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Abstract: Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is
a long-standing conundrum. While the structures of these molecules, proteins and ligands, have

been extensively studied, protein–ligand interactions, or binding modes, have not been comprehen-

sively analyzed. Although methods for assessing similarities of binding site structures have been
extensively developed, the methods for the computational treatment of binding modes have not

been well established. Here, we developed a computational method for encoding the information

about binding modes as graphs, and assessing their similarities. An all-against-all comparison of
20,040 protein–ligand complexes provided the landscape of the protein–ligand binding modes and

its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Fami-

ly tend to bind relatively similar ligands with similar binding modes, the correlation between ligand
and binding similarities was not very high (R2 5 0.443). We found many pairs with novel relation-

ships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding

modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our data-
set). In addition, there were an abundance of pairs of homologous proteins binding to similar

ligands with different binding modes (68,217 pairs). Our results showed that many interesting rela-

tionships between protein–ligand complexes are still hidden in the structure database, and our
new method for assessing binding mode similarities is effective to find them.

Keywords: protein–ligand complexes; binding modes; molecular recognition; bioinformatics; chemo-
informatics; database

Introduction
Elucidating the molecular mechanisms underlying

the specific recognition of small-molecules, or

ligands, by proteins is a long-standing conundrum in

the field of protein science. Toward this goal, the

wealth of three-dimensional (3D) structure data of

proteins deposited in the Protein Data Bank (PDB)1

provides fruitful insights, because the structure data

of molecular complexes describe the atomic details of

molecular interactions, which generate the specific-

ity of ligand recognition. To understand the princi-

ples of this phenomenon, comprehensive analyses of

a variety of protein–ligand interactions and extrac-

tion of the knowledge from the huge database are

required. “Structural bioinformatics” has tackled

these challenges.2,3 In particular, the 3D structures

of ligand-binding sites, the protein surfaces contact-

ing the ligand, have been extensively analyzed.

Several statistical studies on binding site structures

Additional Supporting Information may be found in the online
version of this article.

Grant sponsor: JSPS KAKENHI; Grant numbers: 22136005 and
15H02773; Grant sponsors: Human Genome Center (The Univ.
of Tokyo) and the National Institute of Genetics, Research Orga-
nization of Informatics and Systems, Japan.

*Correspondence to: Kota Kasahara; Collage of Life Sciences,
Ritsumeikan University, Kusatsu, Shiga 545-0021, Japan.
E-mail: ktkshr@fc.ritsumei.ac.jp
This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

Published by Wiley-Blackwell.VC 2016 The Authors Protein Science published by Wiley Periodicals, Inc. PROTEIN SCIENCE 2016 VOL 25:1659—1671 1659
on behalf of The Protein Society



have revealed various structural motifs shared

among evolutionally distant proteins.4–7 The coun-

terparts of the molecular interactions, meaning the

ligands, have been investigated in another discipline

called “chemoinformatics”. Several chemoinformatic

techniques for characterizing and comparing the

structures of chemical compounds as 1D vectors

have been developed.8,9

The database analyses by structural bioinfor-

matics and chemoinformatics have revealed the

landscapes of the protein structure space10 and the

chemical space,11 respectively. Mapping these two

spaces demonstrated that similar proteins do not

always recognize similar ligands, and vice versa.12,13

The mechanistic details of this nonlinear behavior of

the relationships between these two spaces remain

largely unclear. In order to fill the gap, the physical

molecular interactions between proteins and ligands

must be investigated.

Statistical studies of molecular interactions have

mainly focused on the statistics of atomic interactions,

meaning the atomic contacts between two atoms,

groups, or small moieties of molecules, mediated by

hydrogen bonds, van der Waals contacts, and p–p
stacking.14–18 We previously reported statistical pat-

tern analyses of the spatial distributions of ligand

atoms contacting amino acid residues.19 These studies

illuminated the propensities and patterns in the spa-

tial configurations of interacting atoms. These atomic

interactions can be considered as the building blocks

of protein–ligand molecular interactions. In other

words, a protein recognizes its ligand with a combina-

tion of atomic interactions. In spite of its importance,

there is no gold standard for the computational analy-

ses of the combinations, or the binding modes.

The “interaction fingerprint” method encodes a

binding mode as a binary vector, with elements that

reflect whether a residue interacts with a ligand

using a particular type of interaction: e.g., hydrogen

bonds and hydrophobic contacts.20 While this meth-

od is effective for postdocking analyses, it cannot be

applied to compare binding modes between different

proteins, because a sequence alignment is required

for the comparison. Another technique, reported by

Desaphy et al., is a universal method to compare

protein–ligand binding modes, and it is effective for

virtual screening tasks.21 This method encodes pro-

tein–ligand interactions as an integer vector or a

complete graph, with information about pharmaco-

phore types and distances between the interacting

protein or ligand atoms (or their mid-points). Their

similarity measurement is highly correlated with

the similarities of the binding sites and the ligand

structures, because this graph explicitly includes

information about the relative spatial positions of

amino acids in the binding sites and the ligand

atoms. This method simultaneously compares both

molecular structures and interactions. However, as

described above, numerous proteins and ligands dis-

play promiscuous properties, and thus similar struc-

tures do not always imply similar interactions. The

current methods to encode protein or chemical struc-

tures cannot detect similar interactions between dis-

similar proteins or ligands.

Here, we propose a new method for encoding

information about binding modes and assessing their

similarities. In this method, a binding mode is

encoded as a bipartite graph, consisting of two kinds

of nodes defining an amino acid residue or a ligand

atom. Edges encode information about local interac-

tions, defined as the relative positions of a contact-

ing pair of an amino acid residue and a ligand atom.

The relative positions between amino acids and

those between ligand atoms were not considered. In

order to encoding the relative positions of an inter-

acting pair, we applied the statistical pattern recog-

nition analysis method, presented in our previous

study for labeling types of edges.19,22 Using this

method, we assessed the similarities of the binding

modes for all pairs of 20,040 protein–ligand com-

plexes, and compared them with the similarities of

their protein structures and ligand structures. As a

result, while similar proteins tend to bind similar

ligands with similar binding modes, the correlations

between ligands and binding similarities are not so

high. We found many pairs of protein–ligand com-

plexes with interesting relationships, such as pairs

of dissimilar proteins and ligands with similar bind-

ing modes, and pairs of similar proteins and ligands

with dissimilar binding modes.

Results

Method overview
We developed a graphical representation for the pro-

tein–ligand binding modes, named the “binding

graph”, and a similarity measure between the bind-

ing graphs. The binding graph is a bipartite graph,

consisting of two types of nodes that are ligand

atoms or amino acid residues. The edges between

them represent the atomic interactions between

nodes with labels annotating the types of the inter-

actions, which are defined by the statistical analysis

of the atomic interactions in the dataset. Each 3D

structure of a protein–ligand complex can be trans-

formed into one binding graph. Using this graph, an

all-against-all comparison of the binding mode simi-

larities in our dataset was performed with the two

other similarity measures; i.e., the SCOP classifica-

tion23 and the fingerprint-based chemical structure

similarity of ligands.24 The binding similarity (Sb)

and ligand similarity (Sl) are defined as real values

from 0.0 to 1.0. The protein similarity (Sp) is defined

as the 5-level accordance in the SCOP hierarchy;

pairs with different Classes, the same Class, the

same Fold, the same Superfamily, and the same
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Family. In addition, we also analyzed the identity of

the binding sites in each pairs with the same Super-

family or Family.

The methods are summarized in Figure 1. The

methods consist of the following five parts: (i) dataset

construction, (ii) classification of protein–ligand atomic

interactions, (iii) encoding binding modes of protein–

ligand complexes as binding graphs, (iv) similarity

assessments between two binding graphs (see also Sup-

porting Information Fig. S1), and (v) all-against-all

comparison of the protein–ligand complexes, using the

three similarity measures; i.e., protein structures,

ligand chemical structures, and binding modes.

Dataset constructions and classification of

atomic contacts

The “primary dataset” is composed of 23,040 PDB

entries, including 49,361 polypeptide chains and

66,654 protein–ligand binding sites. This dataset is

the same as the primary dataset used in our previ-

ous report.19 With the combination of 80 types of

protein fragments and 25 types of ligand atoms, 80

3 25 5 2,000 types of interactions can exist. Since

many of them are not observed or only rarely

observed in the dataset, these types (<100 data

points for each type) were removed, resulting in the

consideration of only 955 types of interactions. For

each type of interaction, the pattern recognition

technique was applied and the spatial arrangements

of the atomic interactions were classified, by fitting

to the Gaussian mixture model. Each Gaussian func-

tion in the mixture models with �100 interactions

in the dataset and the probability of existence (pk)

�0.1 is referred as an “interaction pattern”. As a

result, 5,497 interaction patterns were found in the

dataset. An edge in the binding graphs (see

Figure 1. Method overview. The methods can be divided into five parts. (i) The two datasets of protein–ligand complexes, rep-

resented by the symbols “P” and “S”, were built. The “P”rimary dataset is a subset of the PDB, and the “S”COP dataset is a

subset of the primary dataset. (ii) The patterns of interaction geometries observed in the primary dataset were defined. The

green filled circles denote three covalently linked protein atoms (“AA” stands for amino acid). The axes of the local coordinate

system, defined by the positions of the three atoms, are shown by the black arrows. The gray filled circles indicate the distribu-

tion of ligand atoms interacting with the protein atoms. By applying the pattern recognition technique, the distribution was fitted

on to the Gaussian mixture model. Each Gaussian element is depicted as a set of concentric circles. The patterns defined here

were used for labels in the next part. (iii) Each complex in the SCOP dataset was converted into the binding graph. The green

circles indicate amino acid residues and other circles indicate ligand atoms. The cyan lines between them represent interactions

with the patterns. (iv) The similarity between two binding graphs was assessed, based on the alignment of the two graphs. The

details of this step are presented in Supporting Information Figure S1. (v) This similarity assessment was performed for all pairs

of protein–ligand complexes in the SCOP dataset. In addition, the other two similarities; i.e., protein structure and ligand struc-

ture similarities, were also assessed.
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“Methods”) was labeled with a set of interaction pat-

terns. As a result, 44 out of 80 types of protein frag-

ments, and 19 out of 25 types of ligand atoms, have

at least one interaction pattern (Supporting Infor-

mation Tables S1 and S2).

The SCOP dataset was obtained by taking the

intersection between the primary dataset and SCOP

ver. 1.75,23 and removing the major nonspecific

ligands (Supporting Information Table S3) and the

complexes with a small number of interactions (�10

edges in the binding graph). This dataset is com-

posed of 9,224 PDB entries, including 20,040 pro-

tein–ligand complexes, and 1,084 SCOP Families

and 3,507 kinds of ligands. Details of the datasets

are summarized in Supporting Information Table

S4. The distributions of the numbers of nodes and

edges in each binding graph are shown in Support-

ing Information Figure S2.

Distribution of each type of similarity

We calculated the ligand and binding similarities, Sl

and Sb, for all pairs of complexes in the SCOP data-

set. The average values of the binding and ligand

similarities among all pairs are l(Sb,all) 5 0.0420 and

l(Sl,all) 5 0.187, respectively. The values of the bind-

ing similarity tend to be lower than those of the

ligand similarity, because our definition of Sb is

based on the matching between two graphs consist-

ing of edges attributed with highly sparse vectors;

i.e., the 5,497-dimensional vector wi,n. Thus, the

binding similarity metric is much more sparse than

the ligand similarity space. As the large difference

between the distributions of Sb and Sl are sometimes

inconvenient for comparisons, the standardized score

Zb and Zl are defined, as the following equation:

Z5
S2l

r
; (1)

where Z denotes the Z-score (Zb or Zl), S denotes

the raw score (Sb and Sl), l and r indicate the mean

and the standard deviation of the raw score in the

dataset (lb and ll; rb and rl).

The 2D histogram of the relative frequency of

pairs over ligand and binding similarities for all

pairs is shown in Figure 2(F), and the histograms of

the relative frequency of each similarity are shown

along each axis of the 2D histogram. The Sb distri-

bution peaks at Sb 5 0.03, and the frequency mono-

tonically decreases. The pairs with Sb� 0.11

(Zb�1.5) and Sb� 0.18 (Zb� 3.2) are the top 5% and

1% most similar pairs, respectively. In the case of

the ligand similarity, the distribution of Sl is broader

and there is a plateau in the range from 0.08 to

0.20. There are some pairs at Sl 5 1.0, which corre-

spond to pairs of identical, frequently appearing

ligands; e.g., mono-nucleotides, sugars, and heme.

The pairs with Sl� 0.64 (Zl� 2.4) and Sl�0.96

(Zl�4.1) are the top 5 and 1% most similar pairs of

ligands, respectively. For the protein similarity, the

ratio of pairs in the same Class, Fold, Superfamily,

and Family are 33.9, 0.8, 1.0, and 0.9%, respectively.

The remaining 63.5% lack any accordance in the

SCOP hierarchy. The 2D histogram shows that there

are no clear correlations between Sb and Sl, and

their R2 value is 0.308. The horizontal bright

streaks in the 2D histogram indicate that pairs with

the same ligand similarity exhibit various binding

mode similarities. This means that the binding

mode similarity can diverge, even with the same

ligand similarity. The distributions in each protein

similarity show that similar proteins tend to bind

similar ligands and employ similar binding modes

[Fig. 2(A–E)]. In particular, the Sb shows the bi-

modal distributions in the same Superfamily and

the same Family [Fig. 2(D,E)]. The second peak

roughly corresponds to pairs of identical or very sim-

ilar ligands in the same binding sites.

Relationships among protein, ligand, and

binding similarities
The average and the standard deviations of Sb and

Sl in each level of Sp are shown in Figure 3 and

Supporting Information Table S1. While the SCOP

dataset includes 10 Classes, 95.5% of the complexes

are from one of the four major Classes: a, b, c, and

d. Among all of the pairs of complexes, 63.5% of the

pairs are with different Classes (the average similar-

ities in each pair of Classes are shown in Supporting

Information Fig. S3). Among the three lowest levels

of Sp (proteins from different Superfamilies), there

are no clear differences in both Sb and Sl [Fig. 3]. In

contrast, for the pairs in the same Superfamily, the

averages of Sb and Sl are 2.31- and 2.88-times larger

than those in different Classes. In the case of pairs

in the same Family, they are 5.10- and 3.30-times

larger than those in different Classes. This result

suggests that the accordance in Class and Fold lev-

els does not necessarily imply the high similarity of

ligands and their binding modes, and the proteins in

the same Superfamily or Family are expected to

have similar ligands or binding modes. While this

trend is shared in both the ligand and binding simi-

larities, the correlation of Sb and Sl is not very high.

There are many pairs with dissimilar ligands and/or

dissimilar binding modes even in the same Family.

In addition to the SCOP classification, we also

analyzed the relationship between the protein

sequence identity and the other similarities, for

pairs within the same Superfamily (Supporting

Information Fig. S4). The pairs with sequence iden-

tity �90% showed high ligand and binding similari-

ties. For the other pairs (sequence identity <90%),

there were no significant differences in the ligand
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and binding similarities, regardless of the sequence

identity.

For simplicity, the thresholds of the similarities

in Sb and Sl are introduced, as the top 1% highest

similarities. The pairs with Sb�0.18 (Zb�3.2) or

Sl� 0.96 (Zl� 4.1) are considered as similar binding

modes or similar ligands, respectively. For proteins,

pairs with the same Superfamily are considered as

similar proteins. The numbers of pairs in each com-

bination of similarities are summarized as the Venn

Figure 2. Distributions of ligand and binding similarities. The horizontal and vertical axes denote the binding and ligand similari-

ties, respectively. The gray scale plot indicates the log frequency of the similarities. Brighter colors mean higher frequency, as

shown in the scale bar on the right of the histogram. The bar plots along each axis are the distributions of each similarity. The

values are the relative frequency (not the logged value). (A–E) The distributions in the pairs with no accordance in the SCOP

hierarchy, the same Class, the same Fold, the same Superfamily, and the same Family, respectively. (F) The distribution in all

pairs.
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diagram in Figure 4, which shows that only limited

regions are overlapped. 0.16% of the pairs (324,306

pairs) of protein–ligand complexes in the SCOP

dataset follow usual assumption that homologous

proteins tend to recognize similar ligands with simi-

lar binding modes. In this category, 81% of pairs

have the identical ligand, and the others are the

complexes with analogous ligands. As an example of

this category, a superimposed picture of a cytidine

deaminase complexed with cytidine and its analogue

(PDB IDs: 2FR6 and 1CTT) is shown in Supporting

Information Figure S5.

On the other hand, similar binding modes do

not always imply similar ligands or similar proteins.

Among the 1,940,511 similar binding pairs, 679,040

and 829,303 pairs are with similar ligands and pro-

teins, respectively. The remaining 756,474 pairs

have similar binding modes, in spite of the fact that

neither the ligands nor the proteins are similar.

This is an unprecedented relationship between pro-

tein–ligand complexes. Conversely, there are 392,523

pairs with similar proteins and similar ligands, and

68,217 of them have dissimilar binding modes. They

are the counter examples of the common sense

notion that similar proteins and similar ligands

achieve recognition performed with similar binding

modes.

The majority of such exceptional relationships

are the pairs of frequently appearing ligands, includ-

ing nucleotides, heme, sugars, cofactors, and their

analogues. One of the reasons is the fact that the

binding motifs for these well-known ligands are con-

served among a wide range of proteins; e.g., the P-

loop motif recognizing the a-phosphate of a

mononucleotide.25 In addition, the PDB is biased

toward well-known ligands: the top 1% high fre-

quency ligands; e.g., heme (PDB three-letter code:

HEM), nicotinamide adenine dinucleotide (NAD),

flavin adenine dinucleotide (FAD), and 32 other

major ligands, represent 34.6% of the complexes.

However, we found some interesting examples that

may provide insights into the molecular recognition

as discussed below.

Identity of binding sites in pairs of homologous

protein complexes
In our dataset, 1.9% of pairs (3,673,724 pairs) have

similar proteins (pairs are in the same Superfamily/

Family). We classified them into the two categories:

the pairs with ligands on the same binding site

(their ligands overlap in the superimposed picture),

and those on the different binding sites. As a result,

81% of them are in the same binding sites. The 2D

and 1D histograms of the frequencies of Sb and Sl in

each combination of the SCOP accordance (Super-

family or Family) and the binding site identity (iden-

tical or not) are shown in Figure 5 in the same

manner as Figure 2. Their averages and standard

deviations are shown in Figure 3 and Supporting

Information Table S5.

These figures show clear differences between

the pairs with the same binding site and those with

the different binding sites. The 1D histograms of Sb

in the pairs with the same binding sites have the

second peak at Sb 5 0.13 for the same Superfamily

[Fig. 5(B)] and Sb 5 0.33 for the same Family [Fig.

5(D)], in contrast to the fact that the pairs with dif-

ferent binding sites have only one peak at the low

Sb regime. The 2D histograms demonstrate that the

distributions widely spread into similar binding

modes regime in the pairs with the same binding

Figure 4. Number of similar pairs of complexes. The number

of pairs in each combination of the three similarity measures

is displayed as a Venn diagram.

Figure 3. Ligand and binding similarities in each level of pro-

tein similarities. The average and standard deviation of (A)

ligand and (B) binding similarities, in each level of protein

similarity. “None” indicates the pairs in different Classes.

“Total” indicates all pairs in the SCOP dataset.
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site. The ligand similarity is also gained in the pairs

with the same binding sites compared to those with

different binding sites, in particular the pairs of the

identical ligand (Sl 5 1.0) are enriched. However,

although ligands on the same binding sites of the

same Family tends to give high similarity of ligands

and binding modes, the correlations between Sb and

Sl is not so high (R2 5 0.509 for the same Superfami-

ly, and R2 5 0.415 for the same Family) and there

are many pairs with low Sb and low Sl. This may

indicate the presence of low specificity binding sites,

which can recognize a variety of ligands in the same

binding site.

Similarity in binding modes between complexes

with dissimilar proteins and dissimilar ligands
In the SCOP dataset, 0.38% of the pairs (756,474

pairs) of protein–ligand complexes have similar

binding modes with dissimilar proteins and ligands.

They include 11,748 complexes consisting of 863

SCOP Families and 2,172 ligands.

An illustrative example of them is the pair of

PDB IDs: 1VRT and 2HMK [Fig. 6(A,B)]. These pro-

teins are in different SCOP Classes; the 1VRT pro-

tein is an HIV-1 reverse transcriptase and its SCOP

classification is e.8.1.2, which is the reverse tran-

scriptase Family. In contrast, the 2HMK protein is a

naphthalene 1,2-dioxygenase and its SCOP classifi-

cation is b.33.1.2, which is the ring hydroxylating a

subunit ISP domain Family. The ligands for 1VRT

and 2HMK are nevirapine (PDB 3-letter code: NVP)

and phenanthrene (PEY). Both ligands have a three-

ring scaffold; however, the former has heterocyclic

rings with some substituent groups, and its center

ring is heptameric. Due to these differences, the

fingerprint-based chemical similarity measure does

not detect similarity between them (Sl 5 0.0).

In these binding modes, there are three major

types of interactions, which are commonly observed

in these two complexes: (i) CHAO weak hydrogen

bonds at the backbone of His255 in 1VRT, and at

that of Asp205 in 2HMK, (ii) sandwich-shaped

Figure 5. Distributions of ligand and binding similarities in the pairs of same/different binding sites. The histograms of the rela-

tive frequencies of pairs over binding and ligand similarities. (A) The pairs of complexes with the same Superfamily and different

binding sites. (B) Those with the same Superfamily and the same binding sites. (C) The pairs of complexes with the same Fami-

ly and different binding sites. (D) Those with the same Family and the same binding sites; see also Figure 2.
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hydrophobic contacts by the two aliphatic residues,

namely Leu100 and Val106 in 1VRT, and Leu307

and Val209 in 2HMK, and (iii) several p–p contacts

at Tyr181, Tyr188, and Tyr318 in 1VRT, and

Phe202, Phe224, Phe352, and Trp358 in 2HMK.

They are shown by the (i) cyan, (ii) gray, and (iii)

pink lines in Figure 6(A) and (B).

Examples of the interaction patterns shared

between the two complexes are shown in Figure

6(C), (D), and (E). For the type (i) interaction, the

spatial distribution of the aromatic carbon atoms

interacting with a protein fragment consisting of

oxygen, carbon, and nitrogen atoms in the amino

acid backbone is shown in Figure 6(C). Both

His255 in 1VRT and Asp205 in 2HMK interact with

two aromatic carbon atoms with the patterns shown

by yellow surfaces, and this indicates the presence

of bifurcated weak hydrogen bonds between the CH

portions and a backbone oxygen atom. For the type

(ii) interaction, the distribution of the aromatic car-

bon atoms of the ligands interacting with the frag-

ment of three sp3 carbon atoms; e.g., the distal side

of the side-chains of valine and leucine, is shown in

Figure 6(D). This figure shows that the distribution

of the interacting atoms is widely spread in many

directions, since this distribution is generated from

isotropic, hydrophobic contacts. For the type (iii)

interaction, the distribution of the aromatic carbon

atoms of the ligands interacting with a fragment

composed of three aromatic carbon atoms is shown

Figure 6. Comparison of binding modes between HIV-1 reverse transcriptase (PDB ID: 1VRT) and naphthalene 1,2-dioxyge-

nase (PDB ID: 2HMK). (A,B) Binding structures of 1VRT and 2HMK, respectively. The ligand structure is shown by cyan sticks,

and the residues that have common interactions with those in the other complex are shown by green sticks. The ribbons repre-

sent the entire structures of the complexes. The dashed lines between a protein atom and a ligand atom indicate common

interactions. (C–E) The spatial distributions of the interaction patterns that were commonly applied in these two complexes. The

protein fragments; i.e., the successive three atoms in the amino acids, are shown as sticks. The cyan surfaces indicate the

overrepresented regions, or interaction patterns, of the locations of ligand atoms interacting with the protein fragment. The yel-

low surfaces are patterns commonly used in both 1VRT and 2HMK. The interactions shown as cyan, gray, and pink dashed

lines in (A) and (B) correspond to those in (C), (D), and (E), respectively. The residue names of 2HMK are labeled as the italic

style.
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in Figure 6(E). The interaction patterns are localized

over and under the plane of the aromatic fragment,

indicating that p–p interactions are favored.

We searched binding sites that are similar to

the NVP binding sites in 1VRT, by using two exist-

ing binding site similarity search engines, eF-seek,26

GIRAF,27 and ProBIS.28 However, 2HMK is not

detected by these methods (this entry was found in

neither top-100 similar binding sites in eF-seek and

GIRAF, and the Z-score �1.0 hit list in ProBIS).

Since the relative positions (both the spatial position

and sequence position) of the interacting residues

were not similar despite of a high similarity of inter-

actions, these similarity measures could not detect

this relationship. Our method can detect such a

fuzzy similarity, which does not directly rely on the

spatial positions of atoms, due to the graph

topology-based comparison.

Recognition of similar ligands by similar
proteins in different binding modes

We found many examples of cases where similar pro-

teins recognize similar ligands with different bind-

ing modes. There are 68,217 pairs (0.04% of the

total), including 8,213 complexes, 863 SCOP Fami-

lies, and 518 ligands. The majority of these cases

involve binding with frequently appearing ligands.

For example, 37,887 pairs (55.5%) of these cases are

the binding sites of heme, and 10,964 pairs (16.1%)

are those for NAD. These cases show that two simi-

lar ligand molecules can bind to two distinct binding

sites on a protein. In some cases, one of the ligands

is placed at an interface between symmetric biologi-

cal units, which may be a result of the crystal pack-

ing. For example, PDB ID: 1NKH presents the 3D

structure of lactose synthase bound with two uridine

50-diphosphate (UDP) molecules for each biological

unit (Supporting Information Fig. S6). In compari-

son with the structure of the same protein in PDB

ID: 1PZY with only one UDP molecule, one of the

UDP molecules is bound at the identical binding site

with a similar binding mode (Sb 5 0.24; Zb 5 4.6);

however, the binding mode of the other UDP, which

is at the interface, is very different from them

(Sb 5 0.0). The nature of the UDP molecule at the

interface between the biological units was not dis-

cussed in the original report.29

Apart from the frequent ligands, there are 164

pairs with rare ligands, which means only one pair

exists among the 68,217 pairs. As an example of

them, a tyrosine hydroxylase (PDB ID: 2TOH) and a

phenylalanine hydroxylase (PDB ID: 1TG2) com-

plexed with 7,8-dihydrobiopterin are shown in Fig-

ure 7. The resolutions of these X-ray structures

were 2.3Å and 2.2 Å, respectively, and authors men-

tioned the coordinates of their ligands were readily

assigned.30,31 The sequence identity of these proteins

is 64%, and the SCOP classification is d.178.1.1,

which is the aromatic amino acid mono-oxygenases,

catalytic, and oligomerization domains Family. Note

that although the ligand three-letter code H2B, which

is annotated as the quinonoid 7,8-tetrahydrobiop-

terin, is assigned to 1TG2, the authors said that it is

7,8-dihydrobiopterin in their report.30 Interestingly,

the orientations of the ligands in the binding sites are

opposite between these two complexes. As their aro-

matic heterocyclic scaffolds are located at almost the

same position, their interactions are partially similar

(Sb 5 0.102; Zb 5 1.31). Leu294 in 2TOH and the

aligned residue Leu248 in 1TG2 form hydrophobic

contacts with the ligand aromatic ring. In contrast,

Tyr371 in 2TOH and Tyr325 in 1TG2 recognize their

ligands in different ways: Tyr371 in 2TOH hydrogen

bonds with the ligand carbonyl oxygen atom by using

the distal hydroxyl group of the side-chain, and

Tyr325 in 1TG2 forms hydrophobic contacts with the

methyl group of the ligand, by using the aromatic ring

of the side-chain. This example shows that slight

changes in homologous proteins can result in drastic

alterations of the binding modes.

Discussion

In this study, we developed a new method for assess-

ing the similarity of binding modes between protein–

small ligand complexes. We applied this method for

the all-against-all comparison of the dataset, and com-

pared the similarity measures for protein structures

and those for ligand structures. We then discussed the

relationships between the three similarities, the pro-

tein similarity Sp, the ligand similarity Sl, and the

binding similarity Sb, and provided some examples of

interesting pairs of complexes.

Statistically, proteins with the same Fold in the

SCOP classification are not highly expected to

Figure 7. Comparison of the binding modes between tyro-

sine hydroxylase (PDB ID: 2TOH) and phenylalanine hydroxy-

lase (PDB ID: 1TG2) complexed with 7,8-dihydrobiopterin.

The gray and green molecules indicate 2TOH and 1TG2,

respectively. The molecules depicted by sticks at the center

of the figure are 7,8-dihydrobiopterin. The leucine and tyro-

sine residues, described in the main text, are shown as

sticks.
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recognize similar ligands and exhibit similar binding

modes even when the ligands are bound into the iden-

tical binding site. However, accordance in Superfami-

ly or Family implies similar ligands and binding

modes [Fig. 3]. In the same Superfamily, the averages

of ligand and binding similarities do not depend on

the sequence identity in the range of <90%. Sequence

identities �90% strongly suggest high ligand and

binding similarities (Supporting Information Fig. S4).

We found a certain number of pairs of complexes

with interesting properties. There are 756,474 pairs

representing cases where dissimilar proteins recognize

dissimilar ligands with similar binding modes [Fig. 4].

In addition, 68,217 pairs are cases in which similar

proteins recognize similar ligands with distinct bind-

ing modes. These two types of disagreements between

our binding mode similarity measures and the struc-

ture similarity measures illuminate the novel relation-

ships between protein–ligand complexes.

Over the past several decades, the recognition

modes of highly frequent ligands, especially nucleoti-

des, have been extensively studied by statistical anal-

yses, and the commonalities of the binding sites

among evolutionally distant proteins have been dis-

cussed.5,25 We focused on the relationships between

complexes with uncommon ligands in this study. In

the case of the pair of HIV-1 reverse transcriptase and

naphthalene 1,2-dioxygenase, the clear commonali-

ties in their modes of binding dissimilar ligands are

shown in Figure 6; namely, a weak hydrogen bond,

hydrophobic contacts by aliphatic side-chains, and p–

p interactions. This example suggests the existence of

some universal patterns for specific ligand recognition

by proteins, which are sets of interactions commonly

observed regardless of protein and ligand structures.

In contrast, the other example [Fig. 7] presents the

diversity of binding modes of similar proteins and

ligands. The binding modes of 7,8-dihydrobiopterin

are in opposite directions between the complexes with

the two homologous proteins. This implies that a

slight difference in the binding sites can drastically

change the binding mode.

Our novel computational technique has revealed

these interesting, unprecedented relationships. This

is a powerful method to discover knowledge from the

rapidly growing structure database, toward under-

standing the mechanisms of molecular recognition.

Materials and Methods

Dataset constructions

We prepared two datasets, the “primary dataset”

and the “SCOP dataset”. The former was used to

obtain and classify the statistics of atomic interac-

tions (see the next subsection). This dataset was the

same as that used in our previous study.19 The pro-

tein–ligand complexes were collected from the PDB,

using the following criteria: (i) the structure was

solved by X-ray diffraction with a resolution �2.5 Å,

(ii) the protein has �30 amino acid residues, (iii) the

ligand has �6 heavy atoms, and a molecular weight

�80 and �800 Da, (iv) the ligand is not highly

exposed to the solvent, which means the relative

accessible surface area32 of the ligand molecule in

the complex form to the isolated form is �0.6.

The latter dataset is a subset of the primary data-

set. Entries that are not in SCOP ver.1.75,23 those

complexed with some major nonspecific ligands; e.g.,

detergents and precipitants (Supporting Information

Table S1), and those with a small number of interac-

tions (<10 edges) were excluded. The all-against-all

comparison was performed with this dataset.

Classification of atomic interactions

The atomic interactions observed in the primary

dataset were classified into patterns, and the inter-

action patterns were used as labels for the edges of

the binding graphs. The classification was performed

in the same manner as in our previous study19

except for the definition of protein atom types. The

atom types were defined by the Tripos force field

atom type,33 reflecting the topology of each atom,

which means that sp2, sp3, and aromatic carbon

atoms are discriminated, for example.

First, the amino acid residues in the dataset were

decomposed into fragments, consisting of three

covalently-linked atoms. Second, the contacting pairs

of a fragment and a ligand atom were extracted from

the complex structures, with a distance threshold of

the sum of the van der Waals radii of the atoms and 1

Å as an offset. One contacting pair was described by

seven variables: the Tripos force field atom types of

four atoms (three protein atoms and one ligand atom),

and the 3D Cartesian coordinates of the ligand atom

in the local coordinate system, defined on the basis of

the protein fragment. This fragment–atom pair is

referred to as an “interaction unit” in this report. By

gathering the interaction units from all complexes in

the primary dataset, the spatial distribution of the

ligand atoms around a protein fragment was generat-

ed for each type of interaction unit, defined by the

combination of the types of the four atoms. For each

distribution, the interaction patterns were defined by

applying the pattern recognition technique, which

infers the parameters of the Gaussian mixture model

with the fitness to the given distribution.34 The

Gaussian mixture model is a linear combination of

Gaussian functions,

pdfðxÞ5
XK
k51

pkN xjlk;
X

k

� �
; (2)

where pdf(x) is the probability density function for

an observation of a ligand atom at position x, which

is a local coordinate 3D vector. pk denotes a
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weighting coefficient of the kth Gaussian function

N(x|lk,Rk). lk and Rk are the parameters of the kth

Gaussian function, and are the mean as a 3D vector

and the covariance matrix as a positive-definite,

symmetric 3 3 3 matrix, respectively. The maximum

number of Gaussian functions in each distribution,

K, is an adjustable parameter, and we used K 5 15

to be consistent with our previous study.

When the Maharanobis distance from a data

point x; i.e., an interaction unit observed in a com-

plex, to an Gaussian function is �2.5, this interac-

tion unit is labeled with the ID of the Gaussian

function. Only the Gaussian functions assigned with

�100 data points and with pk� 0.1 are regarded as

“interaction patterns”.

Binding graph

The binding graph was generated for each protein–

ligand complex in the SCOP dataset, by the follow-

ing procedure. The 3D structure of a complex was

decomposed into a set of interaction units. Amino

acid residues (not fragments) and ligand atoms were

encoded as nodes, and edges were drawn between

pairs with at least one interaction pattern.

The SCOP dataset can be represented as G 5 {gi}

(i 5 1. . .|G|), where gi denotes the ith binding graph,

and |G| denotes the total number of binding graphs in

the dataset G. The graph gi consists of the set of nodes

Vi 5 {vi,m} (m 5 1. . .|Vi|) and the set of edges Ei 5 {ei,n}

(n 5 1. . .|Ei|). The mth node vi,m has the label Ti,m

indicating the type of node, which is one of 20 kinds of

regular amino acids or 25 kinds of Tripos force field

atom types, for nodes of amino acid residue or ligand

atoms, respectively. For the nth edge ei,n, the type of

interaction is labeled as a P-dimensional integer vector,

ci,n 5 {ci,n,p} (p 5 1. . .P), where the number P means the

total number of interaction patterns defined in the pre-

vious subsection. ci,n,p indicates the number of interac-

tions with the pth pattern observed in the edge ei,n.

As the vector ci,n is a raw count of the interaction

patterns and it is difficult to directly compare those

with different edges, we introduced the normalized

interaction vector wi,n 5 {wi,n,p} (p 5 1. . .P). The nor-

malization was performed by combining two kinds of

measures: (i) the frequency of interaction patterns in

each edge and (ii) the frequency of interaction patterns

in the dataset. Since the interaction patterns that are

ubiquitously observed in a wide range of complexes

provide only poor information for characterizing the

binding modes, such common interaction patterns

were negatively weighted. Each element of the nor-

malized interaction vector wi,n,p is defined as follows:

wi;n;p5
ci;n;pPP
p0 ci;n;p0

log

PjGj
i0 jEi0 jPjGj

i0
PjEi0 j

n0 H0 ci0;n0;p

� �
( )

(3)

where H0 is the Heaviside step function, which gives

1 only when ci,n’,p is �1 and gives 0 under the other

conditions. This is equivalent to the TF–IDF value,

which is a well-known parameter in the field of text-

mining.

Similarity measure between the binding graphs

The similarity between two binding graphs, gi and gj,

was calculated in terms of the degree by which the

interaction patterns were shared in pairs of aligned

edges of the two graphs. The alignment of two graphs

was performed, by applying a method for detecting

the maximum common edge subgraph (MCES).

Detecting the MCES between two graphs is equiva-

lent to detecting the maximum clique of the modular

product of the two line graphs.35 Since the maximum

clique detection is an NP-hard problem, we applied a

heuristics in an iterative manner. This step is illus-

trated in Supporting Information Figure S1.

To begin with, the similarity between two edges,

Se(ei,n, ej,m), was assessed for all possible pairs of n

and m, based on the following definition:

se ei;n; ej;m

� �
5
XP

p

min wi;n;p;wj;m;p

� �
; (4)

Taking the minimum value of the two edges means

counting the fractions of the normalized interaction

frequency shared by the two edges. Then, the pairs

of edges in gi and gj were sorted in the descending

order of Se(ei,n, ej,m). In the first iteration, only the

top Ne similar edge pairs were picked from the

sorted list, and the clique detection algorithm36 was

applied for the modular product of the two line

graphs with the Ne edge pairs. After that, the next

Ne similar edge pairs were added, and the clique

detection was performed again. These processes

were iterated until the clique remained unchanged.

Ne is an adjustable parameter, and larger values

will provide better results but the computational

cost becomes higher. In this study, we used the

parameter Ne 5 50, which means that the top 50

most similar pairs of residue-atom interactions were

considered for each iteration step.

After obtaining alignments of the two graphs gi

and gj, their similarity Sb (gi, gj) is calculated as

follows:

Sb gi; gj

� �
5

PMCES
x;x0 se ei;x; ej;x0

� �
max Wi;Wj

� � ; (5)

Wi5
XjEij

n

XP

p

wi;n;p; (6)

where MCES means the set of aligned edges with

the running variables x and x’ for the edges of gi

and gj, respectively. In this definition, Sb(gi,gj) is
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within the range of 0 through 1, and Sb(gi,gj) 5 1

means that the binding graphs in gi and gj are

identical.

In order to evaluate this heuristic approach for

the graph alignment, we applied this method to com-

paring the artificial dataset which is consisting of

160,059 pairs of binding graphs; one of the pair is

the binding graph in the SCOP dataset, and the oth-

er is a randomly generated subgraph of the former

binding graph. As a result, our method correctly

aligned all edges for 77.9% pairs, and aligned more

than 90% of edges for 80.4% pairs (Supporting Infor-

mation Fig. S7).

All-against-all comparison of protein–ligand

complexes
In the SCOP dataset, an all-against-all similarity

comparison was performed with the three kinds of

similarity measures: the protein similarity Sp, the

ligand similarity Sl, and the binding similarity Sb.

The protein similarity Sp was graded in five levels,

based on accordance with the SCOP hierarchy; i.e.,

proteins in the same Family, Superfamily, Fold,

Class, and without accordance in any hierarchy. For

each pair with the same Superfamily/Family, identi-

ty of their binding sites was evaluated. The 3D

structures of each pair were superimposed on the

basis of their secondary structure elements, by using

MICAN.37 When the minimum interatomic distance

between the ligands is shorter than or equal to 5 Å,

this pair is classified as a pair with ligands in the

same binding sites.

The ligand similarity Sl was defined as the

Tanimoto coefficient of the chemical structure finger-

prints (calculated by the OpenBabel software with

the FP2 option24). The binding mode similarity was

described in the previous subsection.
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