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ABSTRACT: Semiconducting single-walled carbon nanotubes (s-
SWCNTs) are considered as a replacement for silicon in field-
effect transistors (FETs), solar cells, logic circuits, and so forth,
because of their outstanding electronic, optical, and mechanical
properties. Herein, we have studied the reaction of pristine
SWCNTs dispersed in a pluronic F-68 (PF-68) polymer solution
with para-amino diphenylamine diazonium sulfate (PADDS) to
separate nanotubes based on their metallicity. The preferential
selectivity of the reactions was monitored by changes in the
semiconducting (S22 and S33) and metallic (M11) bands by
ultraviolet−visible−near infrared spectroscopy. Metallic selectivity
depended on the concentrations of PADDS, reaction time, and the
solution pH. Furthermore, separation of pure s-SWCNTs was
confirmed by Raman spectroscopy and Fourier-transform infrared
spectroscopy. After the removal of metallic SWCNTs, direct current electric field was applied to the pure s-SWCNT solution, which
effectively directed the nanotubes to align in one direction as nanotube arrays with a longer length and high density. After that,
electrically aligned s-SWCNT solution was cast on a silicon substrate, and the length of the nanotube arrays was measured as ∼2 to
∼14 μm with an areal density of ∼2 to ∼20 tubes/μm of s-SWCNTs. Next, electrically aligned s-SWCNT arrays were deposited on
the channel of the FET device by drop-casting. Field-emission scanning electron microscopy and electrical measurements have been
carried out to test the performance of the aligned s-SWCNTs/FETs. The fabricated FETs with a channel length of 10 μm showed
stable electrical properties with a field-effect mobility of 30.4 cm2/Vs and a log10 (Ion/Ioff) current ratio of 3.96. We envisage that this
new chemical-based separation method and electric field-assisted alignment could be useful to obtain a high-purity and aligned s-
SWCNT array network for the fabrication of high-performance FETs to use in digital and analog electronics.

1. INTRODUCTION

Semiconducting single-walled carbon nanotubes (s-SWCNTs)
with a tunable bandgap (0.5 to 0.8 eV)1 and high field-effect
mobility (79,000 cm2/Vs)1 showed great promise in digital
electronics,2 field-effect transistors (FETs),3 radiofrequency
circuits,4 integrated circuits,5 radiation hard memory,6 infrared-
based detectors,7 and sensors with flexible and stretchable
electronics.8,9 For instance, s-SWCNTs could deliver ten times
higher energy-efficiency than conventional metal oxide based-
semiconductor FETs because of their ballistic electron trans-
port, excellent mechanical properties, strong optical absorptiv-
ity, very large Seebeck coefficient (160 μV/K), near-infrared
absorption (900−1400 nm), and optimal electrostatics.10 In
particular, high-purity s-SWCNTs have gained more interest in
the development of low-power, transparent, and high-perform-
ance display techniques for Internet of Things, smart phones,
television, computers, and so forth.1

Generally, all known synthetic methods could produce
SWCNTs with various heterogeneities in terms of metallicity,
diameter, length, and chirality, which significantly affect the
high-end applications of SWCNTs. Even, the presence of a trace
amount of metallic SWCNTs (m-SWCNTs) could degrade the
on/off ratio of the devices because of short circuit of the source
and drain electrodes in transistors.11 The mass production of
high-purity s-SWCNTs is still required, and it remains
challenging because of several factors.1−3,10 To separate s-
SWCNTs from a pristine SWCNT mixture, several methods
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have been developed such as density gradient ultracentrifugation
(DGU),12 gel chromatography,11 electrophoresis,13,14 aqueous
two-phase extraction,15 charge sign reversal method,16 DNA
wrapping,17 and so on. However, after the separation of s-
SWCNTs, if the purity is low, it can cause serious problems in
the function of transistors.18,19 Using DGU, separation of s-
SWCNTs could be achieved in low quantity (∼0.00035 mmol/
day) but with high purity.20 Gel chromatography might have
produced a high yield of semiconducting SWCNTs (∼0.02704
mmol/day), but the purity of s-SWCNTs is low compared to
that of DGU.20

Conjugated polymers (poly(9,9-di-n-dodecylfluorenyl-2,7-
diyl) and regioregular poly(3-dodecylthiophene-2,5-diyl) have
been used for separation of s-SWCNTs, which are expensive
than SWCNTs (Supporting Information, Table S1). Even after
the separation, the polymer wrapped on s-SWCNTs has affected
the electrical response of FETs, and the insulating polymers have
to be removed.21 The length of s-SWCNTs was also reduced
after the sorting process. Selective chemistry separations were
based on noncovalent adsorption of polymers on semi-
conducting nanotubes or preferential covalent attack onmetallic
nanotubes, and the latter one was more appealing as the
associated separation process is usually rather simple.22 Blanch
et al.,23 Schmidt et al.,24 and Strano et al.,25 have demonstrated
that some water-soluble diazonium compounds, for example, 4-
bromo-, 4-nitro-, 4-carboxy, and 4-chlorobenzenediazonium
tetrafluoroborate, could preferentially extract electrons from m-
SWCNTs rather than s-SWCNTs to form covalent −C−N
bonds.
On the other hand, solution-derived s-SWCNT-based FETs

showed poor performance when they were used as a random
network film compared to perfectly aligned s-SWCNT arrays,
having full surface coverage along with high density.18,26 s-
SWCNT alignment has been carried out using several methods
such as Langmuir−Schaeffer deposition,27 dielectrophoresis

alignment,28 Langmuir−Blodgett deposition,29 filtration-based
alignment,30 spin-assisted alignment,31 shear force alignment,32

dimension-limited self-alignment,10 and directional shrinking
transfer alignment.26 However, these aligned s-SWCNT array-
based films showed low FET performances.27−32 Thereby,
Gopalan and Arnold et al. have developed a floating evaporative
self-assembly method to align the s-SWCNTs with high density
and quality on FETs to obtain high-performance devices.33,34

Moreover, this method is unlikely suitable for wafer-scale
fabrication of s-SWCNTs/FET and integrated circuits. Thus,
there is a need for a universal, simple, and effective procedure to
do the alignment of s-SWCNTs into arrays with high lengths and
density.
In this study, s-SWCNTs were separated by mixing pristine

(as-prepared) SWCNTs (AP-SWCNTs) with pluronic F-68
(PF-68) (Scheme 1a) by probe-assisted sonication (Scheme 1b)
followed by standing the mixture for 1 day and then centrifuged
to obtain monodispersed SWCNTs in the solution (Scheme
1b,c). The monodispersed SWCNTs were treated with para-
amino diphenylamine diazonium sulfate (PADDS). PADDSwas
selectively reacted with m-SWCNTs and formed a stable−C−N
bond on the m-SWCNT surface.25 This selective functionaliza-
tion of m-SWCNTs by PADDS made them denser than the
unreacted or less-reacted s-SWCNTs and allowed them to settle
during low-speed centrifugation.23−25,35 UV−visible−near
infrared (UV−vis−NIR), Raman, and Fourier-transform infra-
red (FT-IR) spectroscopy methods have been used to
characterize the separated s-SWCNTs. UV−vis−NIR spectros-
copy and Raman spectroscopy confirmed that the supernatant
solution was enriched with s-SWCNTs, and the precipitate
contained reacted m-SWCNTs. UV−vis−NIR showed that the
purity of the separated s-SWCNTs was ∼99.51%.
In addition to this, we have also demonstrated a simple

method to produce highly aligned s-SWCNTs using the aqueous
s-SWCNT solution under direct current(DC) electric field

Scheme 1. (a) 2-D Structural Formula of PF-68 (Red Regions Represent Hydrophilic Nature, while Green Regions Are
Hydrophobic), (b) Various Steps Involved in the Preparation of Monodispersed SWCNTs in PF-68 Aqueous Solution, and (c)
Proposed Interaction between PF-68 and SWCNTs in Aqueous Solution
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treatment. The aligned s-SWCNT arrays of nanotubes were
deposited on FET devices by the drop-casting method to
prepare about 30 devices with a channel length of 10 μm. The as-
prepared s-SWCNTs/FET devices exhibited excellent perform-
ance with the field-effect mobility in the range of 4.5−30.4 cm2/
V.s and on−off ratios from 103 to 104 (for 30 devices). The DC
electric field-aligned s-SWCNT arrays have successfully
connected the microchannel of FETs as confirmed by field-
emission scanning electron microscopy (FE-SEM) and switch-
able FETs.

2. RESULTS AND DISCUSSION

UV−vis−NIR spectroscopy was used to characterize the
SWCNTs. The UV−vis−NIR spectrum could indicate the
electronic transitions from the valence band (VB) to conduction
band (CB) denoted as (VBn → CBn), where n is the band
index.25 Figure 1a shows the VB1 → CB1, first Van Hove
transition of the metallic nanotubes (M11) (armchair type) from
600 to 800 nm, as well as the Van Hove transitions of the VB2→
CB2 (S22) and VB3 → CB3 (S33) of semiconducting nanotubes
(zigzag and chiral type) in the ranges from 800 to 1200 nm and
400 to 600 nm, respectively.22,25 These absorption band regions
could allow us to investigate the presence of metallic and
semiconducting nanotube compositions in the separated
dispersion.25After the treatment of SWCNTs with PADDS,
because of high reactivity, preferentially metallic nanotubes were
reacted with PADDS over seminanotubes under the optimized
conditions (such as PADDS concentration, pH, and reaction

time), and thereby electronic transition of metallic nanotubes
was decreased in the region of 600−800 nm (Figure 1b-d).23,25

The dispersing ability of PF-68 was evaluated by preparing
SWCNT dispersions using various concentrations of PF-68
(from 0.5 to 5.5%) with a fixed amount of as-prepared AP-
SWCNTs at room temperature. All the mixtures were probe-
sonicated followed by centrifugation, which produced mono-
dispersed SWCNT solutions (Scheme 1, see Experimental
Section 4). Next, UV−vis−NIR spectra of all monodispersed
SWCNTs prepared with different concentrations of PF-68 were
recorded (Figure 1a, curves i−vi). The dispersion obtained with
1.5% PF-68 showed well-resolved SWCNT bands in the UV−
vis−NIR spectrum with high intensities (Figure 1a, curve ii).23

Therefore, we selected 1.5% PF-68 solution as the optimum
concentration to prepare monodispersed SWCNTs for further
studies (Scheme S1).23

The selective metallic nanotube functionalization can be
controlled by varying the PADDS concentration added into the
monodispersed SWCNT solution. To study the effect of
PADDS concentration, the selective reaction between PADDS
and metallic nanotubes was carried out using different
concentrations of PADDS from 50 to 300 μM at a fixed
concentration of (0.25 mg mL−1) monodispersed SWCNT
solution.23 After the reaction, the reacted SWCNTs were
collected and centrifuged at 24,041 g for 180 min. The
supernatant solution was analyzed by UV−vis−NIR spectros-
copy. It was found that with the stepwise additions of PADDS
into the monodispersed SWCNT solution, metallic tube
functionalization was increased from 50 to 150 μM (Figure

Figure 1. (a) UV−vis−NIR spectra for SWCNTs dispersed in PF-68 with different concentrations: (i) 0.5% to (vi) 5.5% PF-68, (b) SWCNTs
dispersed in 1.5% PF-68 solutions were functionalized with different concentrations of PADDS after 40 h of treatment: (i) 50 to (vi) 300 μMPADDS,
(c) SWCNTs dispersed in 1.5% PF-68 solutions were treated with 150 μM PADDS at different time intervals: (i) 10 to (vi) 60 h, and (d) SWCNTs
dispersed in 1.5% PF-68 solutions were treated with 150 μM PADDS at different pH values after 20 h. All reactions were carried out at room
temperature (27 ± 1 °C).
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1b, curve i to iii). However, further increase of PADDS
concentration from 200 to 300 μM added into monodispersed
SWCNT solution (Figure 1b, curve iv to vi) did affect both the
metallic and semiconducting absorbance regions, because of the
excess concentration of PADDS which reacted with both types
of nanotubes without any selectivity.23,25,35 Based on the above
results, the optimum concentration of PADDS was chosen as
150 μM for selective separation of m-SWCNTs from the s-
SWCNTs (Figure 1b, curve iii).
Meanwhile, for the selective reaction, 10 μL of 10 mM

PADDS was added 15 times to 10 mL of monodispersed
SWCNTs (0.25 mg mL−1) in 1.5% PF-68 and kept standing for
1 h and stirred using a magnetic bar at 1500 rpm up to 40 h at
room temperature.23 Under this condition, PADDS selectively
extracts electrons from metallic nanotubes in the formation of a
−C−N covalent bond with m-SWCNTs (Scheme 2a-c, see
Experimental Section 4) and thereby demonstrates a highly
chemo-selective reaction.25 Therefore, we selected 150 μM
PADDS as the optimum concentration to functionalize the
metallic nanotubes over s-SWCNTs for further studies (Scheme
S1).23

Next, the optimum reaction ‘time’ was evaluated by
monitoring the reactions from 10 to 60 h with the addition of
fixed concentration of PADDS into monodispersed SWCNT
solution at room temperature. All the mixtures were stirred and
centrifuged to collect the supernatant SWCNT solution
(Scheme S1, see Experimental Section 4). After that, UV−
vis−NIR spectra of all supernatant SWCNTs were measured
(Figure 1c, curves i−vi). The semiconducting nanotubes were
enriched in supernatant SWCNT solution, which was obtained
from the reaction of 20 h. It showed well-resolved S33 and S22
bands in the UV−vis−NIR spectrum with high-intensity bands
(Figure 1c, curve ii). Based on the above results, 20 h reaction
time was selected as an optimum duration for the removal of the
metallic nanotubes over semiconducting nanotubes from the
monodispersed SWCNT solution (Scheme S1).23

To ascertain whether the selectivity of the reaction is pH-
dependent or not, the reaction was carried out under different
pH (from 2−11) solutions with the fixed time and concentration
of PADDS (150 μM) in monodispersed SWCNT solution at
room temperature. Subsequently, the mixtures were stirred and
centrifuged to collect the supernatant SWCNT solutions

Scheme 2. Schematic Representation of s-SWCNT Separation Using PADDSa

aThe separation method starts from point (a), the preparation of the SWCNT dispersion in PF-68 surfactant solution, (b) covalent
functionalization of as-produced SWCNTs, (c) PADDS-extracted electrons, thereby elimination of nitrogen (N2) gas and formation of a stable
−C−N covalent bond on the metallic nanotube surface, and (d) separation of unreacted/less reacted semiconducting SWCNTs. The chemical
structure of PF-68 and PADDS is shown in steps ‘a’ and ‘b’.
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(Scheme S1, see Experimental Section 4). The variation in pH
significantly influences the selectivity of metallic nanotube
functionalization and removal as shown in Figure 1d, curves i to
vi. The UV−vis−NIR spectrum has showed that metallic
nanotubes were removed completely with the increase of pH
from 7 to 9 and reached the maximum removal of metallic
nanotubes at pH ∼9 (Table S2).23,35 It was due to
dediazoniation of PADDS under alkaline conditions (Scheme
S2). During dediazoniation, PADDSwas selectively reacted with
m-SWCNTs (which has high density of electrons) and formed a
stable −C−N covalent bond with the metallic nanotubes over
semiconducting nanotubes (Scheme 2c-d).23,25 The (4-
aminophenyl)(phenyl)amide (decomposition product of
PADDS) functionalized metallic nanotubes may now exist as
the delocalized radical cation, which could further receive
electrons from neighboring nanotubes or diazonium/sul-
fate.23,25 Therefore, we attribute the changes in the UV−vis−
NIR spectrum around 800 nm to a nonspecific solvatochromic
shift that resulted from the addition of the sulfate counter ion.26

However, under strong alkaline conditions (pH ∼11), the UV−
vis−NIR bands of both seminanotubes and metallic nanotubes
were completely suppressed, and it may be due to the
aggregation effect of nanotubes along with (4-aminophenyl)-
(phenyl)amide (Figure 1d, curve vi).23,35 However, under acidic
conditions (pH 2−4), the selective reaction on metallic
nanotubes was not observed (Figure 1d, curves ii and iii)
because of the poor reactivity of PADDS.23 It was also confirmed
that addition of NaOHwas necessary to form (4-aminophenyl)-
(phenyl)amide. Based on the above results, pH ∼9 was selected
as an optimum pH to remove the metallic nanotubes by
functionalization from s-SWCNTs. The possible mechanism of
metallic nanotube functionalization by PADDS is shown in
Scheme 2.23−25,35−37

To investigate about the decomposition pattern of PADDS,
the dediazoniation reaction was carried out in the absence of
SWCNTs and monitored by UV−vis spectroscopy (Figure S1).
Fresh PADDS solution showed three absorption peaks at 246
(minor peak), 276 (shoulder peak), and 376 nm (strong peak)
corresponding to the transitions of π → π* aniline , π → π*
benzenoid, and n → π* transition of diazonium (Figure S1,
curve i).38 However, after the treatment of 20 h in 1.5% PF-68
aqueous solution (pH ∼9), the decomposed PADDS solution
was used to record the UV−vis spectrum (Figure S1, curve ii). It
showed a peak at 276 nm because of the formation of (4-
aminophenyl)(phenyl)amide from N-(4-iminocyclohexa-2,5-

dien-1-ylidene)aniline.38 It is worth noting that the diazonium
peak completely disappeared because of dediazoniation of
PADDS.23,39,40 These results were also supported by the above
mechanism as shown in Scheme 2c-d.23,25

Raman spectroscopy is an important nondestructive chemical
analysis technique used to study the nanotube structure with
unusual electronic and phonon properties of SWCNTs. The
Raman spectra of pristine SWCNT (Figure 2a, curve i), s-
SWCNT (Figure 2a, curve ii), m-SWCNT (Figure 2a, curve iii),
and PADDS (Figure 2a, curve iv) samples were recorded using
633 nm laser excitation. The Raman spectrum of pristine
SWCNTs and s-SWCNTs (Figure S2a) showed a clear radial
breathing mode (RBM) peak between 100 and 300 cm−1.41 The
lower frequency RBM range indicated two peaks at 155 cm−1

(diameter ∼1.61 nm) and 171 cm−1 (diameter ∼1.45 nm)
because of the semiconducting zigzag and chiral nanotubes.
Also, one small peak at 231 cm−1 (diameter ∼1.06 nm) for
metallic nanotubes (armchair) appeared for the pristine
SWCNTs.22,36 The diameters of individual nanotubes were
calculated using the following equation ω (RBM) = (234/d +
10), where ω (RBM) represents the frequency of RBM mode
(cm−1) and d is the diameter of the nanotube (nm).41

We have also recorded the Raman spectrum of the pristine
SWCNTs (Figure S2b, curve i) and separated s-SWCNT
solution (Figure S2b, curve ii) using 785 nm (wavelength) laser
excitation. As shown in Figure S2b, in the range from 100 to 300
cm−1, a strong peak because of metallic nanotubes appeared at
162.31 cm−1.16,42 Interestingly, for the s-SWCNT solution, no
metallic peak was observed, which may be due to the removal of
m-SWCNTs by PADDS functionalization.16,42 In addition, the
disorder D-band peak was observed at 1320.73 cm−1 with high
intensity for m-SWCNTs compared to s-SWCNTs; this
indicated the covalent functionalization (sp2 C to sp3 C) on
the m-SWCNTs by the benzenoid groups as shown in Figure
2a.25 At the same time, no significant D-band was observed at
1330 cm−1 for pristine SWCNTs, which indicated that the
defect-free nanotubes were used (Figure 2a, curve i).23 The
tangential modes in the range between 1450 and 1700 cm−1

exhibited the electronic properties of nanotubes with their
characteristic G− and G+ features. For the pristine SWCNTs
(Figure 2a, curve i), the G− band (at 1572.52 cm−1) appeared as
a broad and asymmetrical line of the Breit−Wigner−Fano peak
was also observed because of the presence of metallic nanotubes.
The G− band area in the s-SWCNT sample (Figure 2a, curve ii)
was significantly smaller than that of pristine SWCNTs (Figure

Figure 2. (a) Raman spectra of (i) pristine SWCNTs, (ii) supernatant s-SWCNTs, (iii) precipitated m-SWCNTs, and (iv) PADDS-mixed PF-68
aqueous solutions dried on a silica substrate and (b) FT-IR spectra of (i) PADDS aqueous solution, (ii) supernatant s-SWCNTs, and (iii) precipitated
m-SWCNTs.
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2a, curve i), proving that metallic nanotubes were removed from
supernatant SWCNTs.22,23,25,41 In addition, the Raman
spectrum of the precipitated SWCNTs (Figure 2a, curve iii)
showed a strong G− band, corroborating that this fraction
contains enriched metallic nanotubes (Figure 2a).25 Moreover,
the Raman peaks of PADDS (Figure 2a, curve iv, peaks a to c and
see Table S3 in the Supporting Information) completely
disappeared after the reaction with SWCNTs.43,44 These
Raman results also supported the observation made by the
UV−vis−NIR spectrum.
Next, the FT-IR spectrum was used to study the PADDS and

PF-68 compounds. The FT-IR spectrum of the sample can be
recorded by the absorption of IR frequencies by chemical bonds
or functional groups, which lead to the fundamental vibrational
and rotational or stretching and bending structures. FT-IR
spectra of PADDS and PF-68 were recorded as shown in Figure
2b and Figure S2c. The FT-IR spectra of PADDS (Figure 2b,
curve i) showed two N−H stretches between 3000 and 3600

cm−1, which were attributed to surface primary amine groups of
diazonium salt.45 Similarly, primary amines were observed
between 910 and 665 cm−1.45 The C−N stretch was recorded at
lower wavenumbers (at 1063 cm−1) because of PADDS as an
aromatic compound.45 Additionally, N−H bend was also noted
at 1574 cm−1.45 The PADDS exhibited a transmittance peak of
diazonium N2

+ molecules at 2179 cm−1.46 Next, the FT-IR
spectrum of the PF-68 polymer (Figure S2c) showed a small
intense band at 3454 cm−1 because of the vibrations of hydroxyl
(−OH) groups.47 A strong absorption band at 2883 cm−1 was
observed because of C−CH3 stretching vibration of PF-68.47

The characteristic peaks at 958 and 1096 cm−1 in PF-68 were
observed because of C−O symmetrical and asymmetrical
stretching vibrations of ether groups. The peak at 1279 cm−1

was assigned to −CH2 group vibration of PF-68.47 When we
look at the FT-IR spectrum of s-SWCNTs (Figure 2b, curve ii)
and m-SWCNTs (Figure 2b, curve iii), PADDS (Figure 2b,

Figure 3. FE-SEM image of (a) pristine SWCNTs at 80,000× magnification with 1 μm scale bar and (a’) histograms of the length distributions of
nanotubes. (b) FE-SEM image of s-SWCNTs at 80,000×magnification with 1 μm scale bar and (b’) histograms of the s-SWCNT length distributions.
(c) FE-SEM image (at 10,000× with 10 μm scale bar) of aligned s-SWCNT arrays by DC electric field and (c’) histograms of the overall lengths of
aligned nanotube arrays and their distribution.
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curve i) peaks completely disappeared after the reaction with
SWCNTs.45

In the following section, we have discussed about the
alignment of separated nanotubes (see Experimental Section
4). The aligned s-SWCNT arrays were characterized by FE-
SEM. The surface morphologies and length of monodispersed
SWCNTs (Figure 3a,a’), separated s-SWCNTs (Figure 3b,b’),
and aligned s-SWCNT arrays of network (Figure 3c,c’)
deposited on (3-aminopropyl) triethoxysilane (APTES)-
functionalized SiO2/Si substrates were recorded as shown in
Figure 3. Before the separation, the monodispersed SWCNTs
resembled a random network with average tube (bundle)
diameters of 10−30 nm with lengths of 0.2−2 μm (Figure
3a,a’).41 However, after the chemical reaction and separation,
the separated s-SWCNTs had short lengths and low areal
density as compared to the monodispersed SWCNTs (Figure
3b,b’).26

Alignment of s-SWCNT arrays of network by a simple electric
field method is carried out. The possible mechanism of s-
SWCNT alignment under DC electric field is shown in Scheme
3.48 Initially, the electric field effect induces the dipole moment
at the edges of s-SWCNTs, which resulted in their rotation to a
particular angle and then started to align under the electric field
(see Experimental Section 4).48 Finally, the polarized nanotubes
were attracted to each other (head-to-head contact) and formed
a chain-like structure in between the platinum anode and
cathode (Scheme 3).48,49 Scheme S3 (b) shows the details of the
electric field-aligned nanotube array network deposition
procedure (third step of Scheme S3 (a)). The aligned nanotube
solution contains 1.5% PF-68. The hydrophobic polyoxypropy-
lene chain of PF-68 adsorbs onto the nanotube surface by van
der Waals force of attraction and hydrophilic polyoxyethylene
chains exposed into the aqueous phase (Scheme 1).23 When the
electrically aligned nanotubes were drop-cast on the APTES-
functionalized SiO2/Si substrate, deposition of aligned nano-
tube arrays formed as a network onto the surface of the amino-
functionalized SiO2/Si substrate by the Coulombic force of
attraction between the negatively charged −OH surface groups
of s-SWCNTs and positively charged −NH2 groups of the
APTES-functionalized substrate (Scheme S3) (see Experimen-
tal Section 4).50,51 The density of aligned nanotube arrays on the
SiO2/Si substrate can be readily controlled by adjusting the
volume and dilution of the dispersion before the alignment.

Under the present condition, aligned nanotube arrays were
obtained with the length from 2 to 14 μm and the areal density
varied from 2 to 20 nanotubes/μm (Figure 3c,c’ and Figure S3)
(Table 1).49 As a control measure, UV−vis−NIR spectra of

unaligned and aligned nanotube dispersions were recorded,
which indicated that after the electric-field application, there
were no changes in Van Hove transition of the aligned s-
SWCNT solution (Figure S4).
Finally, to test the electrical properties of the separated s-

SWCNTs, electrically aligned s-SWCNT dispersion and pristine
SWCNT (control) solution were drop-cast onto the channel of
the FET devices to demonstrate the benefits of this separation
and alignment. Figure 4(a,b) shows the schematic representa-
tion and optical image of the FET device (see Experimental
Section 4). Figure 4(c−e) shows the p-type transistor behavior
of the pristine SWCNT-modified FET and aligned s-SWCNT
array (aligned s-SWCNT)-modified FETs under ambient
conditions.52 In fact, drain current of both devices increased
when the negative gate voltage increased (Figure 4c,d).
However, the pristine SWCNT-modified FET showed drain
current saturation behavior than the aligned s-SWCNT-
modified FET between +16 and −16 gate voltages.13,52−54

Moreover, the following are the maximum drain currents of
aligned s-SWCNTs/FET (2.30 × 10−4 A) and pristine
SWCNTs/FET (1.41 × 10−4 A) observed at +2 drain voltage
with (−16) gate voltage (Figure 4c,d).9,13,22,52,54,55 Next, the

Scheme 3. Schematic Representation of Alignment of s-SWCNTs Dispersed in 1.5% PF-68 under the DC Electric Field

Table 1. Comparison of Lengths and Areal Densities of
Aligned-s-SWCNTs, s-SWCNTs, and Pristine SWCNTs

s.no. materials

lengths of
nanotube

arrays (μm)a

average length of
nanotube arrays

(μm)

areal density of
nanotubes
(tubes/μm)

1 pristine
SWCNTs

0.3−2.0 1.2 4−6

2 s-SWCNTs 0.3−2.0 0.8 2−4
3 aligned-s-

SWCNTs
8−14 11 16−20

aLengths of the nanotubes were measured using Image J software on
the recorded FE-SEM images from Figure 3a-c. Pristine SWCNT
lengths were calculated from Figure 3a. The s-SWCNT lengths were
calculated from Figure 3b. Aligned-s-SWCNT array lengths were
calculated from Figure 3c.
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field-effect mobility value was calculated for each FET transistor
to observe how quickly an electron can move through a
semiconductor when pulled by an electric field.2 Figure 4e
displays the drain current measurement as a function of gate
voltage VGS (from −20 to +20) with an applied source-drain
voltage, VDS, of 0.2 V for aligned s-SWCNTs/FET and pristine
SWCNTs/FET devices. For the devices made using the pristine
SWCNT dispersion, the maximum field-effect mobility was
found to be 13.1 cm2/Vs.56,57 However, after the separation of s-
SWCNTs and electrical field alignment, the prepared devices
showed a field-effect mobility of 30.4 cm2/Vs, which is
comparable to the performance of previously reported s-
SWCNT/FETs (Table 2).1,21,27,33,34,58−61 Similarly, on/off

current ratios were calculated from the maximum drain current
and minimum drain current divided in the gate voltage range of
(−20 to +20 V). The log10 (Ion/Ioff) current ratios were 3.96 and
0.35 for aligned s-SWCNTs/FET and pristine SWCNTs/FET,
respectively. Figure 4f shows the plots of on/off current ratios vs
field-effect mobility’s of FETs fabricated using s-SWCNTs/
FETs and pristine SWCNTs/FETs. It was found that the aligned
s-SWCNT array-based FETs (about 30 devices) have exhibited
higher field-effect mobility’s and on/off current ratios than
pristine SWCNT-based FETs.9,13,54,60,62 The high performance
of FETs was achieved because of the high-purity s-SWCNTs and
the reduction in the number of random nanotube interactions
on the FET channel by the DC electric field align-

Figure 4. Schematic representation (a) and visual images of (b) back-gated s-SWCNTs/FET transistor with a scale. Output characteristic (IDS− VDS)
curves of the as-prepared (c) pristine SWCNTs/FET and (d) aligned s-SWCNTs/FET. Both the curves were recorded from a drain voltage of−2 V to
+2 V as a function of gate voltage swept between +16 V and −16 V in steps of 4 V. (e) Transfer characteristic (IDS − VGS) curves of the pristine
SWCNTs/FET (i) and aligned s-SWCNTs/FET (ii) were measured at constant VDS bias (0.2 V). (f) Plots of on/off current ratios (ID

max/ID
min) vs

field-effect mobility’s (μ) obtained from 30 individual devices.

Table 2. Comparative Analysis of the Proposed Aligned s-SWCNTs/FETTransistor Performance withOther Sorted/Unsorted s-
SWCNT-Based Thin-Film Transistors and FETs

chemicals used for sorting of s-SWCNTs
centrifugation method and

speed
alignment or deposition

method
channel

length (μm)
mobilityμeff

(cm2 V−1 s−1)
log10 (Ion/
Ioff) ratio reference

poly(9-(1-octylonoyl)-9H-carbazole-2,7-
diyl)

ultracentrifuge /40,000 g for
2 h

aerosol jet printing 170 μm 9.9 5 58

95% SWCNT aqueous solution was
purchased from NanoIntegris

- drop-casting 160 μm 7.5 4 59

poly(9-(1-octylonoyl)-9H-carbazole-2,7-
diyl)

ultracentrifuge20,000 g for
1 h

dip-coating 5−50 μm 28−67.5 5−6 1

poly(3-dodecylthiophe-ne-2,5-diyl) ultracentrifuge /3,67,000 g
for 5 h

blade coating 10 μm 0.42−3.71 8 60

PFO-BPy ultracentrifuge /50,000 g for
1 h

DFES 9 38 6 33

PF-PD ultracentrifuge /22,000 g for
0.5 h at 16 °C

drop-casting 5−30 μm 20−49 6 21

PFO-BPy ultracentrifuge /3,00,000 g
for 1 h

FESA 3 μm 179 ± 10 5−7 34

SDS ultracentrifuge /2,87,700 g
for 18 h

Langmuir − Schaefer 120 nm 130 ± 20 3 27

99% s-SWCNT aqueous solution was
purchased from NanoIntegris

- dielectrophoretic
assembly

2 μm 16 2−4 61

PADDS centrifugation /24,041 g for
3 h

electric field alignment
and drop-casting

10 μm 4.5−30.4 3−4 this work
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ment.4,33,60,63,64 The random nanotube networks are known to
be one of the important factors for themobility losses and carrier
trapping because of the intertube resistance. In particular, the
polymers present on the nanotubes could act as an additional
barrier to the hole transport through the channel.19,60 Herein,
our results have successfully demonstrated the effective uses of
the separated and aligned s-SWCNTs to fabricate high-
performance FETs.

3. CONCLUSIONS

We have reported a simple method for s-SWCNT separation
using PADDS as the selective reagent. The proposed PADDS
could selectively functionalize the metallic nanotubes over the
semiconducting in monodispersed SWCNT solution. By this
approach, we have easily separated the s-SWCNT solution with
high purity up to ∼99.51% by low-speed centrifugation (24,041
g). The separation occurred because of charge transfer between
PADDS and m-SWCNTs. The separation efficiency depends on
the concentration of PADDS, reaction time, and solution pH.
UV−vis−NIR and Raman spectroscopy methods have con-
firmed that s-SWCNT separation is achieved. Particularly, this
selective chemistry-based s-SWCNT separation is beneficial for
the chemical industry because it is inexpensive, there is no need
to have sophisticated instruments, and so forth. Therefore, the
cost of the separated s-SWCNT dispersion may decrease
compared to commercially available in the market (Table S1).
Moreover, we believe that this selective chemistry-based
separation method may offer a large-scale production of s-
SWCNTs. In addition, we have studied the alignment of
nanotube arrays by DC electric field treatment. Finally, the
electrical properties of the fabricated FETs proved the real
application of separated and aligned s-SWCNT arrays compared
to unseparated SWCNTs. The aligned s-SWCNT-based FET
exhibited an on-state current of 110.25 μA (VDS = 0.2 V; VGS =
−20 V), which is competitive to that of the reported s-SWCNT
array-based FETs.1,21,27,33,34,58−61 We believe that the reported
electrically aligned s-SWCNT array-based FETs may be useful
for the development of high-performance electronic devices.

4. EXPERIMENTAL SECTION

4.1. Chemicals and Instruments. Commercially available
as-prepared AP-SWCNTs were purchased from carbon
solutions, Inc., USA. PADDS salt was purchased from MP
Biomedicals, LLC, France. PF-68 nonionic surfactant was
purchased from Alfa Aesar, China, and APTES was purchased
from Sigma-Aldrich, USA. All aqueous solutions were freshly
prepared using doubly distilled water. The pH of the solutions
was adjusted using 0.1 M HCl or 0.1 M NaOH to maintain
different pH conditions. All the experiments were conducted at
room temperature (27 ± 1 °C).
The electric field experiment was conducted using a DC

power supply from Keithley (model: 2231A-30-3), USA. The
absorption spectra of SWCNTs were measured using a UV−
vis−NIR spectrophotometer, Agilent technologies (Cary 5000),
USA. A micro-Raman spectrometer (LabRam HR evolution,
Horiba) was used to characterize SWCNTs. The vibration and
stretching modes of PF-68 and PADDS were analyzed using a
FT-IR spectrometer (IRTracer-100, Shimadzu). The surface
morphology of SWCNTs was analyzed using a field-emission
scanning electron microscope (FE-SEM; model: Quanta 200
FEG) from FEI Netherlands. All electrical measurements were

carried out using a semiconductor parameter analyzer (Keithley,
model: 2612B, USA).

4.2. Preparation of Monodispersed SWCNT Solution.
25 mg of AP-SWCNTs was dispersed into 100 mL of PF-68
solution with different concentrations (0.5, 1.5, 2.5, 3.5, 4.5, and
5.5% PF-68 solution) via bath-sonication for 20 min (Labman
Inc., Model: LMUC-2). The concentration of SWCNTs was
0.25 mg/mL in each aqueous solution. Next, these solutions
were probe-sonicated (Pro 500, Labman) using a horn type
probe (Titanium alloy, 6 mm diameter) for 60 min (3 sec ON/2
sec OFF) at 50% of amplitude (Figure S5). After the probe
sonication, the resulting dispersion was centrifuged at 16,000
rpm (24,041 g) with a fixed angle rotor (C-24 Plus, Remi) for 90
min to precipitate the bundles and impurities. Then, the
monodispersed SWCNT solution was filtered through a
Whatman filter paper (pore size of 11 μm) to remove the
bundles and impurities. Finally, the collected monodispersed
SWCNT solution was utilized for s-SWCNT separation
(Scheme 1).

4.3. Separation of s-SWCNTs. The separation of s-
SWCNTs was carried out by changing various parameters
such as concentrations of PF-68 and PADDS with reaction time
and solution pH (Scheme S1). The batch mode technique was
carried out by stirring with an optimized amount of the PADDS
in 10 mL of the monodispersed SWCNT solution. After the
reaction with PADDS, the suspensions were centrifuged at
24,041 g for 180 min to remove the precipitate/bundles, and
80% of the supernatant was collected from the centrifuge tube.
The pH of the solutions was adjusted using 0.1 M of HCl or
NaOH solutions. The effects of pH (2−11), monodispersed
SWCNT solution concentration (0.25 mg/mL), PF-68
surfactant concentration (0.5 to 5.5%), initial PADDS
concentration (50−300 μM), and effect of time (10−60 h)
were optimized for the effective separation (Scheme S1 and
Figure 1). The length and density of s-SWCNTs before and after
the electrical field alignment were determined through FE-SEM.
For this purpose, FE-SEM micrographs were analyzed using the
Java-based image processing program known as Image J
software.65

4.4. Alignment of s-SWCNTs. The separated s-SWCNT
solution was then transferred into a 10 mL electric field cell
where two platinum electrodes were placed on the lower and
upper side as an anode and cathode, respectively. Next, 30 V was
applied through the Pt electrodes using a DC power supply (for
6 h) (Scheme 3). After applying the electric field, the alignment
of the s-SWCNTs was compared with that of s-SWCNTs and
pristine SWCNTs by FE-SEM (Scheme 3 and Figure 3).

4.5. Fabrication of s-SWCNTs/FET Devices. To prove the
benefits of this separation and alignment of s-SWCNTs, FETs
were fabricated with aligned s-SWCNT arrays and pristine
SWCNTs (fabricated from the monodispersed SWCNT
solution). All FETs were fabricated on p-type silicon (Si)
wafer (diameter: 7.62 cm, thickness: 375 μm, polished: single
side, orientation: <100>, and resistivity: 1−10Ω cm) deposited
by a silicon dioxide (SiO2) layer (500 nm) as a gate dielectric.
Then, electrical contacts were made by Ti/Pt evaporation
(source and drain electrodes) through a metal mask.54 The
fabricated FET channel length and width were 10 and 200 μm,
respectively. Finally, a disco automatic dicing saw instrument
(DAD 322, diamond blade, 22,000 RPM) was used to dice the
wafer into smaller dies 1.6 cm× 1.6 cm.Next, the fabricated FET
devices were functionalized by APTES prior to SWCNT
deposition.54 To place nanotubes on the channel, the APTES-
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functionalized FET devices were drop-cast by 100 μL of aligned
s-SWCNT or pristine SWCNT solution, and dried at room
temperature for 12 h. After fabricating the dried nanotube film
on the channel of the FET, it was washed with distilled water and
heat-treated at 200 °C for two hours to remove the surfactants
and decrease the contact resistance.54 Finally, the fabricated s-
SWCNTs/FETs (using aligned nanotubes) and pristine
SWCNTs/FETs were tested by electrical measurements. The
field-effect mobility was calculated according to the following
equation.62
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Where μeff is the effective field-effect mobility, Lox is the
thickness of the gate oxide, Vsd is the source-drain voltage,Wsd is
the channel width, ε is the dielectric constant of the gate oxide,
Lsd is the channel length, and dI/dVg is the transconductance.
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