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Abstract

Background: Genome-scale metabolic reconstructions have been recognised as a valuable tool for a variety of
applications ranging from metabolic engineering to evolutionary studies. However, the reconstruction of such
networks remains an arduous process requiring a high level of human intervention. This process is further
complicated by occurrences of missing or conflicting information and the absence of common annotation
standards between different data sources.

Results: In this article, we report a semi-automated methodology aimed at streamlining the process of metabolic
network reconstruction by enabling the integration of different genome-wide databases of metabolic reactions. We
present results obtained by applying this methodology to the metabolic network of the plant Arabidopsis thaliana.
A systematic comparison of compounds and reactions between two genome-wide databases allowed us to obtain
a high-quality core consensus reconstruction, which was validated for stoichiometric consistency. A lower level of
consensus led to a larger reconstruction, which has a lower quality standard but provides a baseline for further
manual curation.

Conclusion: This semi-automated methodology may be applied to other organisms and help to streamline the
process of genome-scale network reconstruction in order to accelerate the transfer of such models to applications.

Background
Metabolism is perhaps the best characterised of all
molecular interaction networks in biology. Large
amounts of data relating to metabolic reactions are
available to date, but despite this wealth of information
metabolic phenotypes remain difficult to predict accu-
rately [1]. The reconstruction of the genome-scale meta-
bolic network of an organism represents a major
milestone toward better understanding of its properties.
While metabolic pathways are convenient abstractions
to represent routes of biochemical conversions of small
molecules in an organism, their definition is often arbi-
trary and varies between sources [2]. The pathway para-
digm fails to provide an integrated view of interactions,
regulatory and control mechanisms, which act across

and with no regard of pathway boundaries. For that rea-
son, a growing number of genome-scale metabolic net-
works have been constructed in recent years, most
notably for microorganisms [3-7] but also for animals
and humans [8-10]. The applications of such recon-
structions are plentiful, encompassing metabolic engi-
neering studies to design strains overproducing desired
products, the prediction of genes responsible for orphan
reactions, the determination of active reactions for a
given environmental condition, the identification of
coupled reaction sets, and evolutionary studies [11].
Genome-scale metabolic reconstructions were also used
to predict potential new antibiotic targets [12].
However, the process of reconstructing the genome-

scale metabolic network of an organism remains very
labour-intensive. It has been observed that the number
of available metabolic models is smaller than 1% of that
of fully sequenced genomes [13]. There is therefore a
clear need to accelerate and streamline the process of
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network reconstruction. Fully automated reconstructions
on the other hand remain imprecise, mainly because of
inherent limitations and errors contained in individual
databases [14]. Common sources of problems are the
non-uniqueness of metabolite identifiers (some com-
pounds being represented by generic classes such as
“alcohol”), unbalanced atomic species arising from an
incorrect stoichiometry or formula for one or more
reactants, incorrect or missing cofactors, and enzymes
catalysing more than one reaction [15]. Additional pro-
blems are caused by the lack of usage of standards for
the annotation of metabolites and reactions, making the
comparison of different models extremely difficult.
In this work, we present an original semi-automated

methodology aimed at accelerating the process of meta-
bolic network reconstruction, while at the same time
avoiding the loss of accuracy consecutive to a fully auto-
mated reconstruction. The underlying principle of our
approach is to confront and integrate different sources
of data. Different databases may contain errors or gaps
about enzymes, reactions and metabolites present in an
organism, but if data sources are independent, the likeli-
hood that the same error would appear twice would be
expected to be of an order of magnitude smaller than
the frequency of errors in each data source. By creating
an intersection between two databases, differences can
be identified and assessed for further curation. The
resulting process can be defined as semi-automatic
because the processes of extraction and comparison
between databases can be largely automated, yet a man-
ual curation remains necessary to analyse and solve
discrepancies.
As an application of our methodology, we present

results of the integration of metabolite and reaction data
for the model plant Arabidopsis thaliana. Plants offer a
wide range of potential applications for metabolic mod-
elling and engineering, which include the generation of
pharmaceutical compounds, increasing the production
of key secondary metabolites of commercial interest,
improving yield and nutritional quality of crops. Despite
such promising applications, the challenges of metabolic
reconstruction are compounded in plants and only
recently were the first genome-scale metabolic models
of Arabidopsis reported [16,17], which were constructed
by manual curation. The reconstructions presented in
this study were developed independently through a
semi-automated process integrating data from two
sources, namely AraCyc [18] and Kegg [19].

Methods
In order to map metabolites between Kegg and AraCyc,
several features of the data were taken into account.
Two compounds were defined as being identical only if
all features were positively matched. These features

included compound names, chemical formulae and
structures, and enzymes catalysing reactions where the
considered metabolites participate.

Compound name similarity
Names of metabolites may differ between databases for
several reasons. Many chemical compounds are com-
monly known under multiple names, and all of their
names are not necessarily indicated in all databases.
Furthermore, there is no universal and common identi-
fier between Kegg and AraCyc, as compounds are some-
times referred by their ChEBI (Chemical Entities of
Biological Interest [20]), CAS (Chemical Abstracts Ser-
vice [21]) or PubChem [22] identifier. For example,
there are five different names listed for the Kegg entry
C00022 (pyruvate, pyruvic acid, 2-oxopropanoate, 2-oxo-
propanoic acid, pyroracemic acid), and nine different
possibilities for the same compound in AraCyc (pyru-
vate, BTS, alpha-ketopropionic acid, acetylformic acid,
pyroracemic acid, 2-oxopropanoic acid, pyruvic acid, 2-
oxopropanoate, 2-oxo-propionic acid). If at least one of
these entries is the same in both databases, the identifi-
cation of matching metabolites is straightforward. How-
ever there are many cases where no perfect match can
be found. For example the Kegg compound C10434 is
named 5-O-Caffeoylshikimic acid, and the same com-
pound in AraCyc has the name caffeoylshikimate.
For this reason a string similarity algorithm, originally

developed for the identification of gene/protein name
similarity, has been employed to compare metabolite
names [23]. This algorithm uses logistic regression to
compute the similarity between strings by incorporating
a variety of features. A training data set has to be sup-
plied in order to teach the program which differences
can be treated as similar and which ones are not
allowed. It is important to use features that can well
characterise a string pair by capturing the similarity
between different variations while highlighting the dif-
ference between terms which are not synonymous. The
considered features are character bigrams, prefixes and
suffixes, numbers, acronyms, common and different
tokens. An appropriate training set was prepared by
processing sets of multiple names of the same metabo-
lite in each of the databases. We found that the charac-
teristic differences that occur between metabolite names
are essentially of a very similar nature as those occurring
between protein names, allowing the algorithm to per-
form efficiently. The result of this process consisted in a
list of matched names with an associated of their
identity.

Chemical structure similarity
The formula of a metabolite theoretically confines the
search for matching metabolites considerably. However
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it is not usable as a unique identifier. Two metabolites
can have the same global formula and be completely dif-
ferent chemically because of the various possible struc-
tures of atoms. For example, 2-carboxy-D-arabinitol 1-
phosphate, L-galactose-1-phosphate, D-hexose 6-phos-
phate and alpha-D-mannose 1-phosphate all have the
same formula C6H13O9P. On the other hand, two meta-
bolites that are identical may be represented by slightly
different chemical formulae, either because an error is
present in one source or because of chemical modifica-
tions (such as pH-dependent breakdowns of carboxylic
groups).
All chemical structure processing was implemented in

Pipeline Pilot workflows [24]. Input structures from
KEGG and AraCyc were first converted to canonical
SMILES, a unique line representation of two-dimen-
sional molecular structure [25]. Exact structural matches
occurred where SMILES strings were identical.
In previous metabolic network reconstructions it was

observed that equivalent metabolites differed across
sources in a number of ways. These included stereoche-
mical differences (due to varying levels of detail about
chiral centres or configurations about double bonds),
tautomeric variants (where proton localisation differs),
and charge states. To identify differences of these types

SMILES strings were matched after purging stereoche-
mical information from structure, or after calculation of
the canonical tautomer, or following recalculation of
ionisation at pH 7.4.
One further important way in which equivalent meta-

bolites from different sources were noted to differ was
by simple structural errors in their representation, such
as incorrect bonding or missing functional groups. Pro-
viding that the majority of the structure is correctly spe-
cified then corrections for errors of this type can be
suggested by standard cheminformatics molecular simi-
larity measures [26] (here using the ECFP_4 molecular
fingerprint and Tanimoto similarity metric).
Whereas exact matches of the original canonical

SMILES strings provides an unambiguous mapping of
metabolites across data sources, the other types of
matches are only approximate (they may or may not be
correct) and so require further manual checking. The
approximate matching algorithms do, however, signifi-
cantly reduce the manual checking workload.

Complete process
An iterative approach was adopted to integrate the dif-
ferent features of metabolite identification (Figure 1).
The first step consisted in creating a list of mapped

Figure 1 Steps of the network reconstruction process.
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metabolites as a starting point. Those metabolites have
been allocated by searching for Kegg references in Ara-
Cyc. For some of its compounds AraCyc provides the
unique Kegg identifier, allowing the undoubted match-
ing of a first set of compounds. The next step consisted
in searching for all reactions in both databases that con-
tain those compounds. More specifically, we considered
those reactions where all compounds were already iden-
tified or only one was missing. Reactions where all com-
pounds were identified could subsequently be compared,
and if all compounds and the catalysing enzymes were
the same, the reactions were accepted as being the
same. In those reactions where one compound was
missing, the known compounds were compared to each
other. If two reactions in AraCyc and Kegg had the
same number of metabolites and all known metabolites
were the same, the respectively unknown compounds in
each reaction were accepted as candidates for being
identical. If the catalysing enzyme in both reactions was
the same, and the name strings had a high probability of
being similar, and the structures or formulae were equal,
then two candidate compounds were accepted as being
identical.
At the end of the first iteration step, new compounds

were added to the list of matched compounds and a
new iteration was started. The whole process was
repeated several times until no additional matched com-
pounds could be found. During the process, compounds
that gave a positive result in some but not all of the
before-mentioned features were copied into a separate
list that was manually examined. The positive results of
these checks were added to the list of compounds in
order to improve the outcome of the next iteration.
The final lists of matched compounds and reactions

were given new unique identifiers for the new recon-
structions. These matched compounds and reactions
constitute the first or core (yellow) metabolic network.
Compounds and reactions that were not matched in
both databases were assigned to the second or third net-
work depending on an additional process. In the inter-
mediate (green) network, we included reactions for
which either the full set of substrates or the full set of
products belonged to the core network. Such reactions
are likely to be valid as they have a strong connection to
the core network, but may be insufficiently or inconsis-
tently described resulting in discrepancies between data-
bases or their absence in one of them. Compounds
involved in such reactions and not already included in
the core model were also added to the intermediate net-
work. All remaining compounds and reactions were
included into the complete (blue) network.
A general problem in metabolic models is caused by

the fact that many compounds have different protona-
tion states depending on the pH. There is no pH

consistency in formulae found in databases, and AraCyc
does not represent protons in reactions. As a conse-
quence, we neglected differences in proton content
between formulae and did not represent protons in
reactions either. A strict balance of hydrogen atoms
thus cannot be expected in our reconstructions.

Stoichiometric consistency validation
Incorrect definition of reaction stoichiometries often
results in stoichiometric inconsistencies - a common
type of modelling error, defined as contradictions
between the fundamental physical constraints of mass
positivity and mass conservation [27]. An example is
shown below:
R1: A ↔ B
R2: A ↔ B + C
In this network, the metabolite C cannot be assigned

any positive molecular mass without violating the mass
balance in the whole system. Stoichiometric inconsisten-
cies are often caused by violations of atomic balance, by
ambiguous generic metabolite definitions (e.g. “primary
alcohol”) and by inclusion of polymers with variable
polymerisation degrees and units (e.g. starch and
protein).
Stoichiometric consistency validation involves inspec-

tion of the left null-space (the null-space of the trans-
posed stoichiometry matrix) and may include the
following optional steps: Firstly, the stoichiometric con-
sistency of the full network is verified. If the network is
inconsistent, the non-conserved metabolites [28] are
detected (e.g. C in the above example). Further, for each
non-conserved metabolite, the minimal inconsistent net
stoichiometries involving it are calculated (these are
defined as net stoichiometries with empty sets of sub-
strate or products, e.g. by subtracting the reaction R1
from R2, we obtain Ø ↔ C). Finally, the elementary
leakage modes (minimal linear combinations of reac-
tions resulting in inconsistent net stoichiometries) can
be detected, e.g. (-R1, R2) in the above example. The
localisation of such minimal inconsistent subnetworks
helps to detect input errors in the reactions.

Construction of SBML version
An SBML version of the core network was constructed
using libSBML [29]. The file is MIRIAM compliant [30]
with all species and reactions annotated with ontological
terms, allowing their unambiguous identification and
interpretation by third party software tools. Metabolites
have been annotated with ChEBI, Kegg, PubChem,
3DMET and Lipidbank terms, along with InChI strings
[31], while all enzymes are provided with an annotation
linking them to the appropriate gene in the TAIR data-
base [32]. All annotations are associated to an appropri-
ate systems biology ontology (SBO) term.
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Network visualisation and analysis
A network representation was constructed from the
complete (blue) reconstruction for topological analysis
and visualisation. In this representation, compounds are
nodes and reactions are edges. All substrates of a given
reaction were connected to all products of that reaction.
Isolated compounds were not included in the network
representation. The Cytoscape software was used for
network visualisation [33], and the NetworkAnalyzer
plugin for Cytoscape was used for topological analy-
sis [34]. Network properties of the three reconstruc-
tions are summarised in Table 1. The meaning of the
parameters shown in Table 1 is briefly explained
hereafter [35].
The number of connected components indicates how

many disjoint subnetworks the network is broken into.
A self-loop is a node connected to itself. The number of
shared neighbours between two nodes is the number of
nodes that are neighbours of both of them. The shortest
path length, also called the distance between two nodes
is the smallest number of edges that have to be crossed
to go from one edge to the other. The characteristic
path length is the average distance and the network dia-
meter is the largest distance between two nodes in the
network.
The connectivity of a node is the number of edges

connected to it. The network density is a measure of
how densely the network is populated with edges. A
network that contains only isolated nodes has a density
of 0, whereas a clique has a density of 1. The network
centralisation is a measure of how strongly a network is

focused around central nodes. Networks resembling a
star have a centralisation close to 1, whereas decentra-
lised networks have a centralisation close to 0. The net-
work heterogeneity measures the variance of the
connectivity and reflects the tendency of a network to
contain hub nodes. The clustering coefficient of a given
node n is a ratio between the number of edges between
the neighbours of n and the maximum number of edges
that could possibly exist between them.
The betweenness centrality Cb(n) of a node n is com-

puted as follows:
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where s and t are nodes in the network different from
n, sst is the number of shortest paths from s to t, sst(n)
is the number of shortest paths from s to t that n lies
on, and N is the total number of nodes in the connected
component that n belongs to. The betweenness central-
ity of each node is a number between 0 and 1. It reflects
the amount of control that a node exerts over the inter-
actions between other nodes in the network. A node
acting as a bridge between different communities has a
high betweenness centrality, while a node that lies inside
a community has a low one.
The closeness centrality Cc(n) measures how close a

node n is to others in the same connected component.
It is defined as follows:
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where L(n, m) is the length of the shortest path
between n and m, and N is the total number of nodes
in the connected component that n belongs to. The clo-
seness centrality is a measure of how fast information
can spread from a given node to other reachable nodes
in the network.

Results
Metabolic reconstructions of A. thaliana
Another important and often ignored aspect of meta-
bolic network reconstruction is that different sources of
data have different levels of certainty. A reaction consis-
tently described by several independent sources should
have a higher degree of reliability than a reaction
described by a unique source. For this reason, we here
present three different networks of A. thaliana metabo-
lism corresponding to decreasing levels of confidence
(Figure 2). The core (yellow) network contains only com-
pounds and reactions which have been reliably identified
in both databases and whose description is identical in

Table 1 Properties of the three metabolic networks

Core
(yellow)
network

Intermediate
(green)
network

Complete
(blue)

network

Number of nodes 770 1207 2288

Number of edges 2255 3792 6547

Network density 0.008 0.005 0.002

Network
heterogeneity

2.223 2.623 3.362

Number of self-
loops

0 8 31

Clustering
coefficient

0.215 0.233 0.189

Connected
components

6 5 28

Network diameter 8 8 10

Network
centralisation

0.288 0.301 0.271

Average path length 3.114 3.158 3.286

Average
connectivity

5.857 6.270 5.696

The meaning of the parameters given in this table is explained in the
Methods section.
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both of them. The intermediate (green) network contains
compounds and reactions found in only one database,
but with a strong connection to the core network so
that the absence of a perfect match is likely to be due to
minor inaccuracies. The complete (blue) network con-
tains all remaining compounds and reactions.
We present three metabolic networks of A. thaliana

corresponding to different levels of confidence. The core
(yellow) metabolic network only contains compounds
and reactions that have been unambiguously identified
and matched in the two databases (Additional file 1).
These metabolites and reactions are expected to have
been well characterised and experimentally observed,
and are more likely to play an important role in the
plant. This model is expected to cover most of the core
metabolism of Arabidopsis thaliana (Table 1).
The intermediate (green) network additionally con-

tains reactions from both databases where either the full
set of substrates or the full set of products belongs to
the core network (Additional file 2). Compounds
involved in these reactions and not already included in
the core network were also added to the intermediate
network. Such reactions and compounds have a strong
connection to the core network, but their confidence
status is lower since they have not been unambiguously
matched between both databases. The fact that a com-
pound or reaction was found in only one database may
be due to several factors: (i) our reconstruction

algorithm may have failed to find the corresponding
compound or reaction in the second database; (ii) a
metabolite may be represented by a generic class in one
database but by a specific compound in the other; (iii)
one database may contain an inaccuracy, so that a meta-
bolite or a cofactor is missing or incorrect in a reaction;
(iv) a reaction or compound may indeed be absent from
one database. Some of these causes might lead to the
occurrence of double entries in the intermediate
network.
All remaining reactions and compounds were added

to the complete (blue) metabolic network, so that a
comprehensive data set of all metabolic reactions and
compounds described in A. thaliana and reactions con-
tained is presented (Additional file 3). This reconstruc-
tion should be considered as a development set whose
validity needs to be confirmed from additional sources.
This file additionally contains a list of genes associated
through each reaction in both databases.
For a better understanding of the different cases that

result in the attribution of compounds and reactions to
different reconstruction levels, several examples are
shown in Figure 3. The sucrose phosphate phosphohy-
drolase reaction (a) is entirely yellow because it is identi-
cally described in both databases and all compounds
were successfully matched to each other. So is the ribu-
lose bisphosphate carboxylase reaction (b), even though
it is described with two protons on the right hand side

Figure 2 Presentation and size of the three metabolic networks.
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in Kegg but without in AraCyc, because we decided to
ignore protonation states. The pyruvate kinase reaction
with GTP/GDP as cofactors (c) is green even though all
its substrates and products are yellow, because only
Kegg describes the possibility of GTP/GDP involvement.
Another pyruvate kinase reaction involving ATP/ADP is

described in both databases and is included in the core
(yellow) network. The acetyl-CoA synthetase reaction
and acetyl adenylate (d) were not found in AraCyc, they
were included into the intermediate (green) network
because both acetyl-CoA and AMP are unambiguously
identified. The carbon-sulfur lyase reaction (e) is blue

Figure 3 Examples of reactions and their attribution to different confidence levels. (a) Sucrose phosphate phosphohydrolase is identically
described in both databases. (b) Ribulose bisphosphate carboxylase has a discrepancy in hydrogen content but protons involvement is ignored.
(c) All substrates and product are validated in both databases, but the pyruvate kinase reaction with GTP/GDP as cofactors is only described in
one database. (d) Acetyl adenylate and the acetyl-CoA synthetase reaction are only found in one database. (e) Both substrate and product are
only found in one database. (f) Both sides of the reaction involve generic compound classes which are only used by one database.
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because neither substrate nor product is known by Ara-
Cyc. The sphingolipid biosynthesis reaction (f) is blue
because it uses generic metabolite classes in AraCyc
that cannot be matched to specific metabolites in Kegg.

Detailed coverage of metabolic pathways
We investigated the distributions of enzymes belonging
to the three metabolic networks among Kegg pathways
(Additional file 4). In most of the carbohydrate meta-
bolism pathways, the core (yellow) metabolic network
covers between 70% and 80% of all enzymes attributed
by Kegg to these pathways. This proportion generally
rises above 85% in the intermediate (green) network.
In nucleotide metabolism pathways, 87% of the
enzymes are covered by the core network and 91% by
the intermediate network. For amino acid metabolism
and secondary metabolites biosynthesis, these values
are most of the time between 50% and 70% in the core
network and 75% in the intermediate network. Lipid
metabolism has a lower coverage with 40% to 60% of
enzymes being in the core network and around 70% in
the intermediate network. It is not surprising that core
metabolic pathways are generally better covered, as
these pathways should have been the most intensively

experimentally analysed and the most accurately
described.
As an illustration of the different levels of quality of

our reconstructions, we describe the case of the tricar-
boxylic acid and glyoxylate cycles in detail (Figure 4).
Most parts of the citrate cycle and the glyoxic shift have
been reliably identified through the semi-automatic pro-
cess and were included into the core (yellow) network.
The remaining gaps are filled in the intermediate
(green) network. The factors leading to some reactions
and compounds not being included into the core net-
work are detailed below:
(i) The succinate dehydrogenase reaction between suc-

cinate and fumarate was not included into the core net-
work due to an ambiguity between various forms of
ubiquinones and ubiquinols acting as cofactors. These
compounds are represented by generic classes in Kegg,
but by specific ubiquinone-8 and ubiquinol-8 com-
pounds in AraCyc.
(ii) The transition between 2-oxoglutarate and succi-

nyl-CoA is represented by a direct alpha-ketoglutarate
dehydrogenase reaction in AraCyc. This reaction is not
present in Kegg, which instead represents the transition
by three different steps involving 3-carboxy-1-hydroxy-

Figure 4 Attribution of reactions and compounds in the tricarboxylic acid and glyoxylate cycles. Most reactions and compounds in the
tricarboxylic acid and glyoxylate cycles belong to the core (yellow) network. Succinate dehydrogenase, ketoglutarate dehydrogenase, and the
transition between isocitrate and 2-oxoglutarate via oxalosuccinate belong to the intermediate (green) network. The transition between 2-
oxoglutarate and succinyl-CoA via succinyldihydro-lipoamide-E belongs to the complete (blue) network.
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propyl-thiamine diphosphate and succinyldihydro-lipoa-
mide-E.
(iii) Similarly, the transition between isocitrate and 2-

oxoglutarate via oxalosuccinate is represented in Kegg
but not in AraCyc. The direct isocitrate dehydrogenase
reaction does appear in both databases.

Stoichiometric consistency validation
The intermediate (green) and complete (blue) metabolic
networks unsurprisingly contain many stoichiometric
inconsistencies because these reconstructions contain
generic metabolite classes (e.g. “alcohols”). The stoichio-
metric consistency validation of the core (yellow) net-
work was successful with the exception of molecular
hydrogen. This inconsistency inevitably follows from
skipping protons from reaction definitions and currently
cannot be resolved, given the inaccuracies in the input
data. Achieving strict hydrogen and charge balancing
would nevertheless be important to obtain a high quality
genome-scale metabolic model, particularly for a photo-
synthetic organism [36].

Network properties
We analysed the topological properties of the recon-
structed metabolic networks in order to verify whether
they were compatible with those of previously reported
networks of other species (Table 1 and Figure 5). Differ-
ent network representations can be used to represent
systems of metabolic reactions, and the values of net-
work parameters depend on the chosen representation.
In this work metabolites were represented as nodes and
reactions as edges. As the directionality of metabolic
reactions is generally subject to ambiguity, edges were
set to be undirected. Two metabolites were connected
by an edge if they participate as substrate and product
respectively in the same reaction. Common small mole-
cules such as ATP, NADH, water, etc, were not
removed from the network representation.
Distributions of the most important network proper-

ties are plotted in Figure 5 for the complete (blue) meta-
bolic network. The intermediate (green) and core
(yellow) metabolic networks exhibit similar distributions.
Average network parameters are shown for the three
networks in Table 1. The connectivity distribution of
our metabolic reconstructions has the same allure,
resembling a power-law, as universally observed in
metabolic networks [37-39]. The average clustering coef-
ficient is our reconstructions is close to 0.2, to be com-
pared with reported values of 0.20 for E. coli, 0.23 for S.
cerevisiae, and 0.28 for H. pylori based on the same net-
work representation [39]. The average path length in
our reconstructions is close to 3, which is the same as
observed in many other metabolic networks based on
the same network representation [37]. It is worth

noticing that this value becomes significantly higher
when common small molecules are removed from the
network [40] or when an atomistic representation of
metabolism is adopted [41].
In Arita’s atomistic representation, the substrates and

products of a reaction are connected only if carbon
atoms can be traced between them. The Kegg RPAIR
database provides atomic mappings between Kegg com-
pounds, making it possible to construct an atomistic
network for our core model. However, our intermediate
and complete models contain some compounds that
were not found in Kegg, therefore an atomistic network
constructed from these models would be partially
biased. For this reason, we provide a comparison
between both network representations for the core
model (Additional file 5), but the conclusions of this
comparison can be extended to the entire network. In
the atomistic network, there is a higher number of
nodes of degree 1 and the degree distribution decreases
more rapidly; the clustering coefficient and closeness
centrality are lower, but the betweenness centrality is
higher since nodes are less densely interconnected; the
average path length is higher with its distribution peak-
ing at 4, and the diameter of the network increases to
12 instead of 8 in the classical network.
The top ten hubs for the three metabolic networks are

listed in Table 2. The connectivity of these hubs logi-
cally increases from the core to the complete networks,
but their ranking is only marginally affected by the dif-
ference in confidence levels between networks. Water
remains the most highly connected molecule in all
cases, and nine out of ten molecules consistently appear
the top ten ranking for all three networks. These hubs
include most of the ubiquitous small molecules found in
other metabolic networks, when they are not removed.
A graphical network representation of the complete
(blue) metabolic network is provided in Figure 6.

Comparison with other models
Because of the lack of usage of standardised formats,
nomenclatures and annotations, it is very challenging to
compare different genome-scale metabolic models with
each other. A systematic comparison of our reconstruc-
tion with the two other Arabidopsis models, hereafter
referred to as “Poolman” [16] and “AraGEM” [17],
would therefore require a long and cumbersome manual
mapping of metabolites and reaction.
We have nevertheless carried out such a manual com-

parison for the pathway shown in Figure 4, i.e. the tri-
carboxylic acid and glyoxylate cycles (Table 3). This
comparison provides interesting information about the
characteristics of each model. Most reactions were cor-
rectly included in our reconstruction, with the exception
of protons which were deliberately ignored. The
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Figure 5 Topological properties of the complete (blue) metabolic network. (a) Node degree distribution. (b) Average clustering coefficient
distribution. (c) Betweenness centrality. (d) Closeness centrality. (e) Shared neighbours distribution. (f) Shortest path length distribution. See
Methods section for an explanation of network parameters.
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isocitrate dehydrogenase and oxalosuccinate decarboxy-
lase reactions were included in our model but not in the
two others, although there is evidence that correspond-
ing genes were identified in Arabidopsis (AT1G54340,
AT1G65930, AT5G14590). The Poolman model addi-
tionally ignored the reactions involving 3-carboxy-1-
hydroxypropyl-ThPP and succinyldihydrolipoamide-E,
but these were included in the AraGEM model. Other
discrepancies can be observed in the use of cofactors:
the succinate oxidoreductase is represented with ubiqui-
none/ubiquinol in our and Poolman’s models, but with
flavin adenine dinucleotide (FAD/FADH2) in AraGEM;
the 2-oxoglutarate oxidoreductase reaction uses NAD/
NADH in our and Poolman’s models, but ferredoxin in
AraGEM; the Poolman model ignores the use of NADP/
NADPH by the isocitrate oxidoreductase and malate
oxidoreductase reactions; the AraGEM model ignores
the use of GTP/GDP by the succinate:CoA ligase reac-
tion; the water molecule is missing in some reactions of
the Poolman model. These results illustrate the difficulty
to reach a consensus between different models and the
amount of manual literature research that would be
necessary to solve all discrepancies. Nevertheless, as
seen from this example, the quality of our semi-auto-
matic reconstruction compares favourably to manual
reconstructions.
Like the Poolman model, our reconstruction does not

distinguish between cellular compartments, but the Ara-
GEM model distinguishes between cytosol, mitochon-
dria, plastid, vacuole and peroxisome. Since the aim of
this work is to present a methodology for the integra-
tion of different databases, our reconstruction is not
immediately intended for FBA simulations. There is a
trade-off between the search for a consensus and the
gap filling required for FBA.

Discussion
The number of published genome-scale metabolic net-
work reconstructions has grown rapidly in recent years.

After the first reconstructions were published for E. coli
and S. cerevisiae [42,43] the number of such reconstruc-
tion has been growing quickly in recent years, covering
many microorganisms, animals and human. A compre-
hensive description of the motivations and applications
of such reconstructions has been presented by Feist and
Palsson [11]. These applications include network prop-
erty analysis, metabolic engineering, biological discovery,
phenotypic assessment, and evolutionary analysis.
Very few reconstructions of plant metabolic networks

have been undertaken so far, and yet many of the appli-
cations mentioned before take even higher relevance in
plants. Metabolic engineering is of particular signifi-
cance in plants and offers promising perspectives to
improving production yields, enhancing the nutritional
value of crops, and generating valuable molecules for
pharmacology and energy production. High-quality and
comprehensive models of plant metabolism will be cru-
cial to allow these applications to be developed. The
metabolic networks of plants are of a higher complexity
than those of most other living species; it is therefore
both relevant and timely to start investing efforts in the
construction of such models.
Although Arabidopsis thaliana has been widely used

as a model plant, its metabolic network has not been
studied in great details and at a large scale. There has
been renewed interest in A. thaliana metabolism
recently. More than 170 secondary metabolites from
seven different classes have been identified in A. thali-
ana [44], whose putative functions cover the defence
against pathogens and herbivores, UV protection, resis-
tance to oxidative stress, auxin transport, etc. Glucosi-
nolates are known for their benefits to human nutrition
and were found to play a fundamental role in the
defence response against microbial and fungal pathogens
[45,46]. Biosynthesis pathways of tocochromanols, a
group of lipid antioxidants that are essential in human
nutrition, have raised promising interest [47]. A. thali-
ana was also used as a model plant to study polyamine

Table 2 Hubs of the three metabolic networks

Core (yellow) network Intermediate (green) network Complete (blue) network

Metabolite Degree Metabolite Degree Metabolite Degree

Water 227 Water 369 Water 628

ATP 117 Oxygen 169 Oxygen 270

ADP 107 NADP 160 ATP 229

NADPH 89 NADPH 158 NADP 219

Orthophosphate 88 ATP 155 NADPH 218

NADP 84 ADP 128 Carbon dioxide 192

Carbon dioxide 81 Carbon dioxide 118 Diphosphate 182

Oxygen 79 Orthophosphate 102 ADP 159

Diphosphate 77 Diphosphate 101 NAD 143

NAD 60 NAD 89 NADH 140

Radrich et al. BMC Systems Biology 2010, 4:114
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Figure 6 Graphical representation of the complete network. Nodes belonging to the core network are coloured in yellow, nodes added in
the intermediate network are coloured in green, and nodes added in the complete network are coloured in blue.
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metabolism, which plays an essential role in stress toler-
ance [48], and flavonoid production, which inhibit or
stimulate cell proliferation in different human cancer
cell lines [49].
However many issues presently hamper the use of

genome-scale metabolic reconstructions by the wider
research community and industry. These issues include:
(i) A limited usage of standardised formats, nomencla-

tures and annotations. Many metabolic reconstructions
are published in spreadsheet format, using customs
identifiers and nomenclature. This is a considerable
obstacle to the transfer of these reconstructions to other
applications and to comparisons between different net-
works, making it challenging to compare Arabidopsis
models with each other.
(ii) Limited coordination between different reconstruc-

tion efforts. One such coordination has recently lead to
the publication of a consensus metabolic reconstruction
of S. cerevisiae [7] and a similar effort is currently under
way for the human metabolic network [50].
(iii) The absence of update mechanisms enabling the

integration of the latest scientific discoveries by the
wider research community into existing models.
(iv) The absence of universal quality and validation

standards.
Although this work does not claim to address all these

issues, we introduced in this work a few principles seek-
ing to propose avenues for solutions and to raise aware-
ness about current limitations. First, we provide an

annotated SBML version of the core (yellow) metabolic
network of A. thaliana (Additional file 6) and non-
annotated SBML versions of the two other networks
(Additional files 7 and 8). SBML has become the de
facto standard for systems biology models and allows
them to be used by the widest range of tools. Standar-
dised annotations following SBO specifications ensure
that metabolites and enzymes can be easily identified
and linked with existing databases. However, for such
formats to be universally adopted by the biochemical
research community, efficient and user-friendly tools
will need to be developed allowing the easy input and
conversion of models to a well annotated and standar-
dised format.
While large international meetings have proven suc-

cessful to confront and integrate different existing
metabolic reconstructions, mechanisms allowing a con-
venient integration of models as they are developed
would be more efficient. We showed that by confront-
ing and integrating two independent sources, we were
able to semi-automatically reconstruct a core metabolic
network of A. thaliana, whose properties are compar-
able to existing manually reconstructed networks of
other species. Such mechanisms could be generalised
by the use of common repositories, following the
model used for gene sequences or protein structures,
allowing users to deposit new reconstructions and
enhance existing ones through a seamless integration
process.

Table 3 Comparison of tricarboxylic acid and glyoxylate cycle reactions in Arabidopsis reconstructions

Reaction Radrich Poolman AraGEM

Succinate + Ubiquinone ↔ Fumarate + Ubiquinol OK OK With FAD/FADH2

Fumarate + H2O ↔ Malate OK OK OK

Malate + NAD ↔ Oxaloacetate + NADH + H
Malate + NADP ↔ Oxaloacetate + NADPH + H

No H Only with NAD/
NADH

OK

Oxaloacetate + ADP + Orthophosphate + Acetyl-CoA ↔ Citrate + ATP + CoA OK OK OK

Citrate ↔ cis-Aconitate + H2O OK No H2O OK

cis-Aconitate + H2O ↔ Isocitrate OK No H2O OK

Isocitrate ↔ Succinate + Glyoxylate OK OK OK

Glyoxylate + H2O +Acetyl-CoA ↔ Malate + CoA OK No H2O OK

Isocitrate + NAD ↔ 2-oxoglutarate + CO2 + NADH + H
Isocitrate + NADP ↔ 2-oxoglutarate + CO2 + NADPH + H

No H Only with NAD/
NADH;
2 H

OK

Isocitrate + NADP ↔ Oxalosuccinate + NADPH + H No H NA NA

Oxalosuccinate + NADP ↔ 2-oxoglutarate + CO2 + NADPH + H No H NA NA

2-oxoglutarate + CoA + NAD ↔ Succinyl-CoA + CO2 + NADH OK OK With ferredoxin

2-oxoglutarate + Thiamine-pyrophosphate ↔ 3-carboxy-1-hydroxypropyl-ThPP + Co2 OK NA OK

3-carboxy-1-hydroxypropyl-ThPP + Lipoamide-E ↔ Succinyldihydrolipoamide-E + Thiamine-
pyrophosphate

OK NA OK

Succinyldihydrolipoamide-E + CoA ↔ Succinyl-CoA + Dihydropiloamide-E OK NA OK

Succinyl-CoA + ADP + Orthophosphate ↔ Succinate + ATP + CoA
Succinyl-CoA + GDP + Orthophosphate ↔ Succinate + GTP + CoA

OK OK Only with ADP/
ATP

“Radrich” refers to this work, “Poolman” to the model by Poolman et al. [16] and “AraGEM” to the model by de Oliveira Dal’Molin et al. [17]. OK indicates that the
reaction in the model is identical to the first column, NA that it is not included in the model; other differences are explicitly described.
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Last, all applications using genome-scale metabolic
reconstructions do not necessarily require the same
level of data quality. For network analysis, a relatively
straightforward or automatic reconstruction may be
sufficient, while for metabolic engineering or experi-
mental design a highly accurate and well-annotated
model is generally necessary. It is therefore important
to keep track of the sources and validation level of
data used in reconstructions, so that users are able to
select the data with the appropriate level of confi-
dence for their application. As a first step towards
such a process, we here provide three reconstructions
with different levels of confidence. The core (yellow)
network has the highest confidence level and was pro-
ven to be stoichiometrically consistent, but has some
gaps. For applications such as Flux Balance Analysis,
a more continuous model can be preferable even
though some reactions might be of a lower confi-
dence level. The intermediate (green) network
attempts to suit such needs by filling gaps through
the inclusion of partial information. The complete
(blue) network eventually contains the largest amount
of available information, but with the restriction that
some reactions may be unconfirmed and the risk of
duplications. These different levels of network recon-
structions provide baselines upon which future
improvements can be built by the community to ulti-
mately obtain a high-quality genome-scale of Arabi-
dopsis metabolism [51].
The software tools developed for this work are pro-

vided in Additional file 9 as Java source code, together
with a protocol describing their function. The protocol
used to map chemical structures is additionally available
online from the myExperiment website [52].

Conclusion
In this work, we presented a methodology allowing an
efficient semi-automatic reconstruction of metabolic
networks via the integration of different databases,
and applied this methodology to the plant Arabidopsis
thaliana. The integration of different data sources
significantly enhances the quality of a reconstruction
and leads to quality standards that are comparable to
manual reconstructions. A long-term and coordinated
international effort will be desirable to provide com-
prehensive and accurate genome-scale metabolic
models of plants, and to provide the infrastructure
allowing widespread diffusion, frequent update, unim-
peded compatibility and convenience of use of such
models by the widest research community and
industry.

Additional material

Additional file 1: Compound and reaction data of the core (yellow)
metabolic network. The first sheet contains the list of compounds and
the second sheet the list of reactions. Each compound is identified by a
local identifier consisting of “Ath_C” followed by a four-digit number, its
Kegg identifier and AraCyc name. Each reaction is identified by a local
identifier consisting of “Ath_R” followed by a four-digit number, its Kegg
identifier and AraCyc name. The stoichiometry column describes the
reaction using local compound identifier. Substrates and products are
separated by the equal ("=”) sign. The stoichiometry is always explicitly
written even when it is one. The enzyme column lists the enzymes
catalysing each reaction by their EC number.

Additional file 2: Compound and reaction data of the intermediate
(green) metabolic network. The first sheet contains the list of
compounds and the second sheet the list of reactions. Each compound
is identified by a local identifier consisting of “Ath_C” followed by a four-
digit number, its Kegg identifier and AraCyc name. Each reaction is
identified by a local identifier consisting of “Ath_R” followed by a four-
digit number, its Kegg identifier and AraCyc name. The stoichiometry
column describes the reaction using local compound identifier.
Substrates and products are separated by the equal ("=”) sign. The
stoichiometry is always explicitly written even when it is one. The
enzyme column lists the enzymes catalysing each reaction by their EC
number.

Additional file 3: Compound and reaction data of the complete
(blue) metabolic network. The first sheet contains the list of
compounds and the second sheet the list of reactions. Each compound
is identified by a local identifier consisting of “Ath_C” followed by a four-
digit number, its Kegg identifier and AraCyc name. Each reaction is
identified by a local identifier consisting of “Ath_R” followed by a four-
digit number, its Kegg identifier and AraCyc name. The stoichiometry
column describes the reaction using local compound identifier.
Substrates and products are separated by the equal ("=”) sign. The
stoichiometry is always explicitly written even when it is one. The
enzyme column lists the enzymes catalysing each reaction by their EC
number. The gene columns list genes associated to each reaction based
on EC numbers.

Additional file 4: Distribution of enzymes in the three metabolic
networks for each Kegg pathway. The first two columns give the Kegg
identifier and name of each pathway. The yellow columns give the
number of enzymes from this pathway attributed to the core metabolic
network and its percentage in relation to the total number of enzymes
contained in the pathway. The green columns give the number of
enzymes attributed to the intermediate metabolic network and its
percentage in relation to the total number of enzymes. The blue column
gives the number of enzymes contained in the complete network, which
is equal to the total number of enzymes contained in the pathway.

Additional file 5: Comparison between topological properties of a
classical and atomistic representation for the core (yellow)
metabolic network. Red colour is used for the classical network, orange
for the atomistic network. (a) Node degree distribution. (b) Average
clustering coefficient distribution. (c) Betweenness centrality. (d)
Closeness centrality. (e) Shared neighbours distribution. (f) Shortest path
length distribution. See methods section for an explanation of network
parameters.

Additional file 6: Annotated SBML file of the core (yellow)
metabolic network.

Additional file 7: SBML file of the intermediate (green) metabolic
network.

Additional file 8: SBML file of the complete (blue) metabolic
network.

Additional file 9: Software and protocol for semi-automatic
reconstruction (Java source code).
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