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Abstract

Background: Interorgan communication networks established during exercise in several different tissues can be
mediated by several exercise-induced factors. Therefore, the present study aimed to investigate the effects of
resistance-type training using elastic band-induced changes of myomiRs (i.e., miR-206 and miR-133), vitamin D, CTX-
I, ALP, and FRAX® score in elderly women with osteosarcopenic obesity (OSO).

Methods: In this randomized controlled trial, 63 women (aged 65–80 years) with Osteosarcopenic Obesity were
recruited and assessed, using a dual-energy X-ray absorptiometry instrument. The resistance-type training via elastic
bands was further designed three times per week for 12-weeks. The main outcomes were Fracture Risk Assessment
Tool score, bone mineral content, bone mineral density, vitamin D, alkaline phosphatase, C-terminal telopeptides of
type I collagen, expression of miR-206 and miR-133.

Results: There was no significant difference between the study groups in terms of the Fracture Risk Assessment
Tool score (p = 0.067), vitamin D (p = 0.566), alkaline phosphatase (p = 0.334), C-terminal telopeptides of type I
collagen (p = 0.067), microR-133 (p = 0.093) and miR-206 (p = 0.723).

Conclusion: Overall, the results of this study illustrated 12-weeks of elastic band resistance training causes a slight
and insignificant improvement in osteoporosis markers in women affected with Osteosarcopenic Obesity.

Trial registration: Randomized controlled trial (RCT) (Iranian Registry of Clinical Trials, trial registration number:
IRCT20180627040260N1.
Date of registration: 27/11/2018.
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Background
Aging is associated with several changes in bones, mus-
cles, and body fat percentage (BFP) due to decreased
levels of anabolic steroids and sex hormones. The term
osteosarcopenic obesity (OSO) has been recently pro-
posed for the relationship between losses of muscle and
bone mass and increased fat mass [1–3].
Both bone and skeletal muscle also share similar mes-

enchymal origins and respond to trophic effects of hor-
mones, growth factors, inflammatory mediators, loading
and exercise training [4], as well as communication via
paracrine/endocrine factors [5]. Interorgan communica-
tion networks (ICNs) established during exercise in
several different tissues can be mediated by some
exercise-induced factors. Emerging evidence indicates
that muscle-bone communication may be also achieved
by the release of some myotube-derived exosomal
microRNAs (myomiRs) to neighboring cells [6], and
myomiRs can further transport health-promoting infor-
mation of exercise interventions to other tissues in
endocrine and paracrine manners [7] so that myomiRs
can be released into the blood serum/plasma, wherein
their levels are influenced by exercise and diseases [5, 8].
In this respect, An et al. had demonstrated that expres-
sion of some myomiRs (i.e., 133a, 206, and 204) had
changed in the bone tissue of ovariectomized mice [9].
The potential mechanisms by which exercise can im-

prove OSO syndrome-related parameters are multifac-
torial and may relate to the regulation of genes,
circulating hormone levels, and metabolic pathways [10].
Considerable evidence exists that resistance training
alone regulates energy balance, stimulates anabolic
process, promotes muscular hypertrophy, reduces fat
mass, and improves bone density [11] and resistance
training may improve OSO phenotypes in older women
[12]. It is assumed that skeletal muscles and bone tissues
respond preferentially to mechanical loadings in an
intensity-dependent manner [13]. Accordingly, the use
of elastic bands is cheaper than traditional resistance
training with weights having a significant effect on im-
proving body composition, physical functions, physio-
logical adaptations, and balance [14]. Unlike resistance
machine-based training, a wide range of upper and lower
body exercises can be easily performed in any location
using such bands [15].
To the best of the authors’ knowledge, no study has

thus fare evaluated the effects of elastic-band resistance
training on myomiRs and some osteoporosis markers
such as C-terminal telopeptides of type I collagen (CTX-
I), Fracture Risk Assessment Tool (FRAX®) score, alka-
line phosphatase (ALP), and vitamin D. Despite being
theoretically clear, this molecular pathway-related myo-
miRs and osteoporosis communication have never been
tested in response to resistance training. Considering

this background, the present study aimed to determine
the effects of resistance-type training using elastic band-
induced changes of myomiRs (i.e., miR-206 and miR-
133), vitamin D, CTX-I, ALP, and FRAX® score in
elderly women with OSO. It is of note that circulating
myomiRs have been recently identified as biomarkers for
age-associated osteoporosis.
Based on the pivotal roles of circulating myomiRs in

bone remodeling and their extracellular shuttling, it was
first hypothesized that circulating myomiRs could have
the potentials to show functional relevance to bone
remolding [16]. Secondly, it was hypothesized that myo-
miRs released during exercise training could facilitate
muscle-bone communication. It was further shown that
expression of myomiRs could be directionally sensitive
to exercise training. While the physiological function of
such myomiR changes has not been well described, al-
tered myomiR expression may govern long-term muscle
growth. No research has been also reported in which
myomiRs may be involved in osteoporosis and response
to exercise training.

Methods
Design
This 12-week randomized controlled trial (RCT) (Iranian
Registry of Clinical Trials, trial registration number:
(IRCT20180627040260N1; https://www.irct.ir/trial/32463;
Date of registration: 27/11/2018) was approved by the
Iranian Ethics Committee of Sport Sciences Research
Center (IR.SSRC.REC.1398.040). All the study participants
also provided written informed consent.

Cohort study
Based on the sample size used in previous research and
along with comprehensive assessment protocols, the par-
ticipants in this study were recruited via community-
wide and general practitioner advertising in the city of
Shahrekord, Iran. A detailed telephone screening process
was thus conducted to identify those possibly excluded
from the study. This was followed by assessment tests
and all the participants underwent medical screening to
confirm their eligibility based on the following inclusion
criteria.
The participants were enrolled regarding to the Con-

solidated Standards of Reporting Trials (CONSORT)
statement for randomized trials of non-pharmacologic
treatments. The eligible participants, aged 65–80 years,
were selected by a physician. Therefore, a total number
of 102 women with OSO were recruited and assessed,
using a dual-energy X-ray absorptiometry (DEXA) in-
strument. The inclusion criteria in this study were, age >
60–80 years, BFP > 32%, body mass index (BMI) > 30 kg/
m2, − 2.5 ≤ T-score ≤ − 1.0 of L1-L4, and/or total femur
(TF) or femoral neck (FN), gait speed (10-m walk test
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(10MWT)) ≤ 1 (m/s), and skeletal muscle mass index
(SMI) ≤ 28% or ≤ 7.76 kg/m2 [3]. Moreover, not receiving
hormonal therapies, participating in no regular exercise
training> 30min once a week over the last 6 months,
taking no nutritional supplements within the past 3
months, and obtaining a Montreal Cognitive Assessment
(MoCA) cut-off score ≥ 21 were among other criteria. The
participants were excluded if they had resting blood pres-
sure ≥ 160/100mmHg, fasting triglyceride≥5.7mmol/L, a
history of cardiovascular diseases (CVDs), thyroid prob-
lems, cancer, endocrine disorders such as diabetes, kidney
or liver diseases, surgeries, smoking, or use of recreational
drugs or alcohol.

The whole body composition scan
The regional body composition human body such as
whole-body bone mass, soft tissue composition, fat mass
normalized by height squared (FMI = Fat mass / Height2,
appendicular lean mass index (ALMI = [arms + legs lean
mass] / Height2), appendicular lean mass to BMI ratio
(ALM/BMI), skeletal muscle mass percentage (%SMM),
skeletal muscle mass (SMM), fat-free mass index (FFMI),
fat mass index (FMI) and total body fat percentage
(%BF) were performed using a whole-body Dual Energy
X-ray Absorptiometry (DXA) scan by subdividing the
body using specific well-defined cut lines [17–19].

Sample size and test power
The sample size was calculated considering two-way
repeated-measures analysis of variance (ANOVA) with
two groups, type-I error = 5% and type-II error = 20%,
statistical test power = 80%, and effect size (ES) = 0.20.
The ES of the elastic band resistance training (EBRT)
program was also estimated at 41W for the FRAX®score.
Considering these parameters as well as the use of
G*Power software (Version 3.1.9.2), a total sample size
of 52 individuals (26 cases per group) was determined.
The sample size was consequently considered by 63 par-
ticipants (experimental group, n = 32, and control group,
n = 31) to accord with the anticipated 20% dropout rate.

Randomization and concealment strategy
The randomization was also fulfilled by an external re-
searcher, not involved in testing or training programs,
using randomly permuted block allocation with a block
size of four. The participants were stratified according to
two cut-off scores for each stratification of age (60–70
or 70–85 years) and OSO Z-score (− 3 to 0 or 0 to+ 3).
The allocation was further concealed from those respon-
sible for designing the exercise training protocol or
monitoring the control group until the beginning of the
training period. Neither participants nor researchers
were blinded due to the nature of the intervention. Be-
sides, exercise trainers, not involved in data collection,

managed the exercise session program and monitored
the individuals in the control group. The participants in
the control group also received no diet intervention or
changes in their typical diet or physical activity habits all
through the study. Moreover, they received telephone
calls or face-to-face interviews once a week to be assured
that there had been no changes in their physical activity
and diet habits during this study. Via weekly visits,
health problems, functional problems, as well as medica-
tion use were recorded by a trained researcher. At the
same time, the researchers reinforced the obligations to
maintain their typical diet and activity habits. The par-
ticipants were also randomly assigned to the experimen-
tal (namely, EBRT) group (n = 32) or control group (n =
31) (Fig. 1).

Training protocol
The participants were instructed on how to use two ex-
ercise devices during the first two sessions before begin-
ning the training protocol. In addition, they became
familiar with the targeted number of repetitions (TNRs)
and OMNI-resistance exercise scale (OMNI-RES) to
control exercise intensity in the first two sessions [20].
The participants also had to increase or decrease grip
width to adjust the resistance easier. Additionally, they
were asked to choose an elastic band grip width, allow-
ing them to perform 20 repetitions maximum (RM). The
EBRT program (using Thera-Band®, the Hygienic Corp.,
Akron, OH, USA) was further designed to train all major
muscle groups (namely, legs, back, abdomen, chest,
shoulders, and arms). Training volume and intensity
were also progressively increased and performed three
times per week. Exercise training took place in small
groups of not>10participants and was supervised by
trained and experienced exercise physiologist. Each exer-
cise session consisted of a general warm-up of 10 min,
followed by a resistance training session (60 min) incorp-
orating one to two exercises (in a slow controlled man-
ner, 2 s for concentric phase, and4 s for eccentric phase),
and was finally completed by a cool-down routine. Fol-
lowing an adaptation phase of 4weeks (1 set of 12 rep)
using low resistance (yellow Thera-Band), exercise inten-
sity progressively augmented by adapting the resistance
of the elastic band (based on the Thera-Band® force-
elongation table) from yellow to red and further to black.
Additionally, the exercise volume was enhanced by add-
ing to the number of sets from one to two. Progression
rate was also based on individual improvements (band
color was changed if the participants would have been
able to perform two more repetitions in the second set
and reported to be below seven on the OMNI-impulse
response (OMNI-IR) for active muscle scale (0: ex-
tremely easy to 10: extremely hard) [20] (Supplementary
Table S1 and S2). The participants in the control group
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also received telephone contacts or face-to-face inter-
views on a weekly basis to maintain their typical diet
and activity habits.

Adverse events
All the defined adverse events that occurred during or
up to 48 h after resistance training were recorded every
session and reported to the local Ethics Committee.

Measurements
All pre- and post-measurements of the experiment were
conducted by the same assessor blinded to treatment

allocation. Assessments were further performed at base-
line and 48 h after the last session in both groups.
Demographic characteristics and medical history infor-
mation were also collected through questionnaires.
Firstly, CTX-I (Cat number: EKU03502, sensitivity

52.9 pg/ml) in fasting serum was evaluated via the com-
mercial enzyme-linked immunosorbent assay (ELISA)
kits. To measure the serum levels of ALP for bone, kits
from Pars Azmoon Co.(Iran) were used employing a
synthetic photometric method (U/L measurement unit).
Besides, vitamin D levels were measured employing an
ELISA kit. All the evaluations were accordingly

Fig. 1 CONSORT flow diagram representing study design
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performed before and 48 h after the last training session
(12 weeks of exercise intervention exercise) in both
training and control groups. Serum miRNA was then ex-
tracted using the mirVana PARIS Ambion kit, followed
by real-time polymerase chain reaction (RT-PCR). The
U6 gene was additionally recruited as a housekeeping
one.
Blood samples were collected in the fasting condition

at the baseline and 48 h after the last session in fasting
status. All the reagents were also prepared at room
temperature and under accordance with the manufac-
turer’s protocols. Total RNA including messenger RNA
(mRNA) and miRNA was isolated from the serum with
RNX-Plus solution kit (Fermentase, Cinagen Co., Iran)
and miR-amp kit (Pars genome Co., Iran) respectively
under the manufacturer’s protocols (using chloroform
layer separation followed by treatment with isopropanol
and ethanol).
The total RNA (10–5 μg) or mRNA (10–500 ng) was

reversely transcribed into cDNA. RT-PCR assay was fur-
ther conducted using SYBR Green RT-PCR Master Mix
kit (Applied Biosystems) for the quantification of mRNA.
Expressions of miRNA and mRNAs were accordingly
normalized to the β-Actin housekeeping gene. The rela-
tive amount of mRNA for each target gene was calcu-
lated based on its threshold cycle (Ct) compared with
the Ct of the housekeeping (i.e. reference) gene (i.e.,
glyceraldehyde 3-phosphate dehydrogenase: GAPDH).
The relative quantification was further performed by the
2^ (ΔΔCt) method.
A validated and calibrated FRAX® tool for Iran, based

on the individual analysis of each patient, was used to
evaluate the fracture risks of the participants. This algo-
rithm could calculate the probability of a broken bone
from clinically easy factors, resulting in the possibility of
a fracture of the femur or other bones in the next ten
years. This probability could be further calculated from
data such as age, gender, BMI, family history of the
bone, smoking, long-term use of steroids, rheumatoid
arthritis (RA), and high alcohol consumption.

Statistical analyses
Data analysis strategy was chosen regardless of interven-
tion adherence level. The assumption of data normality
was also checked using the Kolmogorov-Smirnov test
before conducting the parametric tests. Descriptive data
also included means, standard deviations (SDs), and per-
centage distributions. An independent-sample t-test was
correspondingly used for baseline comparisons. A two-
way repeated-measures ANOVA was also employed to
determine the main changes (two times× two groups)
after 12 weeks of training. Besides, Bonferroni’s method
was applied wherein a significant interaction effect was
observed. Partial eta-squared (ηp2) was additionally used

to determine ES in the ANOVA. Additionally, the Pear-
son correlation coefficient was applied to investigate the
correlation between myomiRs and osteoporosis markers,
and the statistical significance was set at p < 0.05. Fur-
thermore, intention-to-treat (ITT) analysis was per-
formed at all stages of data analysis in this RCT. The
data were analyzed using the IBM SPSS Statistics soft-
ware (Version 22.0) for Windows (SPSS Inc., Chicago,
IL, USA) and then expressed as mean ± SD.

Results
The recruitment process during this pilot period can be
found in the CONSORT flow chart in Fig. 1. Of the 102
participants screened, 63 met the inclusion criteria. The
data from 29.03% (n = 9) and 18.75% (n = 6) of the sub-
jects respectively from the control and training groups
who did not attend the post-test measurements were
then excluded. Subsequently, outcome data for 15 par-
ticipants were included in the ITT. The main reasons
for dropping out of the study were personal problems,
unwillingness, and moving to another city. The rate of
adherence to training sessions was also 85% in the ex-
perimental group. No more significant side effects were
reported by researchers who were not blinded during
the 12-week intervention than the group assignment.
Mean and standard deviation of participant characteris-
tics at baseline presented in Table 1.

Anthropometric profile
Result showed no significant difference between the
study groups in height (F = 0.019, p = 0.889, ES = 0.001),
weight (F = 0.602, p = 0.440, ES = 0.007), BMI (F = 0.354,
p = 0.553, ES = 0.004) and total fat percent (F = 2.888,
p = 0.093, ES = 0.030) (Table 2).

Table 1 Study characteristics by groups at baseline

Variable Control (n = 31)
Mean ± SD

Experimenta (n = 32)
Mean ± SD

Age (years) 64.05 ± 3.35 64.11 ± 3.81

Height (cm) 155.77 ± 4.14 155.59 ± 4.38

Weight (kg) 78.73 ± 7.52 81.81 ± 8.03

BMI (kg/m2) 32.53 ± 2.01 33.72 ± 3.15

Body fat (%) 43.60 ± 2.66 46.29 ± 3.42

BMC (gr) 2.13 ± 0.50 2.24 ± 0.38

BMD (gr/cm2) 1.005 ± 0.450 0.929 ± 0.245

FRAX 4.72 ± 0.18 4.68 ± 0.19

Vitamin D 43.02 ± 20.97 38.28 ± 21.32

Alkaline phosphatase (IU/L) 139.23 ± 28.22 165.93 ± 42.46

CTX-I (ng/ml) 0.526 ± 0.097 0.543 ± 0.081

BMI body mass index, BMC bone mass content, BMD bone mass density, FRAX
Fracture risk assessment tool, CTX-I C-telopeptides of type I collagen
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Osteoporosis markers
The results of the two-way repeated measures ANOVA
also showed no significant difference between the study
groups with respect to BMC (F = 0.030, p = 0.862, ES =
0.001), BMD (F = 0.335, p = 0.564, ES = 0.004), and
FRAX® score (F = 3.427, p = 0.067, ES = 0.036). No sig-
nificant difference was further observed considering vita-
min D (F = 0.333, p = 0.566, ES = 0.006), ALP (F = 0.945,
p = 0.334, ES = 0.013), and CTX-I (F = 3.427, p = 0.067,
ES = 0.036) (Fig. 2).

MyomiRs
No significant difference was reported in miR-133 (F = -
1.775, p = 0.093) and miR-206 (F = -0.360, p = 0.723) be-
tween the study groups (Fig. 3).

Correlation between MyomiRs and osteoporosis markers
The results established no significant correlations be-
tween MyomiRs and Osteoporosis Markers at baseline
measurements.
Significant correlations were found between miR-133

and FRAX® score (r = − 0.845, p < 0.001), vitamin D (r =
− 0.551, p = 0.025), and ALP (r = 0.620, p = 0.012), but
not BMD (r = 0.095, p = 0.378), BMC (r = − 0.229, p =
0.226), and CTX-I (r = − 0.463, p = 0.056). There was
also a significant relationship between miR-206 and
FRAX® score (r = − 0.847, p < 0.001), vitamin D (r = −
0.500, p = 0.041), and ALP (r = 0.662, p = 0.007), but not
BMD (r = 0.370, p = 0.107), BMC (r = − 0.388, p = 0.095),
and CTX-I (r = − 0.420, p = 0.077) (Fig. 4).

Discussion
Contrary to the research hypothesis addressed in this
study, resistance-type exercise training with the elastic
band did not have any effects on chronic levels of some
serum myomiRs and osteoporesis markers in women

with OSO syndrome. However, it was notable that the
given changes in myomiRs were directly associated with
variations in FRAX® score, serum vitamin D, and ALP
concentrations, but not BMD, BMC, and serum CTX-I
levels following resistance training.
Only a few studies so far have attempted the effects of

exercise training on myomiRs and osteoporosis markers
in elderly populations. However, to the best of our
knowledge, this RCT was the first attempt to evaluat the
effects of this type of exercise training on some myo-
miRs and osteoporosis markers in elderly women living
with OSO syndrome. For example, Gombos et al. (2016),
had compared resistance training with aerobic exercise,
wherein CTX-I in the elderly women with very low bone
density had significantly increased in the control group
[21]. There seem to be two main reasons for the discrep-
ancy between our results and the findings of the current
study. First, in the study by Gombos et al., CTX-I levels
had been measured immediately following a exercise
training session, but measurements had been taken 48 h
after the last exercise session in our study. Also, the very
low levels of bone density in the study by Gombos et al.
could be a reason for the increasing impact of exercise
training intervention. On the other hand, Janik et al.,
(2018), in line with the present study, had revealed that
12 weeks of exercise had failed to have a significant ef-
fect on CTX-I levels of middle-aged and elderly women
with osteoporosis syndrome [22]. They had further
suggested that longer periods of exercise training mo-
dality would be needed to achieve better results. As
well, Moazami and Jamali (2014), consistent with the
results of the present study, had stated that 6 months
of aerobic training could not significantly alter the
levels of serum ALP in obese women [23]. Regardless
of the significant difference between the two studies,
aerobic exercise had not provided the necessary force

Table 2 Anthropometric profile changes following elastic-band resistance training in study groups

Variable Group Mean (SD) %Δ P-value F,T Effect Size

Pre test Post test

Age (years) Control (n = 31) 64.05 ± 3.35 0.947 −0.067

Experimental (n = 31) 64.11 ± 3.81

Height (cm) Control (n = 31) 155.77 ± 4.14 155.08 ± 4.59 −0.44 Group = 0.964
Time = 0.641
Group×time = 0.889

0.002
0.218
0.019

0.001
0.002
0.001Experimental (n = 31) 155.59 ± 4.38 156.15 ± 4.89 0.36

Weight (kg) Control (n = 31) 78.73 ± 7.52 81.66 ± 10.09 3.72 Group = 0.409
Time = 0.422
Group×time = 0.440

0.687
0.650
0.602

0.007
0.007
0.007Experimental (n = 31) 81.81 ± 8.03 81.87 ± 9.82 0.07

BMI (kg/m2) Control (n = 31) 32.53 ± 2.01 33.33 ± 4.05 0.73 Group = 0.317
Time = 0.614
Group×time = 0.553

1.012
0.256
0.354

0.011
0.003
0.004Experimental (n = 31) 33.72 ± 3.15 33.65 ± 3.67 −0.06

Total fat (%) Control (n = 31) 43.60 ± 2.66 47.60 ± 2.65 9.17 Group = 0.400
Time = 0.001
Group×time = 0.093

0.714
22.046
2.888

0.008
0.193
0.030Experimental (n = 31) 46.29 ± 3.42 47.35 ± 3.86 2.29

BMI body mass index
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on bone tissue for optimal metabolic changes. In
agreement with the results of the present study,
Gombos et al. (2016) had not observed a significant
difference after 12 weeks of resistance training in
serum ALP levels in elderly women [21]. Exercise
alone had not thus induced significant changes in

ALP levels, especially in elderly women diagnosed
with osteoporosis. While in the study by Hassanzadeh
et al. (2012), it had been reported that exercise com-
bined with calcium and vitamin D supplementation
had induced significant changes in serum.
ALP levels in postmenopausal women [24].

Fig. 2 Osteoporosis markers change following 12 weeks of elastic band resistance training. BMD: bone mass density; BMC: body mass content;
FRAX: fracture risk assessment tool; CTX-I: C-telopeptides of type I collagen. # indicates a significant difference at P < 0.05
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On the other hand, in the present study, serum levels of
vitamin D did not change in a significant manner. One of
the main reasons for no significant changes in bone turn-
over markers levels in the present study seemed to be the
inadequacy of calcium and vitamin D consumption and
even the diet of the participants [24], which could strongly
affect the results. Moreover, there were no significant im-
provements in bone density indices (i.e., BMD and BMC),
which in turn could influence bone markers.
Although myomiRs are emerging as potential key me-

diators of exercise adaptation in skeletal muscles, spe-
cific thresholds of intensity required for muscle-specific
miRNA and upregulation of bone-specific markers, have
not been rigorously assessed until now. Nevertheless, it
was observed that expression of miR-206 and miR-133a,
as well as bone turnover markers were not significantly
different in the study groups following 12 weeks of re-
sistance training. The very low responses of the myomiR
and the osteoporosis markers to exercise training was
not surprising.
However, there were some possible pieces of evidence

and explanations. One plausible explanation was a short
period of study, training intensity, and participant status.
Another potential explanation could be associated with
the selective release of these myomiRs by skeletal muscle
and to serum in response to exercise training protocols
[25]. Thus, unchanged expression of these miRNA in
circulation following exercise training might be due in
part to the limited release of miRNAs by skeletal muscle
tissues. Thirdly, further analysis in the present study indi-
cated that myomiRs might play a role in the phenotypic
change of muscle and pronounced intergroup variations

in exercise training responses [26]. These results did not
correspond with the findings of the published studies in
this area, indicating that some of these myomiRs [27, 28],
had changed in response to exercise training regimes in
skeletal muscle. Furthermore, Nielsen et al. had illustrated
that the expression of miR-1, miR-133a, miR-133b, and
miR-206 had decreased following 12 weeks of endurance
training [27]. Other researchers had further confirmed
that miRNA-133 [29, 30] and miRNA-206 [30, 31] had
contributed to regulating obesity, and adipose tissue, regu-
lation of osteoporosis and bone metabolism [32, 33], as
well as muscle sarcopenia and atrophy [34, 35].
Another possible explanation was that exercise train-

ing modalities might mitigate old age-associated differ-
ences in miRNA expression in skeletal muscle. However,
muscle contraction-induced adaptations in gene expres-
sion had differed between young and old populations
[36, 37]. The altered gene expression pattern induced by
both exercise training regimes with old age would not
improve the miRNA expression within the skeletal
muscle. Although it has been shown that muscle and
bone are both mechanoresponsive tissues [38], it seems
that younger individuals have more mechanoresponsive-
ness to myogenic and osteogenic signals, hormones,
growth factors, and cytokines compared with older ones
[39]. For example, in conflict with the results of the
present study, Zuo et al. had illustrated that miR-103a
could be sensitive to mechanical loading [40], but, in the
present study, myomiRs could not be a mechanosensi-
tive miRNA following resistance training regimes in
women with OSO. Finally, it was assumed that the
threshold level of mechanical stress affecting skeletal

Fig. 3 myoMirs (miR-133 and miR-206) following 12 weeks of elastic band resistance training
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muscle and bone remodeling had been affected by age,
but the threshold values were not determined in the
present study.
In accordance with the study hypothesis, some signifi-

cant correlations were observed between changes in
serum myomiRs and ALP, vitamin D, and FRAX® score
following resistance training. Accordingly, it was hypoth-
esized that myomiRs might induce osteogenic effects in
response to 12 weeks of resistance training. Furthermore,
myomiRs isolated from skeletal muscle samples might
be involved in bone and muscle-associated health bene-
fits. Recently, studies have suggested a possible role in
cell-to-cell crosstalk, where myomiRs might be able to

mediate gene expression in target tissues in a way com-
parable to hormones and myokines [41].
MyomiRs can be also crucial for bone health benefits

conferred by exercise training modalities as they are re-
sponsible for cell-cell communication [42]. The miRNAs
chosen a priori in this study are muscle-enriched ones
previously described to regulate important genes in
pathways central for skeletal muscle and bone tissues
[43], which made them attractive candidates as exercise
factors. For instance, miRNA-133a-5p inhibits the ex-
pression of osteoblast differentiation-associated markers
by targeting the RUNX2 in bone marrow [44]. In addition,
Ramos et al. had explained that high-intensity training

Fig. 4 Bivariate correlation between myoMirs (miR-133 and miR-206) and osteoporosis markers (BMC, BMD, FRAX, vitamin D, alkaline phosphatase,
and CTX-I) following elastic-band resistance training. BMD: bone mass density; BMC: bone mass content; FRAX: Fracture Risk Assessment Tool;
CTX-I: C-telopeptides of type I collagen; miR-133: MicroRNA-133; miR-206: MicroRNA-206. * and ** indicates significant correlation at P < 0.05 and
P < 0.01 respectively
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had increased miR-133a and had consequently reduced
skeletal muscle miRNA-133a [45].
The data from this study illustrated that miR-206 was

the only myomiR with a negative correlation with skel-
etal muscle miR-133 expression in the control group.
But, one recent study by Ultimo et al. had proven that
endurance training could simultaneously modify miR-
133a and miR-206 gene expression [46].
It should be noted that there were some limitations in

the present study. First, the methodology utilized in this
study allowed for analysis of only a few expressed myo-
miRs and osteoporosis markers and no other genome-
wide approaches could be used (e.g., sequencing and mi-
croarrays). Secondly, the short duration of the given
training protocol and its intensity might be reasons for
the non-significant effect of exercise on some markers
or lack of the moderator effect of myomiR status.

Conclusion
Overall, the study findings uncovered the potential con-
tribution of some bone metabolism markers in attenuat-
ing bone dysfunction during exercise modality, which
could occur through some myomiRs regulating gene
networks involved in bone remodeling. Furthermore, it
was concluded that individual myomiRs engaged in
myoblast and osteoblast differentiation might not regu-
late these myogenic and osteogenic targets in response
to this type of exercise treatment i.e. resistance training.
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