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ABSTRACT

Raw sequencing reads of miRNAs contain machine-
made substitution errors, or even insertions and
deletions (indels). Although the error rate can be low
at 0.1%, precise rectification of these errors is crit-
ically important because isoform variation analysis
at single-base resolution such as novel isomiR dis-
covery, editing events understanding, differential ex-
pression analysis, or tissue-specific isoform identi-
fication is very sensitive to base positions and copy
counts of the reads. Existing error correction meth-
ods do not work for miRNA sequencing data at-
tributed to miRNAs’ length and per-read-coverage
properties distinct from DNA or mRNA sequencing
reads. We present a novel lattice structure combin-
ing kmers, (k – 1)mers and (k + 1)mers to address
this problem. The method is particularly effective
for the correction of indel errors. Extensive tests on
datasets having known ground truth of errors demon-
strate that the method is able to remove almost all
of the errors, without introducing any new error, to
improve the data quality from every-50-reads con-
taining one error to every-1300-reads containing one
error. Studies on experimental miRNA sequencing
datasets show that the errors are often rectified at
the 5′ ends and the seed regions of the reads, and
that there are remarkable changes after the correc-
tion in miRNA isoform abundance, volume of single-
ton reads, overall entropy, isomiR families, tissue-
specific miRNAs, and rare-miRNA quantities.

INTRODUCTION

With rapid developments of sequencing technology, high-
throughput platforms have inexpensively produced huge
amounts of genomic reads at unprecedented speed (1), for
example by whole genome sequencing, total RNA sequenc-
ing, mRNA sequencing and small RNA sequencing. Re-
cently, sequencing of miRNAs (a special type of small RNA
molecules containing about 22 nucleotide bases) has been
widely used to examine tissue-specific expression patterns,
to identify isomiRs (mature miRNA variants) and to dis-
cover previously uncharacterized miRNAs (2–6). As key
regulators in various biological processes, miRNA dysregu-
lation is implicated in many diseases for example cancer and
autoimmune disorders (7–11). Numerous studies also reaf-
firm that miRNA regulatory functions are involved in post-
transcriptional gene silencing (PTGS), transcriptional gene
silencing (TGS) and transcriptional gene activation (TGA)
(12,13), in which miRNAs bind to nascent RNA transcripts,
gene promoter regions or enhancer regions and exert fur-
ther effects via epigenetic pathways (8,14).

Fine-granulated analysis of miRNA reads at single-base
resolution for uncovering their isoforms (isomiRs) and
alternative splicing is one of the most frontier research
areas in this field (4,15–20). IsomiRs vary in size and
base content, due to the alternative and imprecise cleav-
age of Drosha and Dicer, or the turnover of miRNAs
(20,21). IsomiRs have been classified into four categories: 5′
trimmed isomiRs, 3′ trimmed isomiRs, 3′ addition isomiRs,
and polymorphic isomiRs (22). 5′/3′ trimmed or addition
isomiRs are defined as those miRNA sequences which have
one or more bases trimmed or added respectively at the 5′
or 3′ end from the canonical miRNAs, while polymorphic
isomiRs usually have substitution mutations, causing one or
more bases different from the canonical miRNA. For such
broad range of miRNAome analysis, super high-quality se-
quencing data is demanded because the definitions are very
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Figure 1. A 3-layer kmer lattice structure. The red * symbol represents any nucleotide (A, G, T or C).

sensitive to the base positions––one base difference can lead
to entirely different read categorization. High-throughput
sequencing technology produces short reads containing ap-
proximately 1% erroneous bases (1,23,24) such as aberra-
tions of substitutions, base insertions, or deletions (indels).
A previous study reported that the error percentage of most
Illumina reads is ∼0.5% at best (25). These widely dis-
tributed errors or even erroneous bases fixed at only one po-
sition can cause lowered copy numbers for miRNA reads,
and thus affect the calculation of miRNA expression lev-
els and differential folds (26–30). Suppose a miRNA iso-
form has 100 copies in a diseased cell sample after library
preparation, if there are substitution errors happened in five
copies of them during the sequencing, three deletion errors
in the other reads, and two insertion errors as well, then the
reads count of this miRNA isoform would be tallied as 90
which is away from the ground truth 100. Further, the data
may lead to wrong identification of isomiRs without correc-
tion of these errors. For example, those reads containing the
deletion errors would be wrongly identified as a 5′ trimmed
isoform of a canonical miRNA; If the errors occur at the
seed region of a miRNA (conserved region of miRNAs),
its target specificity analysis would be affected, potentially
increasing the number of target transcripts (21,31,32). Al-
though current research adopts ‘abandon ambiguity reads
or noise reads’ to avoid misinterpreting erroneous sequence
variants (ESVs) as isomiRs, the approach inevitably losses a
part of the precious raw data (33,34). It is demanded to de-
velop sophisticated algorithms to rectify these aberrations
for truth-closer analysis of miRNA reads in a wide range of
applications.

None of the existing error correction methods suits well
for miRNA sequencing data, since they have not considered
the unique characteristics of miRNA reads (short length
and varying per read coverage). Besides, most of the meth-
ods, designed for DNA or mRNA sequencing reads, only
focus on the correction of substitution errors and do not
support indels error correction. So far, these methods have
taken two streams of different correction ideas. The first
one is a kmer-based error correction idea, represented by
BCOOL (35), BFC (36), ACE (37) and BLESS (38). The
key step is to examine the frequencies of kmers to distin-
guish between solid and weak k-mers according to a fixed
global frequency threshold. Then the solid kmers (assumed
as error-free) are referred as templates to rectify weak kmers

(assumed as error-containing) to obtain correct reads. The
second idea is a multi-alignment based error correction ap-
proach, represented by coral (39), ECHO (40) and Karect
(41). These methods usually group those reads sharing the
same kmer and then concatenate such a group of reads
to form a long consensus contig. The contig is assumed
error-free to correct erroneous bases. There are also a few
methods designed for RNA sequencing reads error correc-
tion, for example Seecer (42) and Rcorrector (43). These
approaches do not work for miRNA sequencing data error
correction. For example, the consensus idea is not applica-
ble to miRNA data because each read already encompasses
one entire miRNA sequence. Our study did verify that the
existing methods tend to significantly under-correct the er-
rors and are prone to introducing tremendous number of
new errors.

We present an error RECtification method for miRNA
sequencing reads (named miREC), which is the first tool to
address the problem of miRNA sequencing errors. Unlike
the existing methods which have the primary goal of cor-
recting substitution errors, our miREC concentrates more
on insertion and deletion errors for excellent correction per-
formance. The novel step of our method is the use of a 3-
layer (k – 1)mer–k-mer–(k + 1)mer lattice structure to main-
tain the frequency differences of the kmers (Figure 1). These
superset-subset frequency differences are very effective to
detect the errors especially the indel errors. The lattice struc-
ture is also a moving structure where k is set continuously
from a small number to a big number 23 or 25 for a full
coverage of error correction. Extensive tests on both sim-
ulated and experimental raw miRNA sequencing datasets
show that miREC can excel performance in all of the preci-
sion, recall and gain.

MATERIALS AND METHODS

A miRNA sequencing read r is a sequence r1r2···rn, ri ∈ �
= {A, C, G, N, T} , where A, C, G and T stand for the
nucleotide bases Adenine, Cytosine, Guanine and Thymine
respectively, and the character N stands for a uncertain nu-
cleotide; n is the length of r. Usually, the length n of a
miRNA read ranges from 15 to 28 in a dataset, but each
read encompasses one entire miRNA. A kmer substringk is
a contiguous subsequence in a read r.
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Neighborhood of a k-mer and a 3-layer kmer lattice structure

Given a miRNA sequencing read multi-set RS and a setting
k, the copy count (or frequency) of a distinct read r in RS is
the total number of its copies in RS, and the copy count (or
frequency) of a distinct kmer in RS is the total number of
its copies in RS. KMC3 (44) is used by this work as a kmer
counter for these calculations.

Consider a kmer substringk, this kmer’s k-neighborhood
is defined as the set of kmers H(k, substringk) containing
all possible distinct kmers of RS that each have only one
base difference from substringk. Similarly, substringk’s (k –
1)-neighborhood is defined as the set of (k – 1)mers H((k
− 1), substringk) containing all possible distinct (k – 1)mers
of RS each of which is an immediate subset of substringk,
and substringk’s (k + 1)-neighborhood is defined as the set
of (k + 1)mers H((k + 1), substringk) containing all possible
distinct (k + 1)mers of RS each of which is an immediate
superset of substringk.

For example, when the kmer is given as GTC and as-
sume that all its proper supersets and subsets exist in RS,
then its (k + 1)-neighborhood H(4, GTC) = {AGTC, TGTC,
CGTC, GGTC, GATC, GTTC, GCTC, GGTC, GTAC,
GTTC, GTCC, GTGC, GTCA, GTCT, GTCC, GTCG}. Its
(k – 1)-neighborhood H(2, GTC) = {TC, GC, GT}. These
three neighborhoods of kmer substringk can be combined
and it is called a 3-layer kmer lattice structure of substringk.
A schematic example of this lattice structure is shown in
Figure 1.

Error correction steps

The first step of the algorithm is to rectify substitution
errors in RS. The algorithm traverses all of the distinct
kmers. If a kmer substringk has a frequency lower than a
threshold � (a small integer like 1, 2 or 3) and there ex-
ist at least one kmer in substringk’s k-neighborhood H(k,
substringk) whose frequency is larger than � , we conjec-
ture that substringk contains a substitution error. We choose
the kmer with the highest frequency in H(k, substringk) as
template to rectify the erroneous base in substringk. In the
case where more than one kmer neighbors have the same
high frequency, we choose the smallest kmer according to
the alphabetical order as the template. After the change in
substringk, those reads in RS containing the original sub-
stringk are changed accordingly; some of them may become
identical with other reads in RS. We introduce a double-
checking technique to decide whether we eventually accept
the correction––we double-check the updated frequencies
of the distinct reads in the updated RS. Only when the
corrected reads become identical with a read having a fre-
quency higher than � , we confirm the correction; Otherwise,
we abandon the modification. With this double-checking
strategy, we can avoid the issue of over-correction.

The second step is to rectify indel errors in the updated
RS after the correction of substitution errors. The proce-
dure is similar to correcting the substitution errors. But the
concept is fundamentally different. We traverse all of the
distinct kmers in the updated RS. If a kmer substringk has
a frequency lower than a threshold � and there exist at least
one kmer in substringk’s (k – 1)-neighborhood H((k − 1),

substringk) whose frequency is larger than � , we conjecture
that substringk contains an insertion error. On the other
hand, if there exists at least one kmer in substringk’s (k +
1)-neighborhood H((k + 1), substringk) whose frequency is
larger than � , we conjecture that substringk contains a dele-
tion error. We choose the kmer with the highest frequency
in H((k − 1), substringk) or in H((k + 1), substringk) as tem-
plate to rectify the insertion error in substringk or to add the
deleted base into substringk. After the change in substringk,
those reads in RS containing the original substringk are
changed accordingly; some of them may become identical
with other reads in RS. Again we use the double-checking
strategy to decide whether we eventually accept the correc-
tion. We iterate these two steps by setting k from k1 (usually
8) to kend (usually 20 or 25). Setting a start k as 8 is because
of that we find low-frequency kmers (e.g. frequency equal
to 1) at this k but we cannot find such low-frequency (<� )
kmers for k = 7. Starting from k = 8, we correct substi-
tution errors first, then we perform the indel error correc-
tion, till k reaches kend. Our method is named miREC built
from a 3-layer kmer lattice structure for effective correction
of miRNA sequencing errors especially those insertion and
deletion errors. The pseudo code of our algorithm is shown
in Algorithm 1.
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Figure 2. The proportion of corrections varies at different lengths of k-mer.

Our miREC has been implemented as a software proto-
type. It provides several parameters for users to specify their
tasks. Three most useful settings are: the error types, the fre-
quency threshold � , and the kmer range [k1, kend]. miREC
has two running modes: one is for the substitution error cor-
rection only, the other is for the correction of both indel and
substitution errors. Based on our experience, the frequency
threshold � is best recommended as 5 by default, and the k-
mer range parameter is set as [8,15]. The higher frequency �
is set, the bigger number of bases might be considered as er-
rors. Thus, users should be cautious about using a too large
frequency threshold to avoid over-correction.

Every iterative step of miREC with the increasing length
of k-mer each time by 1 in the range [k1, kend] actually
corrects different amounts of errors. As shown in Figure
2, after five consecutive lengths of k are iterated, about
99.61% of substitution errors, 88.77% of insertion errors
and 94.63% of deletion errors can be corrected on average
over 12 wet-lab salmon datasets (Table 2) if k1 is set as 8.
With more loops of correction, more erroneous bases are
detected and corrected. As each iterative loop consumes
the same order of time complexity, users are suggested to
narrow the kmer range (by setting kend smaller) to shorten
the program running time while correcting almost all of
the errors for those miRNA sequencing datasets of huge
size.

The source codes of miREC are publicly available online
at https://github.com/XuanrZhang/miREC.

Simulated datasets (with known ground truth) and public wet-
lab miRNA sequencing reads both for performance evaluation

To evaluate the performance of error correction methods,
simulated datasets are required and the ground truth of the
errors should be known. We introduce a novel process to
generate simulated datasets that would have a close nature
to wet-lab miRNA sequencing reads. We have two consid-
erations in the process. One is to computationally replicate
lab-verified miRNA sequences as templates to form the ba-
sic sequences of the simulated datasets, then we duplicate
these basic sequences such that the copy counts of them fol-

Table 1. Description of our simulated datasets

ID

Total
erroneous

bases

Per read
error
rate

Simulated Datasets subs only D sub1 3071 3.03%
D sub2 3022 2.98%
D sub3 2973 2.93%
D sub4 3124 3.08%

mix errors D mix1 1602 213 211 2.00%
D mix2 1618 188 206 1.98%
D mix3 1598 184 177 1.93%
D mix4 1625 226 217 2.04%

Notes: ‘ sub’ means datasets contain substitution errors only and ‘ mix’
means datasets contain both substitution and indel errors. Total erroneous
bases list substitution, insertion and deletion errors respectively.

low a real distribution from a wet-lab dataset of miRNA
sequencing reads. In fact, we replicated the mature miRNA
sequences in miRBase (45) as the templates, and made the
copy count distribution of these template sequences to fol-
low the distribution drawn from a typical miRNA dataset
(accession number SRR866573). In other words, the se-
quences in our simulated datasets are not random sequences
(they are real lab-verified miRNA sequences); their copy
count distribution is not random either. Then we injected
errors into the simulated datasets under an error rate of
0.1% per base (24). Specifically, we randomly selected two
reads from every 100 reads in the dataset; then for each
selected read, we injected an erroneous base (substitution,
deletion or insertion) randomly at any position of the read.
We recorded all of these randomly and purposely injected
errors for performance evaluation.

Considering that some existing methods only support
substitution error correction, we synthesized 8 simulated
datasets: four datasets containing substitution errors only
(denoted as D sub1, D sub2, D sub3 and D sub4), and
four datasets containing a mixture of 80% substitution and
20% indel errors (denoted as D mix1, D mix2, D mix3 and
D mix4). More details of the simulated datasets are shown
in Table 1.

https://github.com/XuanrZhang/miREC
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Table 2. 12 wet-lab salmon miRNA sequencing datasets and four human
miRNA sequencing datasets.

Tissue Total reads Unique reads Accession ID

Liver 1 446 902 64 593 SRR866573
Liver 1 647 133 75 273 SRR866579
Spleen 8 597 057 295 940 SRR866583
Spleen 2 236 013 89 165 SRR866587
Kidney 10 065 660 243 430 SRR866589
Head kidney 7 375 957 246 444 SRR866590
Heart 2 812 993 118 366 SRR866605
Brain 6 331 448 132 558 SRR866611
Intestine 12 428 822 197 094 SRR866612
White muscle 5 972 384 142 444 SRR866613
Gills 6 240 735 132 038 SRR866614
One day old individual 18 041 561 172 048 SRR866615

human beta cells datasets
In low glucose 63 008 516 5 803 166 SRR13208981
In high glucose 33 444 257 1 856 318 SRR13208980

human brain datasets
Sample of aged 75 11 849 807 635 169 SRR12881030
Sample of aged 94 17 250 812 361 039 SRR12881018

Wet-lab miRNA sequencing datasets for our perfor-
mance evaluation are all downloaded from the Sequence
Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra/)
under the accession numbers SRP022967, SRP296813 and
SRP288246. These datasets have been originally studied for
problems related to salmon fish miRNAs (46,47), human
beta cells, or Alzheimer’s disease. This work used 12 salmon
miRNA sequencing datasets which were acquired from
particular salmon tissue samples, including liver, spleen,
kidney, heart, brain, etc; and used two human beta-cell
miRNA sequencing datasets which are about miRNA ex-
pression comparison between those cells incubated with a
solution of low glucose (2 mM) and those with a high glu-
cose (20 mM) in extracellular vesicles. The two other hu-
man miRNA sequencing datasets analyzed here are about
brain samples related to post-mortem Alzheimer’s disease.
One is from a male patient aged 75, the other is from a
male patient aged 94. All the reads in the above datasets
contain the sequences of adaptors; we used the cutadapt
tool (48) to remove the adaptors before our error correc-
tion. More details of these cleaned datasets are shown in
Table 2.

To rigorously evaluate the error correction performance,
we also randomly and purposely inject a small number of
errors into these wet-lab datasets, rather than into the simu-
lated datasets, to see whether our algorithm can detect and
correct these errors of ground truth, together with other
errors without ground truth. Only when all of these arti-
ficial errors in the experimental miRNA sequencing reads
can be detected and corrected, the corrections on the other
bases can be highly trustable. This small number of artifi-
cial errors constitutes only 0.5% of total corrections in each
dataset to avoid changing the original nature of the data.
We have done these for three salmon datasets (liver, heart
and spleen tissues), and one human brain miRNA dataset
from the male patient aged 75. For each of these datasets,
we injected small numbers of errors twice.

Evaluation metrics

As the ground truth of the errors in the simulated datasets
are known, we can use recall, precision and gain to com-
pare the correction performance between different methods.
On the wet-lab miRNA sequencing datasets, we measure
the copy count changes of the reads, the entropy changes
of the whole set of reads, and locations of the rectifications
to understand the importance of error correction. There is
no recall or precision performance on the wet-lab miRNA
sequencing datasets, because the ground truth of error dis-
tributions is unknown.

Performance evaluation metrics on the simulated miRNA se-
quencing datasets. Precision, recall and gain rate are given
as follows to assess the correction performance on the sim-
ulated datasets:

• Precision: TP/(TP+FP), shows the fraction of truly cor-
rected bases among all the changed bases.

• Recall: TP/(TP+FN), shows the fraction of truly cor-
rected bases among all the bases which are supposed to
be corrected.

• Gain: (TP – FP)/(TP + FN), shows the fraction of re-
moved errors without inducing additional errors.

where true positives (TP) correspond to corrected errors;
true negatives (TN) correspond to initially correct bases
left untouched; false positives (FP) correspond to newly
introduced errors; and false negatives (FN) correspond to
unidentified errors.

Metrics used for performance evaluation on wet-lab miRNA
sequencing datasets. We examine the changes of miRNA
copy counts and dataset entropy changes before and after
error correction for multiple salmon fish miRNA sequenc-
ing datasets. Besides, we also summarize the position infor-
mation of the corrections in the reads to record the propor-
tion of corrections in the seed region. We define the miRNA
count, dataset entropy and errors in the seed region as fol-
lows.

• miRNA count: the copy count of miRNA appearing in
the datasets, which is corresponding to miRNA expres-
sion level or miRNA abundance.

• Dataset entropy: −
n∑

i=1
pi · log pi , where pi is the propor-

tion of reads whose frequency is small than i. We calculate
the entropy for low-frequency reads and sum up to inter-
pret the degree of disorder in the read dataset. When the
entropy turns to be small, it means the certainty of the
miRNA expression becomes higher.

• Errors in seed region: erroneous bases in the seed region,
which is a conserved sub-sequence of miRNA (mostly sit-
uated at positions 2–8). Precise bases in the seed region
are vital since the seed sequence must be perfectly com-
plementary with its target mRNA to make the miRNAs
function.

RESULTS

Our analysis and results are presented in five main parts.
The first part is about the correction performance on the 8

https://www.ncbi.nlm.nih.gov/sra/
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Table 3. Outstanding error correction performance by our miREC in comparison with the best available tools

Gain(%) Recall(%) Precision (%)

miREC BFC Cor Kar Rcor miREC BFC Cor Kar Rcor miREC BFC Cor Kar Rcor

D s1 97.88 69.85 5.44 94.2 5.99 97.88 70.63 9.96 94.43 5.99 99.64 82.07 67.4 99.76 92
D s2 97.98 84.98 4.8 94.44 5.43 97.98 85.7 9.46 94.87 5.43 99.5 99.08 65.75 99.55 91.62
D s3 97.61 83.99 5.01 94.01 5.85 97.61 84.76 9.72 94.55 5.85 99.42 99.06 66.9 99.43 91.1
D s4 97.86 84.51 5.83 94.01 5.19 97.86 85.21 10.34 94.37 5.19 99.48 99.07 68.87 99.63 90
AVE 97.83 80.83 5.27 94.17 5.62 97.83 81.58 9.87 94.55 5.62 99.51 94.82 67.23 99.59 91.18

D m1 95.96 65.93 2.22 65.98 0.05 95.96 67.11 9.22 75.64 0.05 98.78 95.78 55.16 88.67 100
D m2 95.73 68.24 1.04 66.95 0.1 95.73 69.43 8.2 77.53 0.1 98.67 96.28 52.05 87.99 100
D m3 96.02 68.56 1.43 71.47 0.05 96.02 69.78 8.88 78.61 0.05 98.58 96.68 53.05 91.67 100
D m4 96.76 65.57 2.47 65.28 0 96.76 66.73 9.33 74.95 0 99.12 96.17 57.27 88.57 0
AVE 96.12 67.07 1.79 67.42 0.05 96.12 68.26 8.91 76.68 0.05 98.79 96.23 54.38 89.22 75

Notes: AVE indicates the average score over the four datasets. Bold font indicates the best result in the row. Cor, Kar and Rcor stand for the Coral method,
the Karect method and the Rcorrect method respectively. D s indicates datasets containing only substitution errors, while D m indicates datasets containing
mixed substitution, insertion and deletion errors. The underline 100 precision of Rcor on D m1, D m2 and D m3 stands for only one, two and one base
is corrected respectively.

simulated datasets; the second part is about correction per-
formance on the wet-lab miRNA sequencing datasets af-
ter a small number of artificial errors are injected; the third
part is about copy abundance recovery, entropy change
and rectification site summary on the recently published
salmon fish miRNA sequencing datasets after error correc-
tion; the fourth part provides detailed case studies on the
change of isomiR families, tissue-specific isoforms, differen-
tially expressed biomarkers and rare-miRNA quantity en-
hancement after the error correction on some of the wet-lab
datasets, including the human miRNA sequencing datasets.
The fifth part presents our verification results on sequenc-
ing reads datasets of 963 miRXplore Universal Reference
miRNAs (three replicates) and their spike-in at eukaryotic
cells.

Gain, recall and precision performance on the simulated
miRNA sequencing datasets

The correction performance of our miREC is presented in
Table 3 in comparison with algorithms Karect (41), Coral
(39), BFC (36), Rcorrector (43) and Bcool (35). Coral and
Karect are multi-alignment based error correction methods.
BFC is a representative of the k-mer based error correction
methods. BFC requires a prior-setting of the k parameter;
the best k in this work is 21 (namely, under other k set-
tings, BFC did not exceed the performance of when k =
21). Karect is one of a few correction tools which supports
the correction of indel errors. Rcorrector, a RNA reads er-
ror correction method, has a performance higher than an-
other RNA correction method Seecer (42). Rcorrector also
needs to set the k parameter and the best k in this work is
17. Even using the optimal k settings, only a few bases can
be corrected by Rcorrector. A very recent error correction
algorithm Bcool (35), which uses a de Bruijn graph as the
platform to correct errors, could not detect any errors in the
simulated datasets. This surprising performance is not in-
cluded in the table.

Our method miREC has excelled in the correction per-
formance:

• It did not introduce any new error, namely, it achieved the
same gain and recall rates on all of the 8 datasets;

• It detected and corrected almost all of the errors includ-
ing the indel errors; the recall rate ranges between 96.0–
97.9%; the precision ranges between 98.6–99.5%;

• It improved the overall data quality remarkably: (i) from
every 50 reads containing one error to every 1300 reads
containing one error for the four error-mixed datasets
and (ii) it improved the data quality from every 30 reads
containing one error to every 1650 reads containing one
error for the four substitution-only datasets.

The average recall and gain rate of miREC are much su-
perior to Karect (the second-best method) respectively by
3.28% and 3.66% on the four substitution-only datasets,
and by 19.44% and 28.7% on the four error-mixed datasets.
Specifically, the average recall rates of miREC are 97.83%
and 96.12% on the four D sub datasets and on the four
D mix datasets respectively, which are 16.25%, 87.96% and
3.28% (on the D sub datasets) and 27.86%, 87.21% and
19.44% (on the D mix datasets) better than BFC, Coral
and Karect. This implies that there are lots of errors un-
detected by these baseline methods meanwhile they intro-
duced a lot of new errors (gains and recall not equal). The
multi-alignment method performed worst on these miRNA
datasets. A possible reason is that the alignment strategy
could not differentiate miRNA reads well due to the short
length of miRNAs. Rcorrector had a very low recall and
gain performance as well, that means most of the errors
were not detected by the method.

The performance of miREC is robust across all the 8
datasets including the four mixed-error datasets, in con-
trast to the baseline methods which exhibited a poor perfor-
mance on the detection and correction of the indel errors.
The gain rate of BFC drops from 80.83% (on the four D sub
datasets) to only 67.07%(on the four D mix datasets), and
the gain of Coral drops from 5.27% to 1.79%. It suggests
that the performance of these methods on the substitution
error correction was interrupted and affected by the addi-
tion of the indel errors into the datasets. As real-life wet-
lab sequencing reads more or less company with a small
amount of indel errors, our miREC provides an unalterable
advantage over the baseline methods for the correction of
all types of aberrations.
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Correction performance on wet-lab miRNA sequencing
datasets injected with small numbers of artificial errors

We made 27 random base modifications (total 21 substi-
tutions, 3 insertions and 3 deletions) at the salmon liver
miRNA sequencing dataset (SRR866573). These mannual
modifications introduced/injected 18 genuine errors into the
dataset, where a random base modification is not considered
as a genuine error if its correspondingly modified read be-
comes identical with another read having a high frequency
(i.e. copy count > 5).

Our algorithm corrected all of these 18 genuine errors
(100% recall). For example, read @SRR866573.64765 (TG
CGGACCAGGGGAATCCGACT) had a random man-
ual deletion at base position 5, becoming TGCGACCA
GGGGAATCCGACT; our miREC detected this error
and restored it to its original base. As another exam-
ple, read @SRR866573.212344 (AAGCTGCCAGCTGA
AGAACTG) had a random manual substitution from
C to G at position 8, becoming AAGCTGCGAGCT
GAAGAACTG; our miREC corrected it successfully.
Read @SRR866573.1103128 (AAGCGGGCCCCCAAAC
TTCTGT) had a random manual insertion of G at posi-
tion 16, becoming AAGCGGGCCCCCAAAGCTTCTG
T; again, our miREC successfully detected this error and
corrected it. For the remaining 9 randomly injected base
modifications, they did not cause genuine errors because
each of their reads was transformed into another read that
has a high copy count in the same dataset. For example, read
@SRR866573.360151 (ATGACCTATGAATTGACAGC
CT) had a random manual substitution from T to C at
position 21 (the last position). With this modification, the
read becomes another read ATGACCTATGAATTGACA
GCCC which has 156 copies. This modification was unable
to be restored to its original base because every k-mer in
ATGACCTATGAATTGACAGCCC was highly frequent
(at least 156 copies), namely, containing no error. Note that
this modification should not be restored to ensure no over-
correction would happen in practice, otherwise the correc-
tion would be of guilty. For performance comparison, the
second-best method Karect was applied to the same error-
injected salmon liver dataset, but it corrected only 5 of the
18 genuine errors.

We repeated this test with another round of manual base
modifications at SRR866573 (total 28 modifications in-
cluding 20 substitutions, 6 insertions and 2 deletions). Our
miREC detected and corrected all of the 20 genuine errors
(100% recall again). In comparison, Karect corrected only
9 of them.

Similarly, our miREC corrected all of the genuine er-
rors caused by small numbers of random base modifications
at other wet-lab miRNA sequencing datasets (40 substitu-
tions, 3 insertions and 6 deletions; or second round 45 sub-
stitutions, 7 insertions and 7 deletions at the salmon heart
dataset. 38 substitutions, 4 insertions and 4 deletions; or
second round 43 substitutions, 6 insertions and 6 deletions
at the salmon spleen dataset). However, Karect corrected
only 8 of the 27 genuine errors or only 8 of the 35 errors on
these two error-injected salmon heart datasets, and had sim-
ilar performance on the two error-injected salmon spleen
datasets.

On the two human brain datasets, our miREC achieved
the same perfect performance (100% recall) to correct all of
the genuine errors caused by small numbers of random base
modifications (about 300 base modifications which had re-
sulted in 130 and 120 genuine errors). However, Karect
could only fix 12 or 20 genuine errors in these two datasets.
Our source codes for the random error injection into wet-
lab miRNA sequencing datasets and more detailed correc-
tion results are available at github link https://github.com/
XuanrZhang/miREC.

Changes in isoform abundance, whole set entropy and base
positions after error correction at the salmon fish miRNA se-
quencing reads

The perfect recall performance on the small numbers of er-
rors injected into wet-lab miRNA sequencing datasets and
the excellent gain performance on the simulated datasets are
strong combined evidence to support our correction results
on wet-lab datasets where the ground truth of errors are not
available.

The salmon liver miRNA sequencing dataset
(SRR866573) has a total of 900 814 reads, containing
32,972 distinct reads before error correction. After error
correction by our miREC, there are only 27 299 distinct
reads some of which gained plenty of abundance. In other
words, most of the error-contained reads were corrected
and turned to be identical with some other reads, making
the abundance merging meanwhile the disappearance of
the originally error-contained reads.

See Figure 3 for an average percentages of the distinct
miRNAs over the 12 datasets that have a high- or low-level
abundance recovery. There are around 47.3% of the distinct
miRNAs whose copy counts have increased by more than
10% after the corrections, in particular, about 5.5% of the
distinct miRNAs have obtained above 50% abundance in-
crease. These corrections are useful to draw more reliable
conclusions about miRNA discovery or isomiR classifica-
tion or tissue-specific biomarker discovery (case studies pre-
sented later).

The reads abundance recovery of the miRNA isoforms
after error rectification in a dataset implies that the numbers
of distinct reads are decreased as reported above. We present
Figure 4 to illustrate the overall entropy change of every
entire dataset before and after the error correction to quan-
tify this point. On average the entropy of the 12 datasets is
shrank by 15.11% when the parameter k of miREC ranges
from 8 to 20, and the entropy score decreased by 14.51%
when k ranges from 8 to 25. These entropy declines (with
slight variance) in the 12 datasets theoretically mean that
the certainty of the miRNA expression levels is greatly im-
proved. In other words, our miREC can enhance the data
quality in the perspective of achieving a lower entropy or a
higher certainty.

We found that the aberrations could occur at every base
position of the reads. But, one-third of the errors are de-
tected and corrected at the seed region of the miRNAs (Fig-
ure 5). These corrections at the seed region provide great
benefits for miRNAs’ target prediction analysis. There are
also a high percentage of the indel or substitution correc-

https://github.com/XuanrZhang/miREC
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Figure 3. Proportions of distinct-read counts are changed compared with uncorrected data in average of 12 salmon datasets. (A) The miREC runs with
continuous k value from 8 to 20. (B) The miREC runs with continuous k value from 8 to 25.

tions at position 1 which is a base position very sensitive to
the definition of trimmed or addition isomiRs.

Case studies related to isomiR families, tissue-specific miR-
NAs and rare-miRNA quantity recovery

We report examples of miRNAs whose read counts have
changed a lot after error correction. We also show exam-
ples of tissue-specific miRNAs after error correction, and
describe the change in the ranking lists of differentially ex-
pressed miRNAs.

Case study 1: big abundance recovery. In the salmon
heart dataset, read TTGGTCCCCTTCAACCAGCTGT
AAT (mapped to miR-133a-1 in miRBase (45)) had 10
copies. Our miREC detected 13 erroneous reads related to
this miRNA. Eight substitution errors happened at position
24 base A (sequenced to G or T), and five happened at posi-
tion 25 base T (sequenced to A or G). After our correction,
the abundance level of miR-133a-1 increased from 10 to 23,
a 130% abundance recovery. Other two miRNAs (ssa-miR-
133a-3p and ssa-miR-133a-5p) from the same miRNA fam-

ily also recovered their abundance in the sequencing reads.
See the read counts and change details in Table 4. We note
that currently annotated functions of miR-133a-1 are re-
lated to conventional central osteosarcoma and heart con-
duction disease (47,49). With the refined abundance under-
standing, its functions can be re-examined more deeply.

Another example in Table 5, read ATCCCGGACGAG
CCCCCAA, had 18 copies and its abundance increased to
31 after miREC correction. The aberrations include four
deletion errors at position 1 (base A deleted), four substitu-
tion errors at position 19 base A (sequenced to C) and two
insertion errors at position 1 and 2 (base A inserted). This
error distribution implies that the sequencing mistakes can
occur at multiple base positions with multiple times; and
that our miREC is capable of correctly detecting these er-
rors and performing accurate rectifications.

For comparison, we tested the second-best method
Karect on this salmon heart dataset to see whether the same
mistakes could be corrected. Take the cases in Table 4 as ex-
ample, only three erroneous reads of the first read TTGGTC
CCCTTCAACCAGCTGTAAT were detected by Karect
(we detected 13); none of the erroneous reads of the other
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A

B

Figure 4. Dataset-entropy changes before and after the error correction by miREC on the 12 salmon miRNA datasets. (A) when the continuous k settings
from 8 to 20; (B) when the continuous k settings from 8 to 25.

Figure 5. The distributions of corrections at different positions.

Table 4. Changes in the read counts of some miRNAs

Sequence
Read count before

correction
Read count after

correction
Abundance change

percentage
Isoforms/editing

events

TTGGTCCCCTTCAACCAGCTGTAAT 10 23 130.00%
TTGGTCCCCTTCAACCAGCTGTA-T 44 45 2.27% 5′ deletion
TTGGTCCCCTTCAACCAGCTGTAA- 107 111 3.74% 3′ deletion

Related Erroneous Reads List

TTGGTCCCCTTCAACCAGCTGTAGT 4 0 Error removal Substitution error
TTGGTCCCCTTCAACCAGCTGTATT 4 0 Error removal Substitution error
TTGGTCCCCTTCAACCAGCTGTAAA 3 0 Error removal Substitution error
TTGGTCCCCTTCAACCAGCTGTAAG 2 0 Error removal Substitution error
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Table 5. isomiRNA detection

Sequence
Read count before

correction
Read count after

correction
Abundance change

percentage
Isoforms/editing

events

ATCCCGGACGAGCCCCCAA 18 31 72.22%
ATCCCGGACGAGCCCCCA- 1489 1513 1.61% Deletion
ATCCCGGACGAGCCCCCAT 16 20 25.00% Substitution
ATCCCGGACGAGCCCCCAAA 9 17 88.89% Insertion

Related Erroneous Reads List

-TCCCGGACGAGCCCCCAA 4 0 Error removal Deletion error
ATCCCGGACGAGCCCCCAC 4 0 Error removal Substitution error
AATCCCGGACGAGCCCCCAA 1 0 Error removal Insertion error
ACCCCGGACGAGCCCCCAA 1 0 Error removal Substitution error
AATCCCGGACGAGCCCCCAA 1 0 Error removal Insertion error

Table 6. Rank changes of the top-10 common miRNAs in salmon heart
and brain tissues after error correction

miRNA sequence After rank Before rank

TCTTTGGTTATCTAGCTGTATG 1 2
TCTTTGGTTATCTAGCTGTAT 2 3
TTTGTTCGTTCGGCTCGCGTT 3 5
TCTTTGGTTATCTAGCTGTA 4 8
TTGCATAGTCACAAAAGTGATC 5 6
TCTTTGGTTATCTAGCTGTATGA 6 7
TGGAAGACTAGTGATTTTGTTG 7 10
TAAAGCTAGAGAACCGAATGTA 8 11
TAAGGCACGCGGTGAATGCC 9 12
ATGGCACTGGTAGAATTCACT 10 13

Notes: After rank indicates the rank after error correction, while Be-
fore rank indicates the rank before error correction.

two reads in the table were detected. Only one of the four re-
lated erroneous bases was corrected by Karect, while all of
the related erroneous bases were corrected by our method.

Case study 2: miRNA isoforms and editing events. Editing
events and isoform variations at the cleavage sites can cause
slight but important difference in many miRNA sequences
(50). In the miRNA sequencing dataset (SRR866605) of
salmon fish heart, canonical miRNA read ATCCCGGA
CGAGCCCCCAA co-exists with five isoforms having read
counts 9, 1489, 16, 4 or 4; There are also three singleton
reads having an editing distance with this canonical miRNA
(Table 5). Our miREC grouped all of these reads and de-
tected some of them as erroneous reads. After error cor-
rection, the abundance of the canonical miRNA increased
from 18 copies to 31; the first three isoforms’ abundance in-
creased from 9 to 17, from 16 to 20 and from 1489 to 1513.
The abundance recovery of the canonical miRNA is owned
to the erroneous base correction of the 11 reads listed in the
last five rows of Table 5.

The performance by the Karect method shows that only
one of the eleven erroneous reads was corrected. Only the
first and second miRNA sequence (Table 5) have different
read counts after Karect’s correction. The copy count of the
first read was increased by 1 and the copy count of the sec-
ond read was increased by 20, missing lots of corrections.

A more interesting point of the error correction is that
the 11 erroneous reads of the canonical miRNA contain
not only substitutions, but deletion and insertion errors dis-
tributed at multiple base positions. In particular, more than

one third of erroneous bases happened at the seed region,
important for gene target binding analysis.

Case study 3: upside down change in differential expression
analysis. Analysis on tissue-specific uniquely expressed or
top-ranked differentially expressed miRNAs in a specific
tissue or at a disease stage is very sensitive to the sequencing
data quality (9). Some uniquely expressed miRNAs can be
identified only after error correction.

In our differential expression analysis between
the salmon heart and brain tissues (SRR866605 vs
SRR866611), we found that 5,675 miRNA did not co-exist
in the two datasets, and the number of common miRNAs
was reduced from 16 443 to 10 768 after error correction.
For example, read TGAGGTAGTTGGTTGTATGGTG
(mapped to ssa-let-7d-5p in miRBase), had four copies
in the heart dataset and 26 copies in the brain dataset
before correction, while its read count was changed
to zero in the heart dataset and changed to 30 in the
brain dataset after error correction. Two more examples:
read CTTTCAGTCGGATGTTTGCACCA (mapped
to ssa-miR-30d-3p in miRBase) had 152 copies in the
heart dataset and two copies in the brain data before
correction, while its quantity was changed to 155 in the
heart dataset and to zero in the brain dataset. Another
read TTGCATAGTCACAAAAATGATC (mapped to
ssa-miR-153a-3p in miRBase) had three copies in the
heart dataset and 14 434 copies in the brain dataset before
correction, while the quantity dropped to zero in the heart
dataset but increased to 14,498 in the brain dataset after
error correction.

Top-rank differentially expressed miRNAs can become
low-ranked ones, and vice versa after error correction. The
reason is that the expression folds of miRNAs between two
tissue types or between two disease stages are sensitive to
the copy counts after erroneous reads are corrected in the
two classes. We compared the expression folds of common
miRNAs between the salmon heart tissue and brain tissue
before and after our error correction. Table 6 presents the
list of 10 miRNAs whose expression folds between the two
tissues are top-ranked after the error correction, in compar-
ison with their ranking positions before the error correction.
The two ranking lists are quite different. For example, the
rank of ssa-miR-9a-5p (TCTTTGGTTATCTAGCTGTA)
is reverted from rank 8 to 4. Furthermore, the originally
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Table 7. Ranking position change of tissue-specific miRNAs in the heart tissue (vs the liver tissue) before and after error correction

miRNA sequence
Rank after
correction

Rank before
correction

Read count before
correction

Read count
after correction

Read count
increase

TTAAGACTTGTAGTGATGTTT 1 out of scope 47 546 47 583 37
TGGAATGTAAAGAAGTATGTAT 2 1 12 650 12 728 78
TTTGGTCCCCTTCAACCAGCTG 3 2 4954 4985 31
TTGGTCCCCTTCAACCAGCTG 4 3 2522 2541 19
TTAAGACTTGCAGTGATGTT 5 4 1665 1677 12
ACAGCTCATCCATTGGTC 6 5 1174 1188 14
TGGAATGTAAAGAAGTATGTA 7 6 879 892 13
AACATCACTTTAAGTCTCTGCT 8 7 876 892 16
TTGGTCCCCTTCAACCAGCTGTA 9 8 835 856 21
TGAGGTAGTTGGTTGTATTGTTT 10 Out of scope 780 791 11
TGGACGGAGAACTGATAAGGG 11 9 693 702 9
TTAAGACTTGTAGTGATGTTTAA 12 10 685 698 13
TGAGGTAGTTGGTTGTATTGT 13 Out of scope 659 666 7
TAAAGGGAATTTGCGACTGTTA 14 11 622 635 13
TGGAATGTAAAGAAGTATGTATT 15 12 616 629 13

top-ranked number-1, number-4 and number-9 miRNAs
are all dropped below rank-10 after error correction.

In detail, the original top-one miRNA (TCTTTGGT-
TATCTAGCTGTATGT) had 16 776 copies in the brain tis-
sue. However, the corrected top-one miRNA is TCTTTG-
GTTATCTAGCTGTATG, whose copy count is 48 092 in
the brain tissue after error correction. It is interesting to
note that:

• The two miRNAs only have one base difference at the
3′ end. The corrected top-one miRNA after error correc-
tion has one base trimmed at the 3′ end, compared to the
original top-one ranked miRNA. The two miRNAs can
be considered as 3′ end trimmed/addition isoforms each
other.

• The original top-ranked miRNA and the corrected top-
one miRNA have a huge abundance difference (31 316
copies = 48 092 − 16 776) in the brain tissue. One is
extremely high-level expressed; the other is median-level
expressed. This suggests that we would concentrate on
wrong top-ranked miRNA biomarkers if the sequencing
reads had not been cleaned by good error correction al-
gorithms.

New top-ranked tissue-specific miRNAs (or called no-
presence miRNAs or tissue- and disease-subtype dependent
miRNAs by (9)) were found in the heart tissue (SRR866605)
after error correction when the liver tissue (SRR866579)
was compared. Table 7 presents two rankings of top-15
miRNAs specifically expressed in the heart tissue before and
after error correction. Without our correction, the top-1,
top-10 and top-13 tissue-specific miRNAs in salmon heart
would be not detected because erroneous reads which are
identical with these reads also exist in the liver tissue. More-
over, after our error correction, the quantity of the top-
ranked miRNAs increases. These recovered read counts and
accurate abundance measurement would help make more
convincing conclusions in the down stream analysis.

Case study 4: class-specific miRNAs and rare-miRNA anal-
ysis for human miRNA sequencing datasets. Ranking po-
sitions of class-specific miRNAs and rare miRNA quantity
recovery analysis are also conducted on human miRNA se-

quencing datasets (acquired from beta cells and brain sam-
ples).

The human beta cells were incubated with solution of low
glucose or high glucose. It’s expected to reveal novel differ-
entially expressed miRNAs between these two classes. We
found that the number of distinct reads decreased by 8.85%
from 5 803 166 to 5 289 466 in the low glucose solution
cell, and reduced by 12.44% from 1 856 318 to 1 625 453 in
the high glucose solution cell after error correction. For the
top-ranked differentially expressed miRNAs between the
two datasets, only slight rank changes were observed (Ta-
ble 8). Some of the top-ranked miRNAs were just swapped
ranking positions within top 10 after error correction. The
copy counts of these top-ranked miRNAs all had small in-
creases after the error correction. Note that these changes
on glucose-level specific miRNAs in human beta cells af-
ter error correction is not as big as those changes made in
the salmon heart-head tissue pair comparison by our error
correction.

However, such big changes on age-specific miRNAs in
brain samples can be observed again when we compared be-
tween miRNA sequencing reads of an Alzheimer’s disease
patient aged 75 and a patient aged 94. The number of dis-
tinct miRNA reads decreased by 33.6% from 361 039 to 239
667 in the patient aged 75, and decreased by 16.1% from 635
169 to 532 708 in the patient aged 94, after error correction.
Table 9 provides two rankings of top-10 age-specific miR-
NAs expressed only in the patient aged 94 before and af-
ter correction. New top-ranked age-specific miRNAs were
identified in the patient aged 94. Without our error correc-
tion, top-1, 2, 3, 4, 6, 8 and 10 age-specific miRNAs would
not be detected because erroneous reads which are identical
with these reads also exist in the patient aged 75, with copy
counts 3, 2, 2, 3, 4, 2 and 4 respectively.

Discovery of rare miRNAs is of strong interests. We ex-
amined the read counts of low-expression miRNAs (or
rare miRNAs) before and after error correction in the
Alzheimer’s disease patient aged 94. Note that all these rare
miRNAs here are defined to have no expression in the pa-
tient aged 75. Table 10 shows top-10 read-count greatly-
changed rare miRNAs before and after error correction. It
suggests that the read counts of these rare miRNAs were
all enhanced by about 2 or 3-fold after error correction.
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Table 8. Read count changes and ranking changes of top-10 differentially expressed miRNAs in the high glucose incubated human beta cell after error
correction, and those in the low glucose incubated human beta cell after error correction

miRNA sequence Rank Rank Read count Read count Read count
Among high glucose After Before Before After Increase

GTGGGGCCACGAGCTGAGTGCGT 1 1 86 92 6
AGCAGGGTCGGGCCTGGTTAGTA 2 2 68 69 1
GAGTTCGCGCTTTCCCCT 4 3 61 69 8
GCCGCAGGTGCAGATCTTGGTGG 3 4 62 65 3
TCGGGCCTGGTTAGTACTTGGAT 5 5 60 62 2
GTGGAGCCTGCGGCTTAAT 6 6 60 61 1
TCGGAAGCTAAGCAGGGTCGGGCC 7 7 57 57 0
GGCTCAGCGTGTGCCTACC 8 9 55 56 1
GTCTACGGCCCTACCACCCTGAACG 9 8 54 55 1
GTCGGGCCTGGTTAGTACTTGGA 10 10 51 54 3

miRNA Sequence Rank Rank Read Count Read Count Read Count
among low glucose After Before Before After Increase

CGCCCGTCCCCGCCCCTT 1 1 640 651 11
TAGGGGTATGATTCTCGCTTCGG 2 2 582 586 4
GCCCGTCCCCGCCCCTT 3 3 565 572 7
CGCCCGTCCCCGCCCCTTGCC 4 4 484 489 5
CCAGTGGTTGTCGACTTGCG 5 5 428 436 8
CTCAGGTGCCCGAGGCCGAA 6 6 371 376 5
AAGACGGAGAGGGAAAGAG 7 7 317 324 7
ACGGGGAGGGCGGCGCCGCCGCC 8 9 292 300 8
TTCGGCTGAGTTCGTGATGGATTTG 9 8 297 298 1
CCACCGCCCGTCCCCGCCCCTTG 10 10 272 278 6

Table 9. Ranking position changes of age-specific miRNAs in brain tissue from an Alzheimer male patient aged 94 (vs a patient aged 75) before and after
error correction

miRNA sequence

Rank
after

correction
Rank before
correction

Read count
before

correction

Read count
after

correction
Read count

increase

Original read
count

(aged 75)

TTTCTCACTACTGCACTTGACTAGTC 1 Out of scope 1416 1477 61 3
TTTCTCACTACTGCACTTGACC 2 Out of scope 839 877 38 2
TTTCTCACTACTGCACTTGAC 3 Out of scope 817 857 40 2
TTTCTCACTACTGCACTTGACTAG 4 Out of scope 726 761 35 3
TTTCTCACTACTGCACTTGACA 5 1 719 746 27 0
TTTCTCACTACTGCACTTGACTAGT 6 Out of scope 593 628 35 4
TGAGGTAGTACGTTGTATAGT 7 2 521 533 12 0
TTTCTCACTACTGCACTTGACTA 8 Out of scope 381 410 29 2
TGAGGAAGTAGGTTGTAGAGTT 9 3 365 375 10 0
TGAGGTAGTACATTGTATAGT 10 Out of scope 339 352 13 4

Figure 6. A rare miRNA in the Alzheimer’s disease patient aged 94 showing significant copy count change after error correction.
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Table 10. Copy count enhancement of 10 rare miRNAs after error correc-
tion in a human brain dataset acquired from an Alzheimer’s disease patient
aged 94

miRNA sequence
Read

count before
Read

count after

TCATTGGTTATCTAGCTGTATGC 6 18
TAGAACTTCGTCGAGTACGCTC 9 26
AAAAGCTGGGTTGAGAGGGCGTGA 6 17
AGCAGGACGGTGGCCATGGA 8 22
TGAGGCAGTAGGTTGTGTGGTTAT 6 16
TCCAGCATCAGTGATTTTGTTGT 6 16
TCACAGACAGCCGGTCTCTTTT 6 16
GTTGGTCCGAGTGTTGTGGGC 6 16
TCCCCGGCATCTCCACCAT 9 23
AGGAGATGGAATAGGAGCTTGA 8 20

Notes: after indicates after error correction, while before indicates before error
correction

Figure 6 depicts how the read quantity of a rare miRNA
is enhanced from 14 copies to 23 in the correction process.
The corrections were involved with four types of erroneous
reads: four reads with a deletion error (labeled in blue), two
reads with an insertion error (labeled in green), one read
with a substitution error from A to G at position 11 and
two reads with a substitution error from A to T at posi-
tion 20 (labeled in orange). Our miREC can detect all of
these erroneous reads and corrected them to recover this
rare miRNA’s quantity.

Verification results on the sequencing reads of the 963 miRX-
plore universal reference miRNAs (pure control and spike-in)

Our algorithm was tested on the sequencing reads of
an equimolar mixture of synthetic miRNAs from the
miRXplore Universal Reference that consists of 963 miR-
NAs from human, mouse, rat and viral sources (three
replicate samples miRXploreUR rep1-3 corresponding to
GSE139936.GSM4149813, GSE139936.GSM4149814 and
GSE139936.GSM4149815 (51)). The test was to verify

• whether our detected erroneous reads can be each cor-
rected into one of the 963 miRNA sequences, and

• whether any new sequences are introduced into the read
dataset after the correction.

An ideal performance should be: every error-corrected
read is turned to be an exact copy of one of the 963 miRNA
sequences, and previously non-existing reads are never cre-
ated by the correction step.

The correction performance by miREC in comparison
with Karect (the best literature method (41)) are shown in
Table 11. On the sequencing dataset named D18-6962 1 of
GSE139936.GSM4149813, our algorithm detected a total
of 43362 errors. After correction, the correspondingly rec-
tified reads were each exactly matched with one of the 963
miRNA sequences. The total read count of the 963 miR-
NAs was therefore increased by about 19.59% (see Sup-
plementary file S1 for details). During this correction step,
previously non-existing reads were never generated/created.
In fact, the number of distinct reads was decreased from
259867 to 212093. On the other hand, almost all (99.22%)
of the remaining unchanged 231792 distinct reads were not

considered as the erroneous reads of the 963 miRNAs by
our algorithm. This is reasonable because each of them has
a minimum editing distance of 2 or bigger with any of the
963 miRNA sequences. These remaining reads also have an
extremely low counts such as 1, 2 or 3. They can be con-
sidered as noisy reads which may be caused by the library
preparation noise or contaminates.

Karect detected total 127 642 errors, but only 18 225 of
them were corrected into the sequencing reads of the 963
miRNAs, increasing their read counts by 8.22% in total.
Meanwhile, the other base modifications have introduced
a pool of 37 678 new sequences which did not exist in the
dataset before Karect’s correction.

From these comparisons, we note that our algorithm
miREC has corrected almost all of those reads which
should be rectified and that miREC has never introduced
previously non-existing reads. This is true for all other
datasets listed in Table 11. However, Karect introduced
large pools of new reads which have never existed in the
original reads set; also Karect corrected less than half of
those reads which should be rectified.

On a spike-in sample of the 963 miRNAs at human cells
(GSE159434.D19-10246.assembled.fastq (52)), our algo-
rithm detected 89 301 erroneous reads of the 963 miRNAs.
After correction, their read counts increased by 15.66% in
total. The algorithm did not generate any previously non-
existing reads, but decreased the number of distinct reads by
45 189, greatly diminishing the uncerternty/entropy of the
data set. On the other hand, Karect detected and corrected
15885 erroneous reads of the 963 miRNAs, making their
read counts increased by 7.62% in total. However, Karect
created 14 462 new reads which were non-existing previ-
ously.

These comparative results on both the control and spike-
in sample demonstrate that our modified reads are genuine
correction and that our algorithms do not generate any pre-
vious non-existing reads after the correction process.

DISCUSSION

There are several aspects of complexities in miRNA se-
quencing datasets which can limit the performance of error
correction algorithms. For example, some miRNAs (A ver-
sus B) can be very similar (just one base different) and have
similar abundance in the sample. In this case, erroneous
reads of A can be sometimes exactly the same sequence as B
(or, erroneous reads of B can be sometimes exactly the same
sequence as A). Such an error is unable to be detected by
any error correction algorithm because A and B have similar
abundance level (see examples in Section - Correction per-
formance on wet-lab miRNA sequencing datasets injected
with small numbers of artificial errors). However, we note
that such sequencing errors (without correction) would not
affect much about the true read counts of A and B. The rea-
son is that the count of A’s such erroneous reads should be
at the same level of the count for B’s such erroneous reads.

Some miRNAs have very low-level abundance and are
prone of errors in sequencing. In this case, the read count
of such a miRNA can be zero, meaning all of its reads are
wrongly sequenced (see examples in the ‘Editing distance =
1’ column of Table 11). Our algorithm is unable to detect
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these errors for correction. If the read count of a miRNA
is not zero but only 1, 2 or 3, again our algorithm is unable
to detect the erroneous reads of this miRNA for correction
(see examples in the ‘Editing distance = 0’ column of Ta-
ble 11).

Although having these challenges, in this work, we have
proposed an effective miRNA sequencing error correction
method named miREC, which is the first tool to address
the error correction problem in the area. The novelty of
the method is a 3-layer k-mer–(k + 1)mer–(k – 1)mer lat-
tice structure to hold the kmer’s supersets and subsets’ fre-
quency differences which underline the locations of the er-
rors and the correcting templates. Our miREC has showed
excellent performance to rectify not only substitution errors
but also indel errors at both simulated and real miRNA
sequencing datasets. The experiments conducted with dif-
ferent running parameters showed that the miREC is in-
sensitive to datasets and it has good robustness to guaran-
tee high-quality correction performance. Our error correc-
tion performance have been also verified on the control and
spike-in sequencing datasets of the 963 synthetic miRNAs
from the miRXplore Universal Reference. With the precise
aberration correction and free of new error introduction, we
are able to conduct ultrafine analysis on miRNA sequenc-
ing data at the single base resolution. The method is imme-
diately applicable to miRNA sequencing datasets from the
fields of plant biology and cancer biology which are worth
future investigation in detail.
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39. Salmela,L. and Schröder,J. (2011) Correcting errors in short reads by
multiple alignments. Bioinformatics, 27, 1455–1461.

40. Kao,W.-C., Chan,A.H. and Song,Y.S. (2011) ECHO: a reference-free
short-read error correction algorithm. Genome Res., 21, 1181–1192.

41. Allam,A., Kalnis,P. and Solovyev,V. (2015) Karect: accurate
correction of substitution, insertion and deletion errors for
next-generation sequencing data. Bioinformatics, 31, 3421–3428.

42. Le,H.-S., Schulz,M.H., McCauley,B.M., Hinman,V.F. and
Bar-Joseph,Z. (2013) Probabilistic error correction for RNA
sequencing. Nucleic Acids Res., 41, e109.

43. Song,L. and Florea,L. (2015) Rcorrector: efficient and accurate error
correction for Illumina RNA-seq reads. GigaScience, 4, 48.

44. Kokot,M., Długosz,M. and Deorowicz,S. (2017) KMC 3: counting
and manipulating k-mer statistics. Bioinformatics, 33, 2759–2761.

45. Seppey,M., Manni,M. and Zdobnov,E.M. (2020) LEMMI: a
continuous benchmarking platform for metagenomics classifiers.
Genome Res., 30, 1208–1216.

46. Woldemariam,N.T., Agafonov,O., Høyheim,B., Houston,R.D.,
Taggart,J.B. and Andreassen,R. (2019) Expanding the miRNA
repertoire in Atlantic salmon; discovery of isomiRs and miRNAs
highly expressed in different tissues and developmental stages. Cells,
8, 42.

47. Andreassen,R., Worren,M.M. and Høyheim,B. (2013) Discovery and
characterization of miRNA genes in Atlantic salmon (Salmo salar)
by use of a deep sequencing approach. BMC Genomics, 14, 482.

48. Martin,M. (2011) Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet. journal, 17, 10–12.

49. Stelzer,G., Rosen,N., Plaschkes,I., Zimmerman,S., Twik,M.,
Fishilevich,S., Stein,T.I., Nudel,R., Lieder,I., Mazor,Y. et al. (2016)
The GeneCards suite: from gene data mining to disease genome
sequence analyses. Curr. Protoc. Bioinformatics, 54, 1.30.1–1.30.33.

50. Martı́,E., Pantano,L., Bañez-Coronel,M., Llorens,F.,
Miñones-Moyano,E., Porta,S., Sumoy,L., Ferrer,I. and Estivill,X.
(2010) A myriad of miRNA variants in control and Huntington––s
disease brain regions detected by massively parallel sequencing.
Nucleic Acids Res., 38, 7219–7235.

51. Hu,J.F., Yim,D., Ma,D., Huber,S.M., Davis,N., Bacusmo,J.M.,
Vermeulen,S., Zhou,J., Begley,T.J., DeMott,M.S. et al. (2021)
Quantitative mapping of the cellular small RNA landscape with
AQRNA-seq. Nat. Biotechnol.,
https://doi.org/10.1038/s41587-021-00874-y.

52. Hu,J.F., Yim,D., Huber,S.M., Bacusmo,J.M., Ma,D., DeMott,M.S.,
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