HL-
60i cells were transduced with a control sgRNA (black) or an active sgRNA (blue) and treated with DMSO or 
decitabine, and the proportion of sgRNA + cells in the decitabine condition relative to DMSO was observed 
over time. Data are shown as means ± SD, two sgRNAs per gene and two replicates per sgRNA. (d) MeRIP-RT-
qPCR in HL-60 cells treated with DMSO (gray) or decitabine (colored) validates decitabine-induced mRNA 
decay and RNA hypermethylation of SQLE and INTS5 transcripts. Three sets of primers were designed to 
capture abundances of pre-mRNA (top), mature mRNA (middle) and predicted m6A hypermethylated loci for 
each gene (bottom). Data are shown as three replicates and one-tailed Mann–Whitney U-tests were used to 
assess statistical significance. (e) RT-qPCR validation of decitabine-induced mRNA decay of SQLE and INTS5 
using α-amanitin. HL-60 cells were treated with DMSO (gray) or decitabine (colored) ± α-amanitin and RT-
qPCR captured mRNA abundance. Relative decay was defined as the ratio between samples with and without 
α-amanitin for each respective condition. Data are shown as three replicates, and one-tailed Mann–Whitney 
U-tests were used to assess statistical significance. (f) MeRIP-RT-qPCR in HL-60 cells reveals METTL3 as a 
regulator of decitabine-induced m6A hypermethylation of SQLE and INTS5. Cells were transduced with a 
control sgRNA or METTL3-targeting sgRNA, treated with DMSO (gray) or decitabine (colored), and MeRIP-
RT-qPCR captured abundance of predicted m6A hypermethylated loci. Data are shown as three replicates and 
one-tailed Mann–Whitney U-tests were used to assess statistical significance. (g,h) UpSet plots visualizing the 
intersection between genes which were (1) RNA hypermethylated upon decitabine treatment in HL-60 and (2) 
sensitizing hits in the HL-60 CRISPRi screen with (g) genes downregulated and (h) RNA destabilized across 
six AML cell lines.

◂
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supplemented with ViralBoost (Alstem) one day post-transfection. Lentiviral supernatant was collected, 
filtered through a 0.44  μm filter (Millipore) and used fresh (for CRISPRi screening) or concentrated via 
ultracentrifugation at 25,000 rpm for 90 min and frozen (for all other methods) three days post-transfection.

CRISPRi screen
CRISPRi cell line generation
HL-60 cells were transduced with Ef1a-dCas9-BFP-KRAB and sorted twice for BFP positive cells on a BD FACS 
Aria III. Sorted cells were diluted to single cell concentration (5, 1 or 0.2 cells per well) and plated into 96-well 
plates. Individual clones were expanded and assayed for CRISPRi activity by transducing sgRNAs targeting five 
essential genes (PLK1, HSPA9, AARS, POLR1D, DNAJC19) and assessing for relative depletion of GFP (i.e., 
sgRNA positive cells) via flow cytometry between day 3 and day 9 post-transfection. The clone with the highest 
relative GFP depletion was selected to be the HL-60 CRISPRi cell line for downstream experiments. SKM-1 
and MOLM-13 cells were transduced with Ef1a-dCas9-BFP-KRAB and sorted twice for BFP positive cells on a 
BD FACS Aria III. Cells were then assayed for CRISPRi activity by transducing sgRNAs targeting two essential 
genes (PLK1, HSPA9) and assessing for relative depletion of GFP (i.e., sgRNA positive cells) via flow cytometry 
between day 3 and day 9 post-transfection.

CRISPRi screen experimental procedure
Genome-scale CRISPRi screens were performed similarly to those previously described23. The human 
CRISPRi-v2 sgRNA library (top 5 sgRNAs per gene) was transduced into HL-60, SKM-1 and MOLM-13 cells 
at 250 to 500-fold coverage24. Cells were resuspended in lentiviral supernatant with 8  μg/mL polybrene in 
6-well plates and centrifuged at 1000 g for 2 h at room temperature. Cells were resuspended into fresh medium 
following spinfection. 72 h following infection, cells were seeded at 1,000,000 cells/mL for puromycin selection 
(0.5–1 ug/mL). Following puromycin selection, “time-zero” samples were harvested at 500 × library coverage. 
The remaining cells were divided into two conditions, DMSO and decitabine, two replicates per condition. For 
the decitabine condition, cells were treated with decitabine at low dose (~ IC30; 15–100 nM) every 24 h for 72 h. 
For HL-60, cells were cultured in static T150 flasks (Corning) and split when appropriate while maintaining 
500 × coverage; after 19 days of growth, cells were harvested at 500 × coverage. For SKM-1 and MOLM-13, cells 
were cultured in 250  mL OptimumGrowth (Thomson) shaking flasks with a shaking speed of 120  rpm and 
split when appropriate while maintaining a minimum coverage of 500x; after 12  days of growth, cells were 
harvested at 500–1000 × coverage. Genomic DNA was isolated from all samples and the sgRNA-encoding region 
was enriched, amplified and processed for sequencing on the Illumina HiSeq 4000 (50 base pair single end reads) 
as previously described72.

CRISPRi screen computational analysis
Sequencing reads were trimmed, aligned to the human CRISPRi-v2 sgRNA library and counted using a 
previously described pipeline (https://github.com/mhorlbeck/ScreenProcessing). Growth (γ) and drug 
sensitivity/resistance (ρ) phenotypes were calculated based on sgRNA frequencies across conditions23. Gene 
phenotypes were calculated by taking the mean of the top three sgRNA phenotypes per gene by magnitude. 
Gene phenotype p-values were calculated using the Mann–Whitney test comparing the gene-targeting sgRNAs 
with a set of non-targeting control sgRNAs. For genes with multiple annotated transcription start sites (TSS), 
sgRNAs were first clustered by TSS, and the TSS with the smallest Mann–Whitney p-value was used to represent 
the gene. Hits were defined as genes with a phenotype Z-score greater or equal to 6. Z-scores were calculated by 
dividing the gene phenotype by the standard deviation of the non-targeting sgRNA phenotypes23.

To assess pathway-level enrichment of gene phenotypes in the CRISPRi screen, we used blitzGSEA, a Python 
package for the computation of Gene Set Enrichment Analysis (GSEA)  (   h t t p s : / / g i t h u b . c o m / M a a y a n L a b / b l 
i t z g s e a )       3 0   . We obtained gene ontology (GO) gene sets from MSigDB (version 7.4.) and then conducted two 
separate analyses: (1) To identify smaller, focused pathways associated with drug sensitivity or resistance, we 
performed GSEA analysis on genes ranked by ρ phenotype and defined minimum and maximum thresholds 
for gene set size when running the `gsea` function (`min_size = 15` and `max_size = 150`)31,73. Thus, positive 
normalized enrichment scores (NES) corresponded to gene sets enriched among positive ρ phenotypes (i.e., 
resistance phenotypes) and negative NES corresponded to gene sets enriched among negative ρ phenotypes 
(i.e., sensitivity phenotypes). (2) To identify broader pathways associated with drug response irrespective of ρ 
phenotype direction, we performed GSEA analysis on genes ranked by 1 – Mann–Whitney p-value (calculated 
for each ρ phenotype as above) and set a minimum threshold for gene set size (i.e., `min_size = 200`).

Individual sgRNA validation
Individual sgRNAs were validated using a competitive growth assay as previously described23. Briefly, sgRNA 
protospacers with flanking BstXI and BlpI restriction sites were cloned into the BstXI/BlpI-digested pCRISPRia-v2 
plasmid (Addgene #84,832). Protospacer sequences are listed in Supplementary Table 1. Individual sgRNA 
vectors (including a non-targeting control sgRNA) were then packaged into lentivirus as described above and 
transduced into HL-60 CRISPRi cells in duplicate. Three days after transduction, cells were treated with DMSO 
or 100 nM decitabine. The proportion of sgRNA-expressing cells was measured by flow cytometry on an LSR 
II (BD Biosciences) gating for GFP expression. The individual sgRNA phenotype was calculated by dividing 
the fraction of sgRNA-expressing cells in the treated condition by the fraction of sgRNA-expressing cells in the 
untreated condition. To confirm gene knockdown at the transcriptional level, mRNA abundances were measured 
in CRISPRi cells transduced with gene-targeting sgRNAs and were quantified relative to mRNA abundances in 
cells transduced with a non-targeting control sgRNA, as previously described74.
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Reanalysis of public bisulfite sequencing data in HL-60 cells
Shareef et. al, as part of a study to introduce their extended-representation bisulfite sequencing method, treated 
HL-60 cells with DMSO (GSM4518676) or 300 nM decitabine (GSM4518677) and harvested cells after 5 days25. 
Raw FASTQ files were downloaded using the SRA Toolkit. TrimGalore and Bismark were used to preprocess 
and map bisulfite-treated reads to the h38 reference genome and subsequently call cytosine methylation75. We 
followed the Bismark standard pipeline, which includes four functions: (1) `bismark_genome_preparation`, 
(2) `bismark`, (3) `deduplicate_bismark` and (4) `bismark_methylation_extractor` which extracts context 
dependent (CpG/CHG/CHH) methylation.

Differential CpG DNA methylation analysis was performed using the methylKit R package76. CpG 
methylation data from Bismark was imported and the `getMethylationStats` function was used to calculate 
descriptive statistics. To search for differentially methylated tiles, the `tileMethylCounts` function was used 
with options `win.size = 1000` and `step.size = 1000`. Differentially methylated regions (DMRs) scored by % 
methylation difference and q-value were calculated using the `calculateDiffMeth` function. A one-sample, one-
sided (lower-tail) t-test was used to test for statistically significant global DNA hypomethylation.

DCPS and RG3039 drug synergy experiments
Cell viability assay and Bliss excess score calculation
Cells were seeded into 96-well plates at 100,000 cells/mL in duplicate and were treated with decitabine (seven-
point 1:3 dilution series from 0.5 uM to 0.002 uM), RG3039 (seven-point 1:4 dilution series from 10 uM to 
0.010 uM) or the combination of both drugs at all possible dose combinations. Control cells treated with DMSO 
were counted at day 3, and all cells were split at the ratio required to dilute control cells to a concentration of 
100,000 cells/mL. Raw fluorescence units (RLUs) were assessed at day 3, day 5 and day 7 for each condition using 
the CellTiter-Glo (CTG) luminescence-based assay (Promega). Diluted CTG reagent (100 uL 1:4 CTG reagent 
to PBS) was added to cells (100 uL) and the mixture was pipetted up and down to ensure complete cell lysis. 
Luminescence was then assayed using a GloMax Veritas Luminometer (Promega).

To calculate the proportion of viable cells, RLUs from the CTG assay were averaged between replicates and 
normalized to the DMSO control. The proportion of inhibited cells was calculated as one minus the proportion 
of viable cells. Drug synergy was determined by calculating the Bliss excess score (Bliss77), i.e.

 Bliss excess = IAB − ÎAB

where IAB represents the observed proportion of inhibited cells at drug doses A and B and ÎAB represents the 
expected proportion of inhibited cells assuming Bliss independence, i.e.

 ÎAB = IA + IB − (IA × IB)

Cleaved caspase 3/7 assay
Cells were seeded into 24-well plates at 100,000 cells/mL in triplicate and were treated with decitabine (50 nM, 
100 nM or 200 nM on days 0, 1 and 2) with and without RG3039 (2 uM on day 0). Cells were harvested on day 
5 and the proportion of apoptotic cells was assessed using the NucView 488 Caspase-3 Assay Kit (Biotium) 
according to the manufacturer’s instructions and an Attune NxT flow cytometer (Thermo Fisher Scientific) 
gating on the BL-1 channel.

Cell cycle assay
Cells were seeded into 24-well plates at 100,000 cells/mL in triplicate and were treated with decitabine (50 nM, 
100 nM or 200 nM on days 0, 1 and 2) with and without RG3039 (2 uM on day 0). Cells (500,000–1,000,000 per 
sample) were harvested on day 5 and the proportions of cells in each phase of the cell cycle were assessed using 
the FxCycle Violet Kit (Thermo Fisher Scientific) and an Attune NxT flow cytometer (Thermo Fisher Scientific) 
gating on the VL-1 channel. Briefly, cells were washed once with PBS, fixed with 70% ethanol overnight at − 20 °C, 
pelleted, and then washed with PBS 1–2 times. Cells were then resuspended in 1 mL permeabilization buffer 
(PBS with 1% FBS and 0.1% Triton X-100) and 1 uL Fx cycle and stained for 30 min in the dark before being 
analyzed via flow cytometry.

RNA-seq experimental procedures
3’ RNA-seq
3’ RNA-seq was performed to assess differential gene expression following decitabine and/or RG3039 treatment. 
Cells were seeded into 6-well plates at 100,000 cells/mL in duplicate and were treated with decitabine (100 nM 
on days 0, 1 and 2), RG3039 (2 uM on day 0), both drugs or DMSO. On day 3, RNA was extracted using the 
RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. RNA-seq libraries were prepared using 
the QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen) and assessed on a BioAnalyzer 2100 
(Agilent) for library quantification and quality control. RNA-seq libraries were sequenced on an Illumina HiSeq 
4000 using single-end, 50–base pair sequencing.

Stranded RNA-seq
Stranded RNA-seq was performed for experiments in which strand directionality was required for downstream 
analysis. Cells were seeded into 6-well plates at 100,000 cells/mL in duplicate or triplicate and were treated with 
decitabine (100 nM on days 0, 1 and 2) or DMSO. At 6, 72 and/or 120 h, RNA was extracted using the RNeasy 
Mini Kit (Qiagen) according to the manufacturer’s instructions. For HL-60 experiments, RNA-seq libraries were 
prepared using the ScriptSeq v2 kit (EpiCentre). Total RNA was depleted using RiboZero Gold (EpiCentre) 
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and purified using the MinElute RNA kit (Qiagen). For all other cell lines, RNA-seq libraries were prepared 
using the SMARTer Stranded Total RNA Sample Prep Kit—HI Mammalian kit (Takara) due to retirement of 
the ScriptSeq v2 kit. Total RNA was depleted using the RiboGone module included with the SMARTer kit. All 
RNA-seq libraries were assessed on a BioAnalyzer 2100 (Agilent) for library quantification and quality control 
and sequenced on an Illumina HiSeq 4000 using single-end, 50–base pair sequencing.

Differential gene expression analysis
The Salmon-tximport-DESeq2 pipeline
We used a workflow hereafter referred to as the “Salmon-tximport-DESeq2 pipeline” to perform differential gene 
expression analysis. Salmon (version 1.2.1) was first used to quantify transcript abundance55. A Salmon index 
was generated using the GENCODE (version 34) genome annotation, and subsequently the `salmon quant` 
tool was used with the `–validateMappings` option to calculate transcript abundances78. Then, the R package 
tximport was used to import Salmon results into R and perform data preparation54. The `summarizeToGene` 
function was used to collapse transcript abundances to the gene level. From here, the R package DESeq2 
was used for differential gene expression analysis53. We first extracted normalized counts for each RNA-seq 
experiment using DESeq2 by running the `estimateSizeFactors` function and then the `counts` function with 
option `normalized = TRUE`. For each individual experiment, the DESeq2 statistical model was modified based 
on the experimental design. For experimental designs with multiple variables (e.g., multiple drug conditions, 
time points, etc.), we used the likelihood ratio test (LRT) to perform differential expression analysis. The LRT is 
conceptually similar to an analysis of variance (ANOVA) calculation in a linear regression model79. In these cases, 
we specified the model design in the `DESeq2` function as ` ~ 0 + variable1 + variable2 + variable1:variable2` 
and the option `test = LRT`. In simple experimental designs with one variable (e.g., DMSO vs. decitabine 
treatment), DESeq2 was used with default options (i.e., a Wald test was used instead of a LRT). In these cases, 
the model design was specified as ` ~ cond`. For experiments with batch effects, the model design was specified 
as ` ~ cond + reps`.

Differential RNA stability analysis
The STAR-featureCounts-REMBRANDTS-limma pipeline
For analyses which required measurements of pre-mRNA and mature mRNA abundances from RNA-seq samples 
(i.e., differential RNA stability analysis), we used a workflow hereafter referred to as the “STAR-featureCounts-
REMBRANDTS-limma pipeline”. RNA-seq sequencing reads were first aligned to the hg38 reference genome 
using STAR (version 2.7.3a)56. Then, featureCounts was used to quantify intron and exon level counts. Finally, 
REMBRANDTS was used to calculate mRNA stability as previously described  (   h t t p s : / / g i t h u b . c o m / c s g l a b / R E M 
B R A N D T S )       5 8   . Briefly, the package estimates a gene-specific bias function that is subtracted from Δexon–Δintron 
calculations to provide unbiased mRNA stability measurements. To assess differential RNA stability changes, we 
used limma, which was designed for microarray experiments and serves a similar function to DESeq2, though 
it supports negative values (relevant for RNA stability analysis)57. The model designs used here are analogous to 
the designs for differential expression analysis described above.

Gene set enrichment analysis using PAGE algorithm
Briefly, PAGE quantizes differential measurements into equally populated bins and then, for every given geneset, 
calculates the mutual information (MI) between each cluster bin and a binary vector of pathway memberships 
for genes in a given gene set59. The significance of each MI value is then assessed through a randomization-based 
statistical test and hypergeometric distribution to determine whether there is over or under representation of 
a gene set in each cluster bin. The final result is a p-values matrix in which rows are gene sets and columns are 
cluster bins (visualized as heatmaps). Code for iPAGE and onePAGE analyses are available at  h t t p s : / / g i t h u b . c o 
m / a b e a r a b / p a g e r     .  

iPAGE run for MSigDB gene sets
The iPAGE algorithm was used for gene set and pathway enrichment analysis on differential RNA expression 
and stability results59. MSigDB (version 7.4.) was downloaded and modified to be compatible with iPAGE 
workflow73. iPAGE was used in continuous mode, which accepts gene-level numeric values (e.g., logFCs) as 
input.

onePAGE run for single gene set analysis
For a selected list of genes, the PAGE run is performed on the single gene set as first input and gene-level numeric 
values (e.g., log fold changes) as the other input – this form of the analysis is called onePAGE. This analysis 
applied to a specific gene set for multiple inputs (e.g., differentially expressed genes from different conditions) 
and results shown as heatmap where each row corresponds to an input condition and each column corresponds 
to a cluster bin.

Pre-processing HERV annotations for alignment tasks
Annotations in BED12 format were downloaded from the Human Endogenous RetroViruses Database43. 
To prepare these annotations for alignment tasks, i.e., building Salmon and STAR indices, CGAT Apps was 
used to convert BED12 files to GTF format (`cgat bed2gff –as-gtf`) and the `getfasta` module from bedtools 
(with options `-name + -split`) was used to convert BED12 files to FASTA format80,81. Reproducible scripts for 
preparing ERV annotations for alignment tasks are available at https://github.com/abearab/HERVs.
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RNA-seq workflows for specific experiments
Decitabine and RG3039 drug combination experiments
We performed 3’ RNA-seq on HL-60 cells treated with DMSO, decitabine alone, RG3039 alone or both drugs 
for 72 h in duplicate (see above for experimental procedures). Raw sequencing data were processed using our 
Salmon-tximport-DESeq2 pipeline (see above). DESeq2 was used to conduct differential gene expression analysis 
using a likelihood ratio test and the model design ` ~ 0 + decitabine + rg3039 + decitabine:rg3039`. Pathway 
enrichment was assessed using iPAGE (see above). For PCA analysis, the `varianceStabilizingTransformation` 
function from the DESeq2 package was used to prepare counts. The `plotPCA` function was used to calculate 
PC variances as percentages. Finally, `ggplot2` was used to visualize a two-dimensional representation of the 
PCA analysis. Bar plots were used to visualize mRNA abundances (measured as log2 of transcripts per million 
[TPM]) of differentiation markers across conditions. Gene set enrichment was performed on log2-fold-change 
(log2FC) values across conditions using the positive regulation of myeloid differentiation GO term and the 
PAGE method described above. For differential ERV expression analysis, processed ERV annotations (see 
above) in FASTA format were used to build an index for Salmon workflow and then samples were processed 
through the Salmon-tximport-DESeq2 pipeline (see above). Upregulated ERVs were defined as p-value < 0.05 
and log2FC > 2, and downregulated ERVs were defined as p-value < 0.05 and log2FC < –2. The intersections of 
ERV data were visualized using UpSet plots in Python82.

Reanalysis of public RNA-seq data for HL-60 derived myeloid differentiation
Ramirez et al. studied the dynamics of gene regulation in human myeloid differentiation83. We reanalyzed 
their RNA-seq data for differential gene expression changes between parental HL-60 and HL-60 derived 
macrophages, neutrophils and monocytes processed after 3 h, 12 h, 48 h, 96 h and 120 h (GSE79044) using 
our Salmon-tximport-DESeq2 pipeline (see above). Pearson correlation coefficients were used to measure the 
correlation of log2-fold gene expression changes between (1) drug treatment (i.e., decitabine and RG3039 vs. 
DMSO) and (2) HL-60 differentiation. UpSet plots in Python82 were used to show specific upregulated genes in 
each differentiated cell type. Lastly, the onePAGE algorithm was used to assess the enrichment of select up or 
downregulated genes in neutrophils (see above).

HL-60 time-series experiments
We performed stranded RNA-seq on HL-60 cells treated with decitabine for 6 h, 72 h and 120 h in duplicate (see 
above for experimental procedures). Differential expression analysis was performed using our Salmon-tximport-
DESeq2 pipeline (see above), using a likelihood ratio test and a two-variable model design incorporating 
treatment condition (decitabine or DMSO) and time (6, 72 or 120 h). Differential RNA stability analysis was 
performed using our STAR-featureCounts-REMBRANDTS-limma pipeline (see above). Pathway enrichment 
for differential expression and RNA stability data was assessed using iPAGE (see above).

AML cell line panel experiments
We performed stranded RNA-seq on AML cell lines treated with decitabine or DMSO for 72 h in three replicates 
(see above for experimental procedures). Differential expression analysis was performed using our Salmon-
tximport-DESeq2 pipeline (see above), using a Wald test. Differential RNA stability analysis was conducted 
using our STAR-featureCounts-REMBRANDTS-limma pipeline (see above). Pearson correlation tests from 
the Hmisc and corrplot R packages were used to assess correlation between differentially expressed genes 
in HL-60 and other AML cell lines. UpSet plots in Python82 were used to identify and visualize genes across 
multiple cell lines that conferred drug sensitivity in the CRISPRi screen (ρ score < –0.1 and p < 0.05), were RNA 
hypermethylated (log2FC > 1 and p < 0.05) upon decitabine treatment, and either had decreased expression or 
RNA stability (log2FC < –0.1 and p < 0.05) upon decitabine treatment.

MeRIP-seq
Experimental procedure
We performed MeRIP-seq as previously described on HL-60 cells treated with DMSO or decitabine for 72 h in 
biological duplicates35. First, 2 µg of the fragmented total RNA per sample was used for RNA immunoprecipitation 
(IP) with 5 µg of the anti-m6A antibody (ABE572, Millipore). RNA-seq libraries from input and IP samples were 
prepared using the SMARTer Pico Input Mammalian v2 RNA-seq kit (Takara) and sequenced as SE50 runs on 
an Illumina HiSeq4000.

Alignment task for mRNAs of protein coding genes and ERVs
MeRIP-seq reads were aligned to the hg38 reference genome using STAR (version 2.7.3a) with reference 
annotation GENCODE (version 34)56,78. Similarly, pre-processed annotations used to build STAR indices for 
each type of HERV. Then, MeRIP-seq reads were aligned separately with each STAR index to generate BAM files 
for the downstream tasks.

Experiment QC evaluations
Note that here the goal is to confirm the success of the experiment and only untreated samples are analyzed 
here. First, the `exomepeak` function from the R package exomePeak was used to call m6A peaks from BAM 
files84. First, metagene plots were visualized using the Guitar R/Bioconductor package85. Then, the sequences of 
predicted m6A peaks were extracted using concepts described by Meng et al84. Briefly, the `bed2bed` tool from 
the Computational Genomics Analysis Toolkit (with options `–method = merge –merge-by-name`) and the 
`getfasta` module from bedtools (with options `-name -s -split`) were used for sequence extraction80,81. Finally, 
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the FIRE algorithm was used in non-discovery mode for enrichment analysis of known m6A motifs (i.e., RGAC 
or [AG]GAC) within peak sequences, compared to randomly generated sequences37.

Peak calling and differential RNA methylation analysis
RADAR (RNA methylAtion Differential Analysis in R) was used to perform peak calling and differential 
methylation analysis39. Differentially methylated peaks were defined as FDR < 0.1 and logFC > 0.5. The logFC 
values for protein coding genes and each of ERVs used to test global hypermethylation using Wilcoxon test and 
t-test functions with `mu = 0`, `alternative = “greater”` options. Results are shown as annotated volcano plots 
using ggplot2 in R. For peak visualization across individual mRNA transcripts, the `plotGeneCov` function 
from the RADAR R package was used to generate coverage plots. Then, the Gviz R Bioconductor package was 
used to draw detailed information for each mRNA transcript86.

Reproducible scripts for RNA methylation analyses using integrated tools are maintained as a GitHub project 
at https://github.com/abearab/imRIP.

Ribo-seq
Experimental procedure
Ribosome profiling was performed as previously described in biological duplicates87. Approximately 10 × 106 cells 
were lysed in ice cold polysome buffer (20 mM Tris pH 7.6, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT, 100 µg/mL 
cycloheximide) supplemented with 1% v/v Triton X-100 and 25 U/mL Turbo DNase (Invitrogen). The lysates 
were triturated through a 27G needle and cleared for 10 min at 21,000 g at 4 °C. The RNA concentrations in the 
lysates were determined with the Qubit RNA HS kit (Thermo). Lysate corresponding to 15 µg RNA was diluted 
to 200 µl in polysome buffer and digested with 0.75 µl RNaseI (Epicentre) for 45 min at room temperature. The 
RNaseI was then quenched by 5 µl SUPERaseIN (Thermo).

Monosomes were isolated using MicroSpin S-400 HR (Cytiva) columns, pre-equilibrated with 3  mL 
polysome buffer per column. 100 µl digested lysate was loaded per column (two columns were used per 200 µl 
sample) and centrifuged 2 min at 600 g. The RNA from the flow through was isolated using the RNA Clean and 
Concentrator-25 kit (Zymo). In parallel, total RNA from undigested lysates were isolated using the same kit.

Ribosome protected footprints (RPFs) were gel-purified from 15% TBE-Urea gels as 17–35 nt fragments. 
RPFs were then end-repaired using T4 PNK (New England Biosciences) and pre-adenylated barcoded linkers 
were ligated to the RPFs using T4 Rnl2(tr) K227Q (New England Biosciences). Unligated linkers were removed 
from the reaction by yeast 5’-deadenylase (New England Biosciences) and RecJ nuclease (New England 
Biosciences) treatment. RPFs ligated to barcoded linkers were pooled, and rRNA-depletion was performed using 
riboPOOLs (siTOOLs) per the manufacturer’s recommendations. Linker-ligated RPFs were reverse transcribed 
with ProtoScript II RT (New England Biosciences) and gel-purified from 15% TBE-Urea gels. cDNA was then 
circularized with CircLigase II (Epicentre) and used for library PCR. First, a small-scale library PCR was run 
supplemented with 1X SYBR Green and 1X ROX (Thermo) in a qPCR instrument. Then, a larger scale library 
PCR was run in a conventional PCR instrument, performing a number of cycles that resulted in ½ maximum 
signal intensity during qPCR. Library PCR was gel-purified from 8% TBE gels and sequenced on a SE50 run on 
an Illumina HiSeq4000.

Data preprocessing
The adapters in the sequencing reads were removed using cutadapt88 (v3.1) with options `–trimmed-only -m 15 
-a  A G A T C G G A A G A G C A C`. The PCR duplicates in the reads were collapsed using CLIPflexR (v0.1.19)89. The 
UMIs for each read were extracted using UMI-tools (v1.1.1)90 with the options `extract—bc-pattern = NN` for 
the 5’ end and options `extract –3prime –bc-pattern = NNNNN` for the 3’ end. Reads corresponding to rRNA 
and other non-nuclear mRNA were removed by aligning out the reads using Bowtie2 (v2.4.2) on a depletion 
reference (rRNA, tRNA and mitochondrial RNA sequences)91. This depletion reference was built from the hg38 
noncoding transcriptome (Ensembl version 96)92,93. The reads that did not align to the depletion reference 
were aligned to the hg38 mRNA transcriptome (Ensembl version 96) using Bowtie2 with options `–sensitive 
–end-to-end –norc`. The mRNA transcriptome was built using the cDNA longest CDS reads of Homo sapiens 
downloaded from the Ensembl release version. The resulting reads were converted to BAM files and then sorted 
using samtools (v1.11). The duplicate reads in the sorted files were removed using UMI-tools (v1.1.1) with 
options `dedup`.

Differential translational efficiency (TE) analysis
Ribolog was used to compare translational efficiency across conditions  (   h t t p s : / / g i t h u b . c o m / g o o d a r z i l a b / R i b o 
l o g )       9 4   . Briefly, Ribolog applies a logistic regression to model individual Ribo-seq and RNA-seq reads in order 
to provide estimates of logTER (i.e., logFC in TE) and its associated p-value across the coding transcriptome.

RNA expression and mutational status in cancer cell lines
RNA expression and mutational data for selected genes and cell lines were collected from the CCLE database 
(DepMap Public 21Q4). Cell line and gene level queries were performed using the Cancer Data Integrator95—
https://github.com/GilbertLabUCSF/CanDI. CanDI modified data for reproducible analysis is available at 
Harvard Dataverse – https://doi.org/https://doi.org/10.7910/ DVN  /JIAT0H. Data were visualized in Python 
using the Matplotlib library.

Multiomics data integration
To identify candidate genes among our multiomics datasets for downstream validation of our decitabine-m6A 
model, we examined the intersection of three sets of genes: (1) sensitizing hits in the CRISPRi screen, defined 
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as ρ score <  − 0.1 and p < 0.05; (2) genes with downregulated expression upon decitabine treatment, defined 
as log2FC <  − 0.1 and p < 0.05; (3) genes with RNA hypermethylation upon decitabine treatment, defined as 
logFC > 1 and p < 0.05. Intersections between sets were visualized through a Venn diagram in Python.

Quantitative RT-PCR
Preparation of cells for RT-qPCR and MeRIP-RT-qPCR
For each experiment, HL-60 cells were treated with DMSO or decitabine for 72 h with three biological replicates 
per condition. To measure mRNA decay rates, cells were also treated with or without α-amanitin (10 µg/ml) in 
the final 16 h prior to cell harvest. For MeRIP-RT-qPCR, cells were first transduced with a control sgRNA or 
METTL3-targeting sgRNA and sorted for fluorescent positive cells prior to drug treatment.

RNA isolation
Total RNA was isolated using the Quick-RNA Microprep kit (Zymo) with on-column DNase treatment per the 
manufacturer’s protocol. For MeRIP-RT-qPCR, 2 µg of the fragmented total RNA per sample was used for RNA 
immunoprecipitation (IP) with 5 µg of the anti-m6A antibody (ABE572, Millipore).

Quantitative RT-PCR
Transcript levels were measured using RT-qPCR by first reverse transcribing total RNA to cDNA (Maxima H 
Minus RT, Thermo Fisher Scientific), then using fast SYBR green master mix (Applied Biosystems) or Perfecta 
SYBR green supermix (QuantaBio) per the manufacturer’s instructions. HPRT1 was used as an endogenous 
control.

INTS5 primers
Exon-junction forward primer 5’– G G G A T G T C C G C G C T G T G– 3’ and reverse primer 5’– G G A C A G C T C C T G A 
G C A C T G A–3’. Exon–intron forward primer 5’– G G G A T G T C C G C G C T G T G–3’ and reverse primer 5’– A G T T C 
T C G A G G T A G G A T C C G G G T–3’. Predicted m6A hypermethylated loci forward primer 5’– T G C T G T C T G A G T T 
T A T C C G G G C C A–3’ and reverse primer 5’– T G G A C C A T G C A C T A A T C A C A G G T–3’.

SQLE primers
Exon-junction forward primer 5’– C C C A G T T C G C C C T C T T C T C G G A– 3’ and reverse primer 5’– G G T T C C 
T T T T C T G C G C C T C C T G G–3’. Exon–intron forward primer 5’– C C C A G T T C G C C C T C T T C T C G G A–3’ and 
reverse primer 5’– A C C T G C C G C C T T T T G C A A T T C A–3’. Predicted m6A hypermethylated loci forward primer 
5’– T T A C T G G A G T C T G G C C G G C T C T–3’ and reverse primer 5’– C G A G T G G G T T T A A G G T T C T C C C C A–3’.

Summary
The search for new approaches in cancer therapy requires a mechanistic understanding of cancer vulnerabilities and 
anti-cancer drug mechanisms of action. Problematically, some effective therapeutics target cancer vulnerabilities 
that have poorly defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline therapeutic 
approved for the treatment of high-risk acute myeloid leukemia (AML). Decitabine is thought to kill cancer cells 
selectively via inhibition of DNA methyltransferase enzymes, but the genes and mechanisms involved remain 
unclear. Here, we apply an integrated multiomics and CRISPR functional genomics approach to identify genes 
and processes associated with response to decitabine in AML cells. Our integrated multiomics approach reveals 
RNA dynamics are key regulators of DNA hypomethylation induced cell death. Specifically, regulation of RNA 
decapping, splicing and RNA methylation emerge as important regulators of cellular response to decitabine.

Data availability
The data that support the findings of this study are openly available in NCBI Gene Expression Omnibus (GEO) 
with reference number GSE222886 (RNA-seq, meRIP-seq, Ribo-seq).

Code availability
Reproducible code for mapping NGS reads to HERVs, flexible pathway level analysis using the PAGE algo-
rithm, and integrated methods for MeRIP-seq analysis are publicly available at  h t t p s : / / g i t h u b . c o m / a b e a r a b / H E 
R V s     , https://github.com/abearab/pager and https://github.com/abearab/imRIP, respectively. Original code for 
all analyses in this study are available at https:   //gith ub. com/GilbertLab UCSF/Decit abin e-treatment.
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