
RESEARCH ARTICLE

Rare variants in the endocytic pathway are

associated with Alzheimer’s disease, its

related phenotypes, and functional

consequences

Lingyu ZhanID
1*, Jiajin LiID

2, Brandon JewID
3, Jae Hoon SulID

4*

1 Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los

Angeles, California, United States of America, 2 Department of Human Genetics, David Geffen School of

Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,

3 Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California,

United States of America, 4 Department of Psychiatry and Biobehavioral Sciences, University of California,

Los Angeles, Los Angeles, California, United States of America

* zhanly812@g.ucla.edu (LZ); jaehoonsul@mednet.ucla.edu (JHS)

Abstract

Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia causing irre-

versible brain damage to the elderly and presents a major public health challenge. Clinical

research and genome-wide association studies have suggested a potential contribution of

the endocytic pathway to AD, with an emphasis on common loci. However, the contribution

of rare variants in this pathway to AD has not been thoroughly investigated. In this study, we

focused on the effect of rare variants on AD by first applying a rare-variant gene-set burden

analysis using genes in the endocytic pathway on over 3,000 individuals with European

ancestry from three large whole-genome sequencing (WGS) studies. We identified signifi-

cant associations of rare-variant burden within the endocytic pathway with AD, which were

successfully replicated in independent datasets. We further demonstrated that this endocy-

tic rare-variant enrichment is associated with neurofibrillary tangles (NFTs) and age-related

phenotypes, increasing the risk of obtaining severer brain damage, earlier age-at-onset,

and earlier age-of-death. Next, by aggregating rare variants within each gene, we sought to

identify single endocytic genes associated with AD and NFTs. Careful examination using

NFTs revealed one significantly associated gene, ANKRD13D. To identify functional associ-

ations, we integrated bulk RNA-Seq data from over 600 brain tissues and found two endocy-

tic expression genes (eGenes), HLA-A and SLC26A7, that displayed significant influences

on their gene expressions. Differential expressions between AD patients and controls of

these three identified genes were further examined by incorporating scRNA-Seq data from

48 post-mortem brain samples and demonstrated distinct expression patterns across cell

types. Taken together, our results demonstrated strong rare-variant effect in the endocytic

pathway on AD risk and progression and functional effect of gene expression alteration in

both bulk and single-cell resolution, which may bring more insight and serve as valuable

resources for future AD genetic studies, clinical research, and therapeutic targeting.
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Author summary

Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia and a lead-

ing cause of death in the world. Clinical and genetic studies have suggested the potential

contribution of the cellular transportation pathway to AD with an emphasis on common

variants. In this study, we investigated the effect of rare variants within the cellular trans-

portation pathway and examined three large datasets with over 3,000 individuals with

European ancestry. We reported enrichment of rare deleterious variants in the cellular

transportation pathway in AD patients from all three datasets. We also observed an eleva-

tion of rare deleterious variants in this pathway was associated with individuals with

severer brain damages (AD progression), earlier age-at-onset, and earlier age-of-death. By

aggregating rare variants in each gene from the cellular transportation pathway, we

revealed one gene in which rare variants were significantly associated with the progression

of AD. By integrating gene expression data from brain tissues, we identified two addi-

tional genes whose rare-variant effect displayed significant influences on gene expression.

Taken together, our results demonstrated that rare-variant effect in the cellular transpor-

tation pathway is strongly associated with the risk and the progression of AD, which may

serve as future clinical and therapeutic targets.

Introduction

Alzheimer’s disease (AD) is a destructive and irreversible neurodegenerative disorder, pre-

dominantly targeting the elderly.[1] It accounts for 60–70% of dementia cases, characteristic of

progressive disintegration of cognitive functions, language ability, and memory loss.[1,2] Late-

onset Alzheimer’s Disease (LOAD) is a subcategory of AD that appears in persons aged 65

years or older, showing a greater incidence rate as age increases.[3] As the population of Amer-

icans age 65 and beyond is expected to reach 88 million by 2050, the number of new AD cases

is predicted to double and the prevalence rate to quadruple [4,5].

AD is known to have a substantial genetic component with multiple modulating genes.

One of the strongest risk factors for LOAD is APOE. Recent GWASs have identified over 50

risk loci accounting for, together with all common SNPs, over 33% of the overall estimated

heritability [6–12] that cohered into three major AD-related biological pathways: the choles-

terol metabolism pathway, the immune response pathway, and the endocytic pathway.[13]

While AD studies have mostly focused on the effect of common variants, such as in the lipid

metabolism and immune system/response pathways implicated in recent GWASes, rare vari-

ants in genes related to these pathways have not yet been thoroughly investigated.[11,12,14–

20] Among these implicated pathways, the endocytic pathway has been identified as one of the

most prominent targets, where the earliest morphological changes can be observed as endo-

some enlargement in post-mortem brains from sporadic AD patients, as well as in some famil-

ial cases.[21,22] This phenomenon can be viewed as nearly diagnostic precision and served as

blood-cellular markers.[23,24] These findings have also been supported by a recent genetic

study showing the enrichment in clathrin-mediated/early endocytosis [25] and clinical

research on the facilitation of Aβ clearance by LC3-associated endocytosis.[26] Previous stud-

ies using common variants have also identified several risk loci in the endocytic pathway,

including BIN1, PICALM, CD2AP, EPHA1, and SORL1 [27].

However, despite being one of the histological hallmarks of AD, few studies have examined

the effect of rare variants within this endocytic pathway on AD pathogenic progression.[13] It
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is thus of interest to study the rare-variant effect on AD in this pathway. One major challenge

in the rare variant study is the lack of power due to their rarity. In this study, to overcome this

issue, we analyzed large-scale whole-genome sequencing (WGS) datasets that were recently

developed for the study of AD-related traits, including the Alzheimer’s Disease Sequencing

Project (ADSP) and the Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD).

Another efficient tool we leveraged to increase the power was a gene-set burden analysis,

where we focused on the collective rare variant effect within a set of genes of a known biologi-

cal pathway, rather than the effect of single variants or single genes, and thus avoided the mul-

tiple testing burden required otherwise. This method has helped identify risk genes in various

complex traits, such as in central nervous system pathways of schizophrenia.[28–39] In some

studies, this method has led to the discovery of novel biological pathways and therapeutic tar-

gets through the identification of gene networks participating in the same functional pro-

cesses.[40–45] Similar gene-set analyses focusing on biological pathways, as well as gene-

ontology-based pathway/module analyses, have also been effectively demonstrated in AD stud-

ies [11,46,47].

Therefore, in the current study, we included three large-scale WGS datasets with a total of

3,255 individuals of European ancestry, meta-analyzed under a gene-set rare-variant burden

analysis framework. Phase 1 of this framework aimed to explore the effect of rare variants in

the endocytic pathway as a whole and consisted of two stages followed by meta-analysis.

Besides AD status, we additionally explored three AD-related phenotypes, neurofibrillary tan-

gles (NFTs), age-at-onset (AAO), and age-of-death (AOD), along with the phase 1 analysis.

NFT status was measured as Braak stages, first proposed by Braak and Braak in 1991, and

served as a histopathological indicator of AD, [48–50] representing a finer progression of AD.

Phase 2 of this framework was to identify single endocytic genes driving the rare-variant asso-

ciation we captured in phase 1. For each dataset, we examined each gene in the endocytic path-

way using both AD and NFT status, followed by meta-analysis across all datasets. Finally, in

phase 3, we sought to explore the functional consequences of the rare-variant effect identified

in previous phases by examining both the bulk and single-cell expression of endocytic genes in

relationship with AD status.

Methods

Study sample

To identify AD-associated rare-variant effects, we evaluated three publicly available large-scale

WGS datasets collected for LOAD patients, downloaded as multi-sample VCF files. The Alz-

heimer’s disease sequencing project (ADSP) Umbrella is a collection of sequencing data from

the ADSP and other AD and Related Dementia studies. Under this Umbrella, the ADSP group

sequenced a large number of well-characterized Alzheimer’s Disease (AD) patients at three

National Human Genome Research Institute Genome Centers (NHGRI) (Baylor College of

Medicine Human Genome Sequencing Center, the Broad Institute, and the McDonnell

Genome Institute at Washington University). The ascertainment methods and inclusion crite-

ria are described in detail on the National Institute on Aging Genetics of Alzheimer’s Disease

Data Storage Site (NIAGADS).[51,52] The sequencing results were mapped to the human ref-

erence genome (GRCh38) and processed using the VCPA 1.0 pipeline, which follows GATK

best-practices pipeline.[53] Details of the variant calling pipeline can also be found on the

NIAGADS. The ADSP discovery extension phase sequenced whole genomes of 1,466 cases

and 1,534 controls from five cohorts provided by the Alzheimer’s Disease Genetics Consor-

tium (ADGC) and included samples with diverse ancestry backgrounds (Non-Hispanic

White, Caribbean Hispanic, and African American). Another WGS project shared under the
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ADSP Umbrella is the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which is a longi-

tudinal multi-center (63 sites across North America) study designed for early detection and

tracking of AD. The ADNI WGS data contains 808 participants with 238 AD cases, 322 mild

cognitive control (MCI) subjects, and 248 controls. A full list of the ascertainment methods

and inclusion criteria can be found in detailed descriptions in the online ADNI protocol.[54]

As of 2018, the ADNI was recalled under the same VCPA 1.0 pipeline as the ADSP discovery

extension WGS data and mapped to the same human reference genome (GRCh38), which

were then released together. This combined ADSP case-control dataset contained WGS data

from a total of 3,896 individuals (accessed by us on Nov 20, 2018), which then underwent a

sequence of quality control steps discussed later before including in our stage 1 analysis.

Detailed demographic information of this dataset can be found in Table 1 and the distribution

of age among AD cases and controls in S12 Fig. To note, we removed samples in the MCI cate-

gory to ensure a strict bipartite definition of disease status from all our analyses.

Our stage 2 replication included 1,894 WGS samples from the Accelerating Medicines Part-

nership-Alzheimer’s Disease (AMP-AD) Target Discovery and Preclinical Validation Project

(accessed by us on Dec 13, 2018). The samples were separately sequenced at three centers: the

Religious Orders Study and Memory and Aging Project (ROSMAP) (1,200 samples), the

Mount Sinai Brain Bank (MSBB) study (354 samples), and the Mayo Clinic Brain Bank

(Mayo) (350 samples). Previously reports have the detailed data collection scheme and sample

inclusion and exclusion criteria.[55–58] This sequence data were mapped to the human refer-

ence genome (GRCh37) and were processed using the GATK best-practices workflow v3.4.0.

[58] Another stage 2 replication was performed on the ADSP discovery extension phase family

samples, which were released together with the ADSP case-control data. Therefore, this family

WGS data were also mapped to the human reference genome (GRCh38) and processed using

the VCPA 1.0 pipeline. The ADSP WGS family dataset contains 888 samples from 161 multi-

plex families. The inclusion criteria prioritized families loaded with LOAD with minimal

APOE ε4 alleles. A detailed description of the study design and sample ascertainment methods

can be found in previous reports.[59,60] For AMP-AD case-control study, this resulted in 642

AD patients and 969 controls after removing low-quality samples. For the ADSP family study,

we obtained 545 AD patients and 285 cognitively normal older individuals (Table 1).

Table 1. Summary of clinical, demographic, and technical information of individuals from three large WGS

datasets.

WGS Datasets Case-control Family

Studies ADSP AMP-AD ADSP

Total sample size 1,291 1,611 353

EUR Population (%) 41% 93% 50%

AD Patients 664 642 209

Controls 627 969 144

Males (%) 53.4% 35.4% 65.7%

APOE ε4 carriers (%) 43.5% 38.5% 44.8%

Reference genome GRCh38 GRCh37 GRCh38

The numbers were counted only among the samples included in this current study. The percentages of EUR

population were based on the total number of samples within each dataset and only the samples with EUR ancestry

were included in this study, which served as the total input sample size in the first row. Abbreviations: AD:

Alzheimer’s disease; WGS: whole-genome sequencing; EUR: European; ADSP: the Alzheimer’s disease sequencing

project; AMP-AD: the Accelerating Medicines Partnership-Alzheimer’s Disease.

https://doi.org/10.1371/journal.pgen.1009772.t001
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RNA-Seq data used for functional analysis were also obtained from the ROSMAP study of

the AMP-AD Consortium [58]. The bulk RNA-Seq data were generated for 636 samples (254

AD cases, 368 controls, 12 other dementia, and two without annotation) from the dorsolateral

prefrontal cortex (DLPFC) tissues by the Broad Institue’s Genomics Platform and processed in

an automatic and parallelized pipeline.[55] The ROSMAP group also selected 48 post-mortem

samples (24 with severe AD pathology and 24 with low-to-no pathology) and conducted drop-

let-based single-nucleus RNA sequencing of the prefrontal cortex region.[61] Metadata of the

RNA-Seq data were then used to map samples to cases and controls following the same rule as

in stage 2 replication, as well as to merge with genotyping data.

Data processing and quality control of WGS data

Individual-level quality control of WGS data. We conducted stringent quality control

(QC) to ensure that we only include high-quality samples. As the X chromosome was not avail-

able in the ADSP datasets, we did not include X chromosome for all analyses. Before checking

the sequencing quality of each individual, we first removed variants failing Variant Quality

Score Recalibration (VQSR) in the GATK pipeline and set all variants with genotyping quality

(GQ) below 21 to missing. We included only bi-allelic variants for all future analyses. Within

the remaining variants, for each individual, we evaluated the genotype missing rate, calculated

theoretical relatedness to check for unexpected relationships by study design, and performed

principal component analysis (PCA) to identify ancestral composition and population outliers.

For the individual-level missing rate QC, we set the cutoff at 5% and removed all individuals

beyond this threshold. For the relatedness check, we used PLink 1.9[62] and conducted iden-

tity by descent (IBD) analysis, which allowed us to compute a relatedness degree for each sam-

ple. For case-control studies, we retained only one in each cluster of samples estimated to be

first- or second-degree relatives or duplicates within the corresponding cluster. For the ADSP

family study, we compared the empirical kinship relationship record to our computed theoret-

ical relatedness. For PCA, we used 1000 Genomes (1KG) phase 3 as a reference panel.[63] We

used EIGENSTRAT [64] for PCA and included only independent common SNVs that were

shared between 1KG and our dataset. To note, as PCA assumes unrelated individuals, when

performing PCA for the ADSP family cohort, we restricted to only one sample in each family

to avoid confounding ancestral relationship by kinship relationship. After having determined

the ancestry of the included sample based on PCA, we then assigned that ancestry to the entire

family of the included sample. PCA plots (PC1 vs. PC2) of all three datasets could be found in

S4 and S6 Figs. As the X-chromosome was available for the AMP-AD study, we also performed

sex-check for the AMD-AD and obsevered no sex-mismatched samples. In summary, after

stringent sample-level quality control and the careful examination of ancestral backgrounds,

we identified 1,291 (664 AD cases and 627 cognitively normal older controls), 1,611 (642 AD

cases and 969 controls), and 353 (144 AD cases and 209 controls) high-quality European sam-

ples in the ADSP case-control, the AMP-AD case-control, and the ADSP family datasets,

respectively, which then served as the primary objects of our study in both stages 1 and 2.

Variant-level QC of WGS data. We conducted stringent variant-level quality control to

ensure keeping only high-quality SNVs. We included only variants that served as inputs for

the individual-level QC while including only samples passing the individual-level QC. For

each variant, we assessed the genotype missing rate, computed minor allele frequency (MAF)

using all European samples, and calculated the Hardy-Weinberg Equilibrium (HWE) p-values

using only unaffected European samples. For the variant-level missing rate QC, we set the cut-

off at 2% and removed all variants beyond this threshold. For HWE, we set the cutoff at 0.001

for rare variants and removed all rare variants falling the HWE check where rare variants are
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defined in the following section. The number of variants passing the HWE filter could be

found in S14 Table.

Identification and annotation of rare variants

To identify rare variants, we used both external and internal sources of allele frequency to

avoid potential inflation of the allele frequency introduced by the study design. For the external

sources, we looked at the Europeans (EUR) in 1KG[63] and Non-Finnish Europeans (NFE) in

the gnomAD v2 database [65], which matched the ancestral backgrounds of our datasets. We

used two different MAF thresholds (0.1% and 1%) to define rare variants, as there is no one

consensus definition of rarity and we will correct for testing multiple MAF thresholds in future

analysis. In practice, when a variant was present in either of 1KG EUR or gnomAD v2 NFE

samples and below the aforementioned threshold, we would keep it for further analysis. For

the internal sources, we retained only samples with European ancestry based on the previous

PCA, as different ancestral groups would have different allele frequency distributions. Then

when a variant was absent in both external databases, we would look at the MAF estimated

from the European samples within our dataset and selected rare variants based on 0.1% and

1% MAF thresholds separately. We then annotated rare variants using Ensembl Variant Effect

Predictor (VEP)[66]. We defined a variant to be ‘deleterious’ if it is within one of the following

categories: stop-gain, stop-loss, frameshift, splice-donor, splice-acceptor, and missense vari-

ants. Particularly, for missense variants, we additionally consulted PolyPhen-2[67] and

retained only confident missense variants predicted to be ‘damaging.’ This definition of delete-

riousness focused on coding regions, primarily due to the fact that the effect of non-coding

variants was challenging to predict.[68,69] A distribution of variant types and singletons

among the selected set of rare deleterious variants could be found in S9 Fig and S11 Table. In

an additional validation of the deleteriousness, we further introduced the CADD score [70] as

a third deleterious criterion in phase 1 analysis combined with VEP and PolyPhen-2. The dis-

tribution of CADD scores among the set of rare deleterious variants could be found in S8 Fig.

As suggested by the CADD documentation, variants with scaled CADD > 15 were retained as

pathogenic variants and the set of rare deleterious/pathogenic variants passing all three anno-

tation tools were used in this validation test.

Identification of genes in endocytic pathways

We identified genes involved in endocytic pathways using AmiGO 2 [71,72] gene ontology

database to select all genes participating in this pathway. We identified three specific GO terms

related to the endocytic system in the Homo Sapiens category, which corresponded to three

specific compartments in the endocytic system (endosome, lysosome, and trans-Golgi net-

work). The endosome compartment is a membrane-bound vacuole in eukaryotic, participat-

ing in the endocytic trafficking from the trans-Golgi network to the plasma membrane and

vice versa.[73] The trans-Golgi network serves as an interconnected tubular network and the

final cisternal structure involved in packaging and transporting of cargos to the lysosome,

endosome, and cell surface.[74] The lysosome, a small membrane-bound lytic vacuole, is one

of the end-point in the endocytic transporting pathway, which contains hydrolytic enzymes to

break down various biomolecules.[75] The combination of these three compartments formed

the essential backbone of the endocytic system, which we named as “endo-system” and used

this term throughout the paper. After removing duplicates, we obtained 1,435 genes in total in

the endo-system, while the three compartmental gene-sets contained 899 (endosome), 678

(lysosome), and 236 (trans-Golgi network) genes, respectively (S16 Table). We confirmed

their biological functions with a functional enrichment analysis using the Database for
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Annotation, Visualization, and Integrated Discovery (DAVID)[76], where the top enriched

GO terms were indeed lysosome, endosome, and trans-Golgi network. (S13 Fig) A comparison

of the endo-system gene-set to the findings in the recent AD GWASes [11,12] has been pro-

vided by checking the number of endocytic genes implicated in Jansen et al. and Kunkle et al.

(S7 Fig). To note, some genes were related to multiple compartmental gene-sets and thus only

one of the duplicated genes was included in the endo-system gene-set (S11 Fig).

Analysis of association between the burden of rare deleterious SNVs and

AD status

To identify whether rare variants in the endocytic pathway are associated with AD, we com-

pared the burden of rare deleterious SNVs between AD patients and controls. The burden was

defined as the fraction of the alternative minor alleles that each individual carried for all rare

deleterious SNVs, using the—score function in PLINK [62]. We additionally performed this

procedure on the three compartmental gene-sets and obtained a burden score for each indi-

vidual within each gene-set. To correct for potential confounding factors, for each gene-set, we

first regressed the burden against the total number of rare SNVs and the top ten principal com-

ponents (PCs). Due to randomness, the distribution of the number of rare SNVs might be nat-

urally variable from sample to sample, in which case the distribution of rare deleterious SNVs

would also be greatly affected. Similarly, the PCs helped to correct for potential population

stratification within European ancestries. Both aspects could influence the burden score in

ways unrelated to AD and thus need to be controlled. Once we had removed the confounding

covariates, we performed three logistic regression models as proposed by Zhang et al.[77]

using the residuals and AD status for all case-control studies. The three models differed in the

covariates they corrected for. The minimal adjustment Model 0 (M0) controlled for the ten

PCs and sequencing centers. This model has been previously reported to improve power for

detecting variants whose effects are confounded with age and sex.[60] This phenomenon

could be introduced by study design where the mean age between cases and controls are sub-

stantially disproportionate, as in the case of ADSP studies. Model 1 (M1) was built upon M0

by additionally including age and sex. Model 2 (M2) was further built upon M1 and included

the count of APOE ε2 and ε4 alleles. For the ADSP family dataset, we generated kinship matri-

ces and used a generalized linear mixed model (GLMM) to take kin relationships into consid-

eration when calculating association p-values. In particular, we used the glmmkin function in

the R package, GMMAT.[78] We computed odds ratio (OR) and p-values of association

between the burden of rare deleterious SNVs and AD status in each model for European sam-

ples in each dataset (ADSP case-control study, AMP-AD case-control study, and ADSP family

study). Our stage 1 analysis involved only the ADSP case-control dataset as the discovery set,

while the AMP-AD case-control and the ADSP family study served as replication sets in our

stage 2 analysis. We chose this analysis scheme because the ADSP case-control study encom-

passed the largest sample size, including non-European samples, even though we identified

fewer samples with European ancestry compared to the AMP-AD case-control study. To note,

the AMP-AD case-control study provided only the age-of-death for each individual, while the

ADSP case-control and family studies provided only the age-at-onset. As a result, we used dif-

ferent definitions of age in analyzing different datasets. To validate our gene-set AD associa-

tion analysis, we tested two additional methods provided by MAGMA [79] using the same set

of rare deleterious variants. The first was the SNP-wise method applicable to both common

and rare variants and the second was the burden method that MAGMA suggested to use for

rare-variant-only analysis and was similar to the aforementioned gene-set AD association

analysis using PLINK. We applied both methods to the set of rare deleterious variants
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previously defined and computed two types of p-values: a competitive p-value that tests

whether the association within the gene-set is greater than in other genes and a self-contained

p-value that tests whether there is an association within the gene-set of interest at all. The latter

concept is the same as what our main analysis method aimed for. Due to our study design with

multiple gene-sets and MAF thresholds, a Bonferroni correction was applied in accordance

with the number of tests we performed in each analysis to define the study-wide significance

threshold in each stage and each dataset. Although our analysis started with the whole endocy-

tic pathway and then moved onto individual compartments, we, nonetheless, utilized a strin-

gent multiple-testing correction threshold. Specifically, as we tested for four gene-sets (endo-

system gene-set and three sub-compartmental gene-sets) and two MAF thresholds (1% and

0.1%), we set our significant threshold at α = 0.05/8 = 0.00625 for both stage 1 discovery phase

and stage 2 replication phase analyses. Accordingly, we set our nominal significance threshold

at α = 0.05.

To combine results from two stages (three studies) for each of the four gene-sets we tested

previously, we performed meta-analyses on p-values using estimates from our best model,

namely the model producing the smallest p-values among the three models tested. We used

two meta-analysis methods to combine the results. The first was a fixed-effects inverse variance

weighted method in METAL [80], which took ORs, standard deviations (SDs), and p-values

for separate tests and combined them into one ‘Gene-set level’ p-value with an estimate of the

unified effect. The second was Fisher’s method which only required p-values and has been

shown to be more robust to some situations where a small portion of p-values are very small.

[81,82] In particular, we used the sumlog function from the R package, ‘metap,’[83] which

took into account the direction of effects in each study and the corresponding p-values. It then

computed a ‘Gene-set level’ p-value similar to METAL indicating the significance of rare vari-

ants’ effect shared across studies but without an estimated effect size.

Analysis of association between the burden of rare deleterious SNVs and

AD-related phenotypes

To test for association between the burden of rare deleterious SNVs and NFTs, we leveraged

the Braak stages and followed a similar workflow as in testing AD status. As the sample size of

patients with Braak staging information was limited in the ADSP family study, we tested for

replication only in AMP-AD case-control study after analyzing the ADSP case-control study

in stage 1. We obtained 626 and 1,399 individuals with Braak staging information in ADSP

and AMP-AD case-control datasets, respectively. To note, even though the ADSP case-control

study had fewer samples with Braak staging information, we, nonetheless, followed the same

analysis scheme as in the previous AD analysis. In practice, after removing confounding effects

from the burden score, we applied three ordinal logistic regression (OLR) models (M0, M1,

M2) to account for multiple ordered categories present in the Braak staging (stage 0 to VI).

The regular logistic regression only allows binary dependent variables, which is not feasible for

Braak stages. In particular, we used the polr function from the R package, MASS [84], which

fits a logistic regression model to an ordered factor response. Similar to the previous burden

analysis, our M0 accounted for sequencing centers and the top 10 PCs; our M1 additionally

controlled for sex and age; finally, our M2 further included the count of APOE ε2 and ε4

alleles. For analyses in all datasets, our significance threshold after the multiple-testing correc-

tion was still at α = 0.00625 because we tested for two MAF thresholds and four gene-sets.

Finally, the nominal significance threshold was also at α = 0.05. To increase statistical strength

and precision in estimating effects [85], we again performed meta-analyses and combined

these two independent tests similar to what we did for AD association analyses.
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We additionally tested the age-specific risk of rare deleterious SNVs in the endocytic path-

way. As aforementioned, the AAO and AOD information was provided by the ADSP studies

and the AMP-AD study, respectively, which allowed us to test for two different age-specific

risks within each gene-set. Different from AD risk, age-specific risk leveraged the information

of age and estimated the association between the age-to-event (survival time) of patients and

the rare-variant burden score. Therefore, we adopted a genetic epidemiological framework

proposed by Desiken et al.[86], in which a Cox Proportional Hazard Regression (CPHR) was

performed to account for age-to-event information. Specifically, we first used the Surv func-

tion from the R package, “survival”[87], and computed a survival time for each sample in each

dataset. Then, we conducted CPHR using the coxph function from the R package, ‘survmi-

ner’[88], to estimate the hazard ratio, or the ratio of risk-to-event (onset or death), depending

on the input age we used. We performed three CPHR models (M0, M1, and M2) similar to the

previous burden analysis on AD status and Braak staging, except that age was not a covariate

in either of the three models. Therefore, since we tested for two different MAF thresholds and

four gene-sets (though in a stepwise fashion), we set a stringent significant threshold at α =

0.05/8 = 0.00625 and our nominally significant threshold at α = 0.05 for analyses in all three

datasets. Finally, we combined the results of AAO in the same way as we did for AD and NFT

association tests. The resulting p-value then indicated the shared rare-variant effect on AAO-

specific risk across the ADSP case-control and family studies.

Single-gene analysis

To identify specific genes within the endocytic pathway associated with AD, we extracted rare

deleterious SNVs as defined previously for each gene in the endo-system gene-set that were

present in European samples for the ADSP case-control, the AMP-AD case-control, and the

ADSP family study. Association test was performed for AD status by first building a null

model using the SKAT_Null_Model function in the R package, SKAT, [89] followed by run-

ning the SKATBinary function using the SKAT-O feature to obtain association p-values for

binary traits. We used a full model that included age, sex, sequencing center, the number of

APOE ε2 and ε4 alleles, and top 10 PCs. To note, we also applied SKAT_Null_Model to the

ADSP family dataset without incorporating kinship structure. This procedure could only be

valid in the case where the family structure was relatively simple and did not contribute to a

large effect in our analysis. By re-running the previous AD burden analysis with and without

kinship information, we indeed observed only small deviations between these two tests. Specif-

ically, for the full model of the endo-system gene-set, we observed an OR of 1.34 with kinship

structure provided (p = 0.035) while we observed a similar OR of 1.36 assuming an indepen-

dent setup (p = 0.02), which indicated that the family structure within the ADSP family study

did not influence our analyses to a large extent.

To test for association with Braak stages, we first extracted only European samples with

Braak staging information available for each dataset, before extracting rare deleterious SNVs

for each gene within the endo-system gene-set. We leveraged the fact that it is a semi-quantita-

tive trait and performed the association test with the SKAT function for continuous traits with

the ‘optimal’ option after building null models as described for testing AD status. In the

attempt to remove confounding factors and unbalanced sample distribution for Braak staging

association test, we additionally included AD status in null models. Finally, we meta-analyzed

variants across datasets and computed ‘Gene-level’ p-values for AD status as well as Braak stag-

ing. We combined genotyping matrices across three datasets for each gene using the R pack-

age, MetaSKAT.[90] Specifically, we first transformed our genotyping matrices into an SSD

format for a single population and then analyzed all three populations at once using the
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function MetaSKAT_MSSD_ALL. This procedure increased the power to analyze the effects of

rare variants that are shared across different studies. To correct for testing multiple genes

within the endo-system gene-set, we obtained the number of genes we tested in each separate

dataset and computed their corresponding Bonferroni corrected significance thresholds. Spe-

cifically, for the AD single-gene analysis, we tested 1,195, 1,228, and 683 genes in ADSP case-

control, AMP-AD case-control, and ADSP family datasets, respectively, which corresponded

to Bonferroni corrected significance thresholds of α = 4.18�10−5; 4.07�10−5; 7.32�10−5, respec-

tively. In meta-analyses, we identified 642 genes in common and computed a Bonferroni cor-

rected significance threshold of α = 7.79�10−5. For the Braak staging single-gene analysis, we

retained only rare deleterious SNVs present in samples with Braak staging information avail-

able and tested for 1,035 and 1,176 genes for the ADSP and AMP-AD case-control studies,

respectively. The corresponding Bonferroni corrected significance thresholds were then com-

puted as α = 4.83�10−5 for the ADSP case-control dataset and 4.25�10−5 for the AMP-AD case-

control dataset. When performing meta-analyses, we examined 967 genes in common between

these two datasets, which led to a Bonferroni corrected significance threshold of α = 5.17�10−5.

Functional analysis on AD

One approach to understanding how the effect of rare variants would influence the risk of AD

status is to investigate how they regulate gene expression. A gene with a variation that is associ-

ated with its gene expression is called an eGene. Here, we obtained the bulk RNA-Seq data of

DLPFC tissues of 636 individuals from the ROSMAP [55] study and performed an association

test between the expression of a gene and rare variants in cis with the corresponding gene. In

particular, for each gene within the endo-system gene-set, we included all variants within gene

boundary and additionally all rare variants within 20kb up- and down-stream of the transcrip-

tion start sites (TSS), which might potentially regulate the expression of a gene through cis-reg-

ulation, such as the effect of enhancer region. To overcome the problem of low power to detect

the effect of single rare variants, we aggregated the effects of all rare variants within as well as

near the TSS of each gene. We analyzed this aggregated effect on gene expression using the

SKAT function to compute ‘Gene level’ p-values, while taking into account confounding

covariates, including age, sex, sequencing locations, APOE ε2 and ε4 alleles, and top 10 PCs.

To correct for testing multiple genes, we calculated false discovery rate for all tested genes and

used FDR of 0.05 as the q-value threshold, following the suggestions of previous studies.

[91,92] Follow-up validation was performed using genes previous identified from the burden

and functional analyses, by directly comparing their expression levels between AD cases and

controls using student t-test and computing the Pearson correlation between their expression

levels and Braak stages. The multiple-testing issue was then addressed using the Bonferroni

correction method.

The resolution of bulk RNA-Seq data may limit our capability of observing cell-type specific

effects on AD.[55,61,93,94] To elucidate the underlying complexity of variation across cell

types, we further obtained single-cell RNA-Seq (scRNA-Seq) of 48 samples (24 AD patients

and 24 cognitively normal controls) from the ROSMAP study and investigated the pattern of

expression for each of the six major cell types defined on a priori cell-type-specific gene-sets:

excitatory neuron (Ex), inhibitory neuron (In), astrocyte (Ast), oligodendrocyte (Oli), oligo-

dendrocyte-precursor-cell (Opc), and microglia (Mic)[61]. The six major cell types were fur-

ther divided into sub-clustered cells based on the heterogeneity of gene expression within each

cell type: 13 Exs, 12 Ins, 4 Asts, 5 Olis, 3 Opcs, and 4 Mics [61]. The whole dataset in 10X for-

mat was first processed using the R package, Seurat.[95] We followed the preprocessing steps

as proposed by the Seurat developer by first filtering out cells with reads quantified for less
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than 200 or more than 2,500 genes, followed by filtering out cells with the percentage of mito-

chondrial gene counts over 5 percent. We then employed a global-scaling normalization

method provided by the LogNormalize function, which normalized the feature expression

measurements for each cell by the total expression, followed by a log-transformation. The

major and sub-cell types were identified a priori for this scRNA-Seq data. Therefore, we

extracted all significant genes identified in the previous single-gene and functional analyses for

each specific cell type and conducted differential gene expression analysis using the student t-

test method between cases and controls for each major cell type, as well as for each subcellular

population within each major cell type.

Result

The burden of rare deleterious SNVs in endo-system gene-set for ADSP

case-control study

To investigate whether rare deleterious SNVs in the endocytic pathway were associated with

AD, we leveraged a gene-set method of burden analysis that collapsed individual effects of

multiple variants into one ‘gene-set level’ effect, hence increasing the power of detecting rare

variants’ effect. We defined rare SNVs using both an external source of allele frequency and

allele frequency observed in 1,291 European samples (664 AD cases and 627 controls) from

the ADSP case-control study (see Methods). We focused on deleterious SNVs as defined in

Methods, in which most were protein-altering variants. We identified rare deleterious SNVs in

1,133 of the 1,435 genes in our gene-set (see Methods). For each individual, we computed the

burden of these rare deleterious SNVs. We then compared the genetic burden between AD

cases and cognitively normal controls, while taking into account confounding covariates that

can potentially influence the amount of burden. Such covariates include ancestral principal

components, age, sex, the sequencing location, the number of APOE e2 and e4 alleles, and the

total number of rare SNVs of each individual. The last procedure is necessary to account for

individual differences in the total amount of variation; an individual is likely to carry more

rare deleterious SNVs if she/he carries more rare SNVs overall. To note, we found that the

total number of rare SNVs on the genome-wide scale has no statistically significant difference

between cases and controls (p = 0.67, student t-test). As described in Methods, we applied

three logistic regression models to find associations between AD status and the burden scores

while the three models were built on top of each other and tested for two MAF thresholds (1%

and 0.1%). Looking at our best model in terms of the strongest association, we observed that

the risk of AD, as indicated by the odds ratio (OR), increased by 1.24 for every one unit

increase in residual burden score (p = 0.00018 using GLM), which was a significant association

after stringent multiple testing correction (α = 0.00625) for all gene-sets (including sub-gene-

sets we analyzed in next steps) (Fig 1).

Additionally, we identified three major cellular compartments participating in the endocy-

tic pathway and their corresponding genes, which constituted subsets of the endo-system

gene-set. The first two compartmental gene-sets were endosome (n = 811) and lysosome

(n = 620) gene-sets, which served as the major sorting station in the endocytic pathway and

the final destination of proteolytic destinations [96], respectively. The third important com-

partment was the trans-Golgi network gene-set (n = 208) which represented a pathway sorting

station for retrograde trafficking. In summary, we identified 689 endosomal genes, 544 lyso-

somal genes, and 181 trans-Golgi network genes, respectively. We found the burden scores of

rare deleterious SNVs were higher in cases than in controls for all three sub-gene-set. In our

best model, the OR, representing the risk of AD, increased by 1.18 per unit for the endosome

gene-set (p = 0.0056 using GLM), 1.08 per unit for the lysosome gene-set (p = 0.09 using GLM;
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Fig 1), and 1.14 per unit for the trans-Golgi network gene-set (p = 0.019 using GLM). After the

multiple-testing correction, we observed the endosome gene-set showed a gene-set-wide sig-

nificant association with AD while the trans-Golgi network displayed a nominally significant

association signal. In addition to exploring sub-gene-sets, we also checked the specificity of the

association in the endocytic pathway by obtaining gene-sets unrelated to AD. Specifically, we

explored two non-disease complex traits, BMI and height, and obtained related genes (212 and

78, respectively) from GeneRIF, a publically available database for functional annotations.[97]

Indeed, we did not observe an enriched rare-variant burden in AD cases compared to controls

in these gene-sets and the directions of effects were different across datasets, suggesting the

observed rare-variant effect was specific to the endocytic pathway (S13 Table).

Stage 2 replication of the burden analysis in two independent WGS

datasets

The gene-set burden analysis in the ADSP case-control study demonstrated statistically signifi-

cant enrichment of rare deleterious SNVs in cases in the endocytic pathway, indicating an

increase of risk conferring AD. We further examined the endo-system gene-set in 1,611 Euro-

pean samples (642 AD cases and 969 controls) from the AMP-AD study. We obtained 1,198

Fig 1. Rare deleterious variants are enriched in AD patients across the endocytic and corresponding compartmental gene-sets in stages 1 and 2. We compared the

burden of rare deleterious variants between AD patients and controls across the endo-system (endo-sys) gene-set and three compartmental sub-gene-sets (endosome,

lysosome, and trans-Golgi network) in stage 1 ADSP case-control dataset (leftmost), which were then tested for replication in stage 2 AMP-AD case-control (middle)

and ADSP family (rightmost) datasets. Enrichment (ORs) and p-value were computed using a linear regression model controlling for covariates, including the total

count of rare variants (see Methods). P-values of enrichment in each gene-set are indicated above horizontal bars which represent 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1009772.g001
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endo-system-related genes and observed an elevated risk of AD in terms of OR of 1.19

(p = 0.0038 using GLM; Fig 1), replicating the observation of a significantly higher burden of

rare deleterious SNVs in the stage 1 analysis, using a multiple testing threshold of α = 0.00625.

We performed additional gene-set burden analysis on the sub-gene-sets of the functional

compartments in the AMP-AD study. We identified 735 endosomal genes, 576 lysosomal

genes, and 187 trans-Golgi network genes, respectively. We again observed an increase in AD

risk among cases for all three sub-gene-sets. A nearly significant signal was observed in the

lysosome gene-set with an OR of 1.17 (p = 0.0063 using GLM; Fig 1). For the other two gene-

sets, we observed an OR of 1.08 (p = 0.16 using GLM; endosome gene-set) and 1.10 (p = 0.083

using GLM; trans-Golgi network). None of these gene-sets showed gene-set-wide significant

association after multiple testing correction at α = 0.00625, although the lysosome gene-set

nearly reached the gene-set-wide significance threshold.

As described above, the AMP-AD study consisted of three sub-cohorts and the largest one,

ROSMAP, contained around 71.5% of the total sample size. To avoid potential batch effect

diluting the association signal, we re-performed the analysis on only the ROSMAP data. In

fact, we observed slightly more significant results in nearly all gene-sets, where the endo-sys-

tem and the lysosome gene-sets both reached gene-set-wide significance threshold. (S2 Table)

Overall, the associations were similar between the AMP-AD and ROSMAP data, indicating a

relatively low level of batch effect among the three sub-cohorts.

Given the observed risk in stage 1 ADSP case-control study and the stage 2 AMP-AD repli-

cation, we further examined the genetic burden in the ADSP Family study. We filtered and

annotated rare deleterious SNVs based on the same workflow using 353 European samples

(144 AD cases and 209 controls) of the ADSP family study. Due to the smaller sample size

compared to the previous two case-control studies, we obtained 683 endo-system-related

genes. To examine the AD risk, we performed GLMM using the burden of each individual.

Due to family structure, we utilized the generalized linear mixed model to account for the

relatedness between samples. We observed an OR of 1.42 (p = 0.013 using GLMM), conferring

an elevated AD risk among cases compared to controls. (Fig 1) This observation was not gene-

set-wide significant using the Bonferroni correction threshold at α = 0.00625. However, it dis-

played a nominally significant association with the same direction of effect as in the ADSP and

AMP-AD case-control studies.

Nonetheless, we looked into the sub-gene-sets of the three functional compartments in the

ADSP family dataset. We identified 402 endosomal genes, 342 lysosomal genes, and 106 trans-

Golgi network genes, respectively. We observed a significant elevation of AD risk among cases

for endosome gene-set with an OR of 1.48 (p = 0.0045 using GLM). Similar increases were also

observed in the lysosome and trans-Golgi network gene-sets, with OR of 1.18 (p = 0.22 using

GLMM) and 1.04 (p = 0.77 using GLMM), respectively (Fig 1). Only the endosome gene-set

remained gene-set-wide significant after multiple-testing correction, which was in concor-

dance with our observation in the stage 1 ADSP case-control study.

A meta-analysis of stage 1 and 2 burden analysis

The stage 1 burden analysis using the ADSP case-control study demonstrated a significant

increase in AD risk in the endo-system gene-set, which was replicated in one independent

dataset, the AMP-AD case-control dataset, and displayed a nominal significance in the ADSP

family study. We meta-analyzed the results using two different methods (see Methods) and

computed a ‘Gene-set level’ p-value of 2.17�10−7 (by METAL; Fisher’s method produced simi-

lar results; Table 2) for the endo-system gene-set, which was improved compared to stages 1

and 2. The same was also observed for sub-gene-sets where we computed a meta-analysis
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p-value of 9.78�10−5 for the endosome gene-set, 9.83�10−4 for the lysosome gene-set, and

1.19�10−2 for the trans-Golgi network gene-set. Except for the trans-Golgi network gene-set

that has the smallest number of genes, all other gene-sets remained gene-set-wide significant

after multiple-testing correction (α = 0.00625), which strongly demonstrated a shared effect of

rare deleterious variants within the endocytic pathway across multiple independent studies.

To note, although we meta-analyzed the results from the best models, as proposed by Zhang

et al. to improve the power of detection, the same pattern of rare-variant association could be

observed using the same models for each gene-set across the three datasets. (S1 Table) For all

models in the endo-system, endosome, and lysosome gene-sets except M2 of lysosome, we

observed gene-set-wide significant p-values, regardless of the meta-analysis methods used,

demonstrating a high consistency with the observations made using the best models.

A similar pattern of meta-analysis results was also observed in the additional validation

tests from two aspects. Firstly, we wanted to check our results using different annotation tools.

Given the set of deleterious variants used in previous phase 1 analyses, we additionally filtered

by CADD scores (see Methods) and re-ran the gene-set AD association analyses with the

resulting set of pathogenic/deleterious variants. In the meta-analysis, we observed that the

endocytic, endosome, and lysosome gene-sets reached gene-set-wide significance threshold

(see S5 Table), consistent with the rare-variant effect we observed in the endocytic pathway

using the original set of rare deleterious variants.

The second aimed to validate our gene-set burden analysis using MAGMA with two differ-

ent aggregation methods (see Methods). In the meta-analysis, both the SNP-wise and burden

methods provided gene-set-wide significant self-contained p-values for nearly all gene-sets (S3

and S4 Tables; for endo-system, SNP-wise: 9.28�10−7; burden: 5.16�10−8), similar to the results

shown above in Table 2. Compared to the MAGMA burden method, the SNP-wise method

was not designed for rare-variant-only analysis and indeed showed weaker association signals.

Especially for the competitive p-values, we observed gene-set-wide significant results for nearly

all gene-sets using the MAGMA burden method, but not the SNP-wise method (for endo-sys-

tem, SNP-wise: 2.41�10−2; burden: 1.90�10−3). We also attempted to compute a weighted bur-

den score using pLI scores by PLINK and observed gene-set-wide significant associations in

the endo-system gene-set in the meta-analysis. (S10 Fig, S12 Table) Compared to our main

method above, the MAGMA methods and the weighted method displayed some fluctuations

in individual datasets and models but consistent results in meta-analysis, indicating a robust

rare-variant effect in the endocytic pathway under different statistical methods. Besides, as

APOE was a major risk determinant in AD, in this validation, we also checked whether our

observed rare-variant enrichment was mainly contributed from this gene, rather than the

whole endo-system gene-set, by re-run the analysis with APOE excluded. Indeed, we observed

Table 2. Meta-analysis of stages 1 and 2 gene-set burden analyses using AD, NFT, and AAO.

Phenotype AD NFT AAO

P P� P P� P P�

Endo-system 2:17E� 07 2:66E� 07 1:16E� 02 9:89E� 03 2:47E� 06 4:93E� 07

Endosome 9:68E� 05 6:05E� 05 1.30E-01 9.34E-02 3:33E� 05 2:04E� 05

Lysosome 9:83E� 04 1:15E� 03 6:56E� 03 6:11E� 03 1:10E� 02 3:11E� 04

TransGolgiNet 1:20E� 02 7:46E� 03 5.71E-01 3.53E-01 2:10E� 02 4:96E� 03

Abbreviations: AD: Alzheimer’s disease; NFT: neurofibrillary tangle; AAO: age-at-onset

NFTs were analyzed using Braak stages. Gene-set-wide significant results were highlighted in bold. Displayed results of gene-set burden analyses were each meta-

analyzed using METAL (P) and Fisher’s method (P�) (see Methods). Directions of effects were consistent across all tests.

https://doi.org/10.1371/journal.pgen.1009772.t002
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nearly the same p-values in the meta-analysis, indicating a rare-variant enrichment in AD

cases even without APOE.

The burden of rare deleterious SNVs on NFTs

NFT, measured in Braak staging, was one of the most important histopathological indicators

of AD [48–50]. It is designed as an ordinal scale from 0 to VI of NFT pathology where AD

patients with high Braak stages (V or VI) are diagnosed with high confidence.[98] Therefore,

Braak stages may serve as a finer spectrum or proxy of AD severity and provide higher power

in assessing the effect of rare variants in AD progression. Based on our previous AD analysis,

we hypothesized that the burden of rare deleterious variants in the endocytic pathway would

be higher in patients with later Braak stages. To test our hypothesis, we applied an ordinal

logistic regression (OLR) method to Braak stages (see Methods). This method has been previ-

ously shown to be effective in studies of Braak staging as well as of other ordered phenotypes,

such as oral cancers.[99,100] We obtained 626 individuals (475 AD cases and 151 cognitively

normal controls) from the stage 1 ADSP case-control dataset and 1,399 individuals (533 AD

patients and 866 controls) from AMP-AD case-control dataset with Braak staging information,

which were used to fitted OLR models. In stage 1, We observed an OR of 1.16 (p = 0.039 using

OLR; S1 Fig) in the endocytic pathway, implicating a nominally significant association of rare-

variant enrichment to later Braak stages. However, this result did not replicate in stage 2 with

sufficient significance (OR = 1.08, p = 0.13 using OLR; S1 Fig). Comparing the stages 1 and 2

samples, we observed a distinct distribution of Braak stages. In particular, the stage 2 samples

were concentrated in Braak stage III (23.1%), IV (28.1%), and V (23.3%), whereas most stage 1

samples were clustered in stage V (26.4%) and VI (34.8). (S3 Fig) We did not test for replica-

tion in the ADSP Family study due to limited samples with Braak staging information (n = 38

individuals where only one sample had AD).

Our analyses of two independent datasets suggested a trend of increased risk of bearing

later Braak stages with elevated rare-variant burden in the endocytic pathway. To improve

power, we meta-analyzed the results from the ADSP and AMP-AD case-control studies, pro-

ducing a ‘Gene-set level’ p-value between 0.0099 and 0.012, which did not pass our multiple-

testing correction threshold of α = 0.00625. (Table 2) Further Braak staging burden analysis

using compartmental sub-gene-sets, however, revealed a gene-set-wide significant signal in

the meta-analysis for lysosome gene-set (p = 0.0066, Fisher’s method). A full list of results for

NFT burden analysis can be found in S6 Table.

Hazard analysis on population risk of AD age of onset and death

Previous gene-set burden analyses have demonstrated a significant correlation between the

burden of rare deleterious variants within the endocytic gene-set and AD risk. One important

aspect of AD development is its age-specific phenotypes, such as AAO. Previous studies on

AD have shown a large genetic component in the heritability of AAO [101,102], with multiple

risk loci associated with it. [103–107] It is thus of interest to also examine the genetic risk iden-

tified within the endocytic gene-set in this context. One approach is to evaluate whether AD

patients with earlier AAO are associated with greater rare-variant burden within the endocytic

gene-set. Previous studies have proposed a genetic epidemiological framework, where age-spe-

cific phenotypes were analyzed using a Cox Proportional Hazard Regression (CPHR) that con-

sidered a time-to-event probability, as opposed to the simple event probability estimated in

logistic regression.[86,108] Therefore, we leveraged our previously computed burden score for

each individual in the ADSP case-control study and constructed a cox proportional hazard

(CPHR) model to estimate the instantaneous risk of developing AD, in consideration of
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genotype and AAO. A positive estimate of hazard in this model would indicate a higher risk of

developing AD in early ages. We built three models as in the burden analysis and observed in

our best model that an AAO-specific genetic risk increased by 1.14 per unit increase in the

residual burden score (p = 0.00083 using CPHR; Fig 2), which reached gene-set-wide signifi-

cance after multiple testing correction (α = 0.00625). We further examined the AAO-specific

genetic risk within the functional sub-gene-sets. In our best model, we observed a gene-set-

wide significant hazard ratio of 1.14 (p = 0.00097 using CPHR) for lysosome gene-set and a

nominal significant hazard ratio of 1.10 (p = 0.011 using CPHR) for trans-Golgi network

gene-set.

To test for replication, we examined the ADSP family study under the same statistical

framework. Applying the CPHR models, we observed a gene-set-wide significant hazard ratio

of 1.31 (p = 0.00091 using CPHR; Fig 2) in the endo-system gene-set. Carefully examining the

sub-gene-sets also revealed gene-set-wide significant AAO-specific risk within the endosome

gene-set (HR = 1.35, p = 3.83�10−5 using CPHR). We did not observe significant associations

using the other two compartmental gene-sets (S7 Table).

To increase power, we performed meta-analyses to identify rare-variant effects

shared across multiple studies. We combined the best results from ADSP case-control

� �

Fig 2. The enrichment of rare deleterious variants is associated with AD AAO across the endocytic and corresponding compartmental gene-sets in stages 1 and 2.

We computed a hazard ratio of obtaining AD in earlier ages using the burden of rare deleterious variants across the endo-system gene-set and three compartmental sub-

gene-sets (endosome, lysosome, and trans-Golgi network) in stage 1 ADSP case-control dataset (left), which were then tested for replication in stage 2 ADSP family

datasets (right). Enrichment (ORs) and p-value were computed using CPHR. P-values of enrichment in each gene-set are indicated above horizontal bars which

represent 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1009772.g002
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and family studies and observed a gene-set-wide significant p-value of 2.47�10−6 (by

METAL; Fisher’s method produced similar results; Table 2) for the endo-system gene-

set, which was greatly improved compared to results in either stage. Similarly, the endo-

some gene-set also demonstrated an improved gene-set-wide significant p-value of

3.33�10−5. However, the lysosome and the trans-Golgi network gene-sets showed only

nominally significant p-values in our meta-analysis, potentially due to the absence of

signal in the ADSP family study. These findings strongly demonstrated that this AAO-

specific rare-variant effect in the endocytic pathway was shared in European samples

across different studies.

Another age-specific phenotype is the age of death (AOD), which has been shown to be

affected by genetic groups implicated in AD AAO as well as in other dementia.[109,110] We

thus followed the same analysis framework using the CPHR model and assessed whether AD-

affected patients with earlier AOD were associated with a higher rare-variant burden in the

endocytic pathway. We looked at European samples in the AMP-AD case-control study,

where the AOD information was available. We observed a hazard ratio of 1.10 (p = 0.024 using

CPHR; S2 Fig), indicating an increase of risk of death in AD patients as well as a worse progno-

sis along with an elevation in genetic burden. Further analysis using the lysosome sub-gene-set

displayed a hazard ratio of 1.09 (p = 0.036 using CPHR). Both endo-system and lysosome

gene-sets demonstrated nominally significant associations with AOD but did not reach gene-

set-wide significance after multiple-testing correction. Analysis using other sub-gene-sets did

not provide significant hazard ratios.

Single-gene analysis on AD risk using AD and NFT status

From the previous analysis, the endo-system gene-set conferred a large rare-variant effect on

AD and related phenotypes. Thus, we decided to examine the effect of rare variants in single

endocytic genes, attempting to identify those associated with AD with large effect sizes. To

increase power, we aggregated previously defined rare deleterious SNVs in each gene and

tested for association with AD. We did not observe a single gene passing the Bonferroni cor-

rected significance threshold in all three datasets, as well as in meta-analysis (See Methods; α =

4.18�10−5; 4.07�10−5; 7.32�10−5; 7.79�19−5, for ADSP case-control, AMP-AD case-control,

ADSP family studies, and meta-analysis respectively; S15 Table).

As mentioned previously, NFT status may provide more detailed information of the patho-

logical progression of AD and thus a greater power to detect signals of rare-variant effect. We,

therefore, performed single-gene analysis using NFT status, as a proxy for AD status. For all

datasets, we retained only rare deleterious SNVs that were present in samples with Braak stag-

ing information. We controlled for the same set of covariates as in previous analyses, except

that we also included the AD phenotype (AD affected/unaffected) for each individual as one

additional covariate (see Methods). The latter is necessary because the Braak staging and the

AD phenotype are correlated, and the numbers of individuals with and without AD were vastly

disproportionate among the samples with Braak staging information. For the ADSP case-con-

trol study, we observed six genes that reached Bonferroni corrected significance threshold (α =

4.83�10−5). None of the genes passed the Bonferroni corrected significance threshold (α =

4.25�10−5) in the AMP-AD study. Results of the top ten most significant genes can be found in

S8 Table. We conducted meta-analyses for these two independent studies using MetaSKAT as

before. In the combined results, we observed one gene, ANKRD13D, reached Bonferroni cor-

rected significance threshold (p = 3.56e-05; α = 5.17�10−5). This gene has been previously

implicated in AD through RNA expression analysis [111] and protein interactome mapping

[112].
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The identification of functional effects of rare variants within the endocytic

pathway

The hypothesis that the endo-system gene-set contains rare variants that are influential to AD

development is endorsed by the previous gene-set burden analyses and single-gene analyses.

One approach to investigating how the effect of rare variants takes place is to analyze how

these rare variants are associated with gene expression. Such gene containing variations affect-

ing its expression is often called an eGene.[91] To identify eGenes, we obtained bulk RNA-Seq

data of DLPFC brain tissues of 636 individuals from the ROSMAP study as part of the

AMP-AD study and tested for association of all variants in cis with a gene with its gene expres-

sion. Specifically, we grouped all variants within one gene, as well as those near the corre-

sponding TSS, and assessed whether the aggregated rare-variant effect in an endocytic gene is

associated with its expression level using SKAT (see Methods). Intersecting the bulk RNA-Seq

and WGS data revealed 547 individuals with 224 AD patients and 323 controls. By taking an

FDR of 5%, we discovered two genes, HLA-A and SLC26A7, whose rare variants were signifi-

cantly associated with expressional changes. To note, previous studies have demonstrated that

proteins from the same families of these two genes are associated with AD status. Specifically,

two proteins from the HLA families and one from the SLC families have been implicated in

AD through meta-analyses of large GWAS and brain DNA-methylation association analysis.

[9,113] We first examined their single-gene analysis results and observed that none of them

was significant using the AMP-AD dataset (p = 4.74e-01; 2.14e-01, for HLA-A and SLC26A7,

respectively). To validate our results and determine the direction of effects, we compared the

expression of these two genes between cases and controls. Indeed, their expression levels were

both significantly decreased in cases compared to controls (p = 0.00073 HLA-A; Fig 3A;

p = 0.0054 SLC26A7; Fig 3B; student t-test; α = 0.017;). We further examined the distribution

of their expression levels across multiple Braak stages. Similarly, both expressions were

strongly negatively correlated with greater Braak stages (r = -0.129, p = 0.0024 HLA-A; r =

-0.127, p = 0.0029 SLC26A7; Pearson correlation; α = 0.017).

We also investigated ANKRD13D, which we previously identified to be associated with

Braak stages, in the context of gene expression. Although not an eGene, ANKRD13D exhibited

a significant expressional decrease in cases compared to controls (p = 0.0026; student t-test;

Fig 3C). The analysis on Braak staging also revealed a strong negative correlation (r = -0.122,

p = 0.0042; Pearson correlation).

scRNA expression analysis

Recent advancement in analyzing gene expression in single-cell resolution has provided

opportunities to uncover complex alterations across cell types and identify cell-type specific

effects on AD.[55,61,93,94] For example, previous studies have pointed the imbalance of excit-

atory and inhibitory neurons could lead to overexcitability and early dysregulation in the

development of AD [114]. Many other studies also demonstrated abnormalities in innate

immune cells, primarily microglia, in the pathogenesis of AD.[115] Therefore, to investigate

the potential cell-type specific effects of rare variants within the endocytic pathway, we

obtained the single-cell RNA-seq data of 48 samples (24 AD patients and 24 cognitively normal

controls) from the ROSMAP study. We focused on three genes we identified through the pre-

vious analysis, which demonstrated significant associations to AD progression. The scRNA--

Seq data were labeled with six major cell types using a priori marker genes (Ex, In, Ast, Oli,

Mic, and Opc), and sub-clustering within each cell type revealed cellular subpopulation (see

Methods). We examined the expression of the three target genes in all major cell types and

observed that ANKRD13D was up-regulated in Ex (p = 1.92�10–18; student t-test), Ast
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Fig 3. Comparison of the gene expression of HLA-A, SLC26A7, and ANKRD13D between AD cases and controls from the ROSMAP study. Violin plots were used

to represent the distribution of gene expression within each AD status, where a symmetric deviation from the middle line on both sides indicated a higher abundance of

samples at the corresponding gene expression level. Comparisons between AD cases and controls were assessed using boxplots. P-values were computed using the

student t-test. All three genes, HLA-A, SLC26A7, and ANKRD13D, are down-regulated in AD cases compared to controls.

https://doi.org/10.1371/journal.pgen.1009772.g003
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(p = 0.011; student t-test), and In (p = 0.028; student t-test) (S9 Table). However, it exhibited a

down-regulation in Oli (p = 0.0018; student t-test). SLC26A7 was observed to be up-regulated

in Ex (p = 0.0049; student t-test), while HLA-A displayed a pattern of down-regulation in both

In and Mic (p = 9.72�10-6and p = 0.0031 respectively; student t-test). Four AD pathology-asso-

ciated cellular subpopulations (Ex4, In0, Ast1, and Oli0) have been previous demonstrated for

this scRNA-Seq data [61,91]. Our differential expression analysis within these four subpopula-

tions showed a pattern of up-regulation of ANKRD13D in Ex4 and In0 (p = 5.76�10–8 and

p = 0.036, respectively; student t-test; S10 Table). The other two genes, however, were not sig-

nificantly differentially expressed in these four cell subpopulations.

Discussion

Using large publicly available WGS datasets, our study described here enabled us to assess the

contribution of rare variants to AD. In our stage 1 discovery phase, we observed a significantly

elevated burden of rare deleterious SNVs in affected individuals compared to cognitively normal

older controls within the endocytic pathway. We chose this pathway because it represented one

of the earliest morphological changes in AD development, and multiple AD risk factors, pre-

dominantly through common SNPs, have been implicated specifically in this pathway with

genome-wide significance, including BIN1, CD2AP, PICALM, RIN3, and SORL1.

[9,12,18,19,21,22,116] Our results demonstrated additional correlation between rare variants in

the endocytic pathway and AD. Successful replication in the AMP-AD case-control study and

improved meta-analysis association further strengthened this contribution of rare deleterious

variants to AD risk. Our analysis using the ADSP family dataset showed a similar enrichment of

rare deleterious SNVs in AD patients, although not reaching gene-set-wide significance. One

possible explanation was that the sample size of this family study was relatively small (one third

to one fifth) compared to the other two case-control studies. We additionally identified gene-set-

wide-significant signals within the endosome and lysosome gene-sets using meta-analysis, impli-

cating potential compartment-specific roles in AD pathology. One possibility that we did not

observe significant results in separate stages for all three sub-gene-sets was because they con-

tained a smaller number of genes compared to the endo-system gene-set and, therefore, smaller

aggregated effects of rare variants, which required meta-analysis to combine signals in individual

samples. As the smallest gene-set (one-third to one-fourth of the other two), the trans-Golgi net-

work remained nominally significant even after meta-analysis.

In assessing the AD pathological progression, we examined the association of rare-variant

effect to NFT pathology using Braak staging. We observed the gene-set-wide significant associ-

ation within the lysosome gene-set, where individuals with higher Braak stages were enriched

with rare deleterious SNVs. No significant association was found in other gene-sets, besides a

nominally significant association in the whole endocytic pathway. Compared to the previous

analysis using AD status, our analysis using Braak stages was largely limited in sample size. For

example, only 626 out of 1,291 European samples in the ADSP case-control dataset had Braak

staging information available. For the ADSP family study, only 38 out of 353 samples had

Braak information available, which made analyzing Braak stages in this dataset infeasible.

Additionally, this was further complicated by the disproportionate distribution of samples

across different Braak stages. The ADSP case-control dataset contained 218 samples in stage

VI while only 15 samples in stage 0. Such highly skewed distribution reduced our power to

detect a significant association between rare variants’ effects and Braak stages. The AMP-AD

dataset was similarly skewed but also distributed largely differently from the stage 1 dataset.

This distinction in distribution may explain why we observed different signals in our stage 1

and 2 analyses.
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Based on the idea that rare variants within the endocytic pathway were associated with AD

progression, we further tested age-specific phenotypes and leveraged a CHPR model previously

proposed to be effective in assessing the effect of variants on age-to-event risk.[86] For AAO, we

observed a gene-set-wide significant hazard ratio in the stage 1 analysis, indicating an association

of rare-variant burden in the endocytic pathway to earlier AAO of AD, which was replicated in

stage 2. A similar observation was found in the compartmental gene-sets, where endosome

gene-set demonstrated a gene-set-wide significant signal in meta-analysis. Nonetheless, we did

not replicate our stage 1 findings of the lysosome gene-set in stage 2, potentially due to the small

sample size of the family dataset and the small size of the gene-set. For AOD, we examined the

AMP-AD dataset and only observed nominally significant signals in the endocytic pathway and

the lysosomal compartment. Previous analyses on AAO have demonstrated a substantial correla-

tion of AAO between parents and their children, with multiple risk loci, such as APOE, GRN,

MPT, and C9orf72.[101,109] Genetic studies using AOD from LOAD datasets have revealed

additional associations of SNVs in these genes with human aging.[110] Consistent in the obser-

vation of significant genetic components, our results discovered an additional contribution of

rare variants within the endocytic pathway to age-related phenotypes.

Our discovery of the increased burden of rare-variant effect in AD patients led us to explore

the effect of individual genes within the endocytic pathway and attempt to identify specific

ones with large effect sizes which might serve as potential clinical and therapeutic targets. We

performed single-gene analysis using both AD status and Braak staging as the target pheno-

types. When looking at the AD status, we did not observe a gene with a large enough effect to

be detected in our analysis. Using Braak staging information, we were able to identify one

gene, ANKRD13D, that showed robust signal across multiple studies after multiple-testing cor-

rection. This may be due to the fact that Braak stages provided a finer indication of AD pro-

gression. ANKRD13D encodes a member of the Ankyrin repeat domain 13 family,

characterized by three ankyrin repeats at the N-terminal facilitating protein-protein interac-

tion.[117] It has been experimentally shown to localize to endosomes and is known to regulate

the rapid ubiquitin-dependent internalization and sorting of membrane-bound proteins

within the endocytic pathway.[118] One of its main targets is the endocytosis of the epidermal

growth factor receptor (EGFR) through the functional ubiquitin-interacting motif (UIM) of

the ANKRD13 family proteins, which is then degraded in lysosomes.[118,119] EGFR is a

transmembrane protein serving as a receptor epidermal growth factor (EGF) protein ligands.

Multiple previous studies have reported abnormal plasma levels of EGF in AD patients, [120–

122] and two recent studies on EGF have demonstrated its protective effects on AD by pre-

venting amyloid-beta (Aβ)-induced angiogenesis deficit to brain endothelial cells in vitro and

in vivo.[123,124] Recent studies have also described that the EGFR internalization after EGF

binding was strongly inhibited when ANKRD13 proteins were over-expressed.[118] This

mechanism implicates a potential regulatory effect of the ANKRD13 family on AD pathology

through the regulation of internalization of EGFR. Indeed, the link between ANKRD13D and

AD is further bolstered by a recent RNA profiling where they identified an altered gene expres-

sion of ANKRD13D between the blood and brain tissue of AD patients.[111] In our analysis,

we identified seven rare deleterious SNVs within ANKRD13D, where six were predicted to be

missense damaging variants and one was predicted to be either missense damaging or splice

region variant. These mutations could potentially alter its ubiquitin-binding ability, either

through directly changing the sequence or indirectly through changing the 3D protein folding

structure, and affect the normal protective function of EGF in AD development. Further func-

tional studies of ANKRD13D, and in particular these seven variants, will be needed to specifi-

cally define its role in AD pathogenesis and evaluate the therapeutic and clinical importance of

the EGFR pathway.
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To investigate the functional effects of rare variants, we looked at the expression of genes in

the endocytic pathway at both bulk tissue and single-cell resolutions. Leveraging bulk RNA--

Seq data, we identified two significant eGenes, HLA-A and SLC26A7, in the ROSMAP study.

Careful examination of these two eGenes in the context of AD status revealed a pattern of

down-regulation in AD patients compared to cognitively normal controls. A similar negative

correlation was found using Braak stages. HLA-A encodes a member of the human leukocyte

antigen A (HLA) class I, also called the major histocompatibility complex (MHC) class I. It has

been shown to participate in the important “cross-presentation” mechanism of T cell-medi-

ated immune response, specifically efficient in dendritic cells.[125] This mechanism is part of

the endocytic pathway that involves the internalization of HLA class I proteins from the cell

surface through early endosomes and the loading of antigen peptides in lysosomes.[126] Previ-

ous studies have described an important role of HLA class I in maintaining the integrity of

aging brains and have demonstrated significant dendritic atrophy with deficient HLA class I.

[127] Moreover, recent GWA studies have identified specific alleles in HLA-A associated with

AD in the Italian and Chinese population [128,129], as well as risk loci in other members of

the HLA family.[9] The other identified eGene, SLC26A7, encodes a member of the solute car-

rier (SLC) family that localizes to subapical lysosomal membrane as well as endosomes, pri-

marily serving as an exchanger and transporter of a broad spectrum of substrates in the

endocytic pathway.[130,131] Disruption in the expression of SLC26 proteins has been shown

to cause severe acid-base balance dysregulation, leading to disruption of anion homeostasis.

[132] Multiple SLCs have been associated with AD, such as SLC2A2, which was linked to astro-

cyte activation leading to its elevation in AD patients, [130] and SLC1A3, whose expression

has been associated with Aβ deposition [133]. Recent GWA studies have also identified risk

loci in members of SLCs, such as SLC24A4.[9] Specific implication of SLC26A7 has also been

shown through gene co-expression network mining where STAT1, a transcription factor of

SLC26A7, was differentially expressed between AD patients and cognitively normal controls.

[47] In our analysis, we identified nine rare deleterious SNVs in HLA-A in which six were pre-

dicted to be damaging missense mutations, two were predicted to be splice acceptor variants,

and one was predicted to be either damaging missense mutation or splice region variant. In

SLC26A7, we also identified nine rare deleterious SNVs, which are all damaging missense

mutations. As transporters, these two genes could potentially be altered in their affinities to

ligands due to changes in primary or tertiary structures. Our results here supported these pre-

vious findings and provided additional evidence from the aspect of the rare-variant effect on

gene expression. Further investigation will be required to elucidate specific variants conferring

these effects as well as other participating proteins in the same signal relay mechanisms of

HLA-A and SLC26A7.

In a single-cell resolution, we further explored the cell-type-specific functional effects of the

significant genes identified in our previous analyses. Previous single-cell transcriptomic analy-

ses have shown a large number of cellular subpopulations with cell type-specific associations

with AD.[61] Our analysis supported this finding in ANKRD13D, HLA-A, and SLC26A7. For

example, we observed an up-regulation of ANKRD13D in bulk tissue, but it was found to be

regulated differently in different cell types: up-regulated in Ex, Ast, and In, while down-regu-

lated in Oli. On the other hand, in single-cell RNA-Seq data, SLC26A7 and HLA-A showed a

pattern of down-regulation in AD patients, consistent with our findings using the bulk RNA--

Seq data though with various effect sizes in different cell types.

Several strengths and limitations of our study warrant discussion. One of the major

strengths is our study design to begin the analysis with pathways implicated in AD a priori.

Our usage of the endocytic pathway provided us the power to identify rare-variant effects that

would otherwise be missed in traditional association analysis of single variants. This design
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was further combined with the large sample sizes of the three independent datasets, which pro-

vided additional power. We separated these datasets into a discovery phase and a replication

phase and were able to replicate our discovery phase results in two independent datasets of the

replication phase, followed by meta-analyses of samples in all three studies. This procedure

ensured us to identify and validate associations while retaining large power to identify small

signals. Another strength of our study is the analysis of AD-related phenotypes, such as Braak

stages, and provided additional power in identifying single genes with large aggregated rare-

variant effect sizes. The analysis of AAO and AOD provided further information on the pro-

gression of AD, which is especially important in clinal AD prediction and intervention. One

more strength in our analysis lies in our exploitation of bulk- and sc-RNA expression data in

combination with AD genotyping data. Through this method, we were able to identify eGenes

with large rare-variant effect, which would require a much higher sample size and greater

power to be identified as eQTLs and suggested potential AD-regulating mechanisms.

One limitation of the study is that while we used WGS datasets, we only focused on analyz-

ing rare SNVs within genic regions. Our analysis relied on knowing the deleteriousness of

each variant contributing to the gene-set burden, and variant annotation is most reliably pre-

dicted for coding and splice site variants.[90,134] Including variants in intergenic regions or

indels may result in the inclusion of variants with benign effects and decrease our power of

detecting AD-associated genetic burden. Another limitation of our study is that even though

we utilized WGS datasets of large sample size, they were not large enough to detect single

genes where rare variants significantly influenced AD. Although our analyses displayed suffi-

cient power to detect rare-variant effects within sets of genes, we nonetheless failed to directly

identify direct gene-level associations with AD. To achieve this latter goal, we may need WGS

datasets of larger sample sizes. A similar limitation on sample sizes was seen in those with

expression data and Braak staging information. Our bulk RNA-Seq data is only available for

547 individuals from the ROSMAP study in which we have genotyping data for 1200 individu-

als. The scRNA-Seq data is further limited in that we have 48 samples from the ROSMAP

study. These limitations in sample size decreased our capability of detecting functional effects

of rare variants within the endocytic pathway. One more limitation in this study is that we pri-

marily focused on European samples because we had a limited sample size for non-European

ancestries across all three WGS datasets. Nonetheless, it may be of interest to check whether

we would observe similar rare-variant effect in the endocytic pathway in non-European sam-

ples as we observed in European samples. Another limitation rooted in the potential batch

effects among the ADSP datasets used in this study, as also mentioned in Holstege et al.[135],

due to the fact that the samples were sequenced and called in different locations. In this study,

we have addressed the potential batch effect from three aspects. Firstly, the version of the

ADSP datasets used in this study has been quality controlled, where all samples from different

centers were re-processed using the same VCPA 1.0 pipeline and corrected for many technical

issues present in the previous version, including contaminations, mismatches, and duplicates.

[136] Secondly, we conducted additional QC steps at variant-level and sample-level. These

included many steps suggested by Holstege et al., such as sex-check, selecting European sam-

ples by PCA, removing unexpected related samples using IBD, checking for samples with aber-

rant Ti/Tv ratio or novel SNV/indel count, and filtering out variants failing VQSR, GQ, HWE,

and missing rate thresholds. Thirdly, we included sequencing location as a covariate in all

models (M0, M1, and M2) to account for potential batch effects. Therefore, in this study, we

recognized and have carefully approached this limitation, as much as we could, to mitigate the

potential batch effects.

In summary, our study demonstrated significant rare-variant effect within the endocytic

pathway in European samples. Such effect was also associated with Braak stages and age-
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related phenotypes, suggesting a potential target for clinical and therapeutic studies. Further

investigation within this pathway revealed one gene significantly associated with Braak stages

and two eGenes with a pattern of differential expression between AD patients and cognitively

normal controls. More functional studies will be necessary to gain a better understanding of

their molecular mechanisms of how they participate in the processing and modification of

AD-related proteins. In vitro and in vivo experiments on these genes will also provide further

insights into the connections of genetic variants to their gene expression and elucidate protein

signaling models that affect the pathogenic progression of AD.
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which represent 95% confidence intervals.
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S7 Fig. Overlapping genes between gene-sets (the endocytic, the immune response, and the

lipid metabolism pathways) and the findings in recent GWASes. Gene-sets were defined

through AmiGO 2 gene-ontology database. Two lists of genes implicated in AD were obtained
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sented the estimated odds ratio and the p-value from the corresponding logistic regression

model (or the generalized linear mixed model for family study). P-values were highlighted in

red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide significant). M0

took into account the sequencing location, first ten PCs, total count of rare variants. M1 was

M0 plus age and sex. M2 was M1 plus the count of APOE ε2 and ε4 alleles. The P and P� in

the meta-analysis across two stages (three datasets) represented the p-values calculated using

the fixed-effects inverse variance weighted method by METAL and the Fisher’s method by

‘meta-p,’ respectively. # variants represented the number of rare deleterious variants identified
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models.

(DOCX)
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were highlighted in red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide
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variants. M1 was M0 plus age and sex. M2 was M1 plus the count of APOE ε2 and ε4 alleles.
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S3 Table. Rare-variant AD association analysis using the MAGMA burden method. The

starred (�) geneset are those excluding the APOE gene. The Mu and P-self represented the esti-

mated mean association and the self-contained p-value testing whether an association existed
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(DOCX)

S5 Table. Rare-variant AD association analysis using PLINK where rare variants were
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sented the estimated odds ratio and the p-value from the corresponding logistic regression

model (or the generalized linear mixed model for family study). P-values were highlighted in

red (if <0.05; nominally significant) or green (if <0.00625; gene-set-wide significant). M0

took into account the sequencing location, first ten PCs, total count of rare variants. M1 was

M0 plus age and sex. M2 was M1 plus the count of APOE ε2 and ε4 alleles. The stage 2
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(71.5% of the total sample size; marked in �). The P and P� in the meta-analysis across two

stages (three datasets; AMP-AD� was used here) represented the p-values calculated using the

fixed-effects inverse variance weighted method by METAL and the Fisher’s method by ‘meta-

p,’ respectively. Similar results could be obtained using the stage 2 AMP-AD. The directions of

effects were consistent across nearly all models.
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resented the estimated odds ratio and the p-value from the corresponding logistic regression

model (or the generalized linear mixed model for family study). P-values were highlighted in
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and P represented the estimated odds ratio and the p-value from the corresponding logistic

regression model (or the generalized linear mixed model for family study). P-values were

highlighted in red (if<0.05; nominally significant) or green (if <0.00625; gene-set-wide signif-
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