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OBJECTIVE—Mitochondrial dysfunction and fat accumulation
in skeletal muscle (increased intramyocellular lipid [IMCL]) have
been linked to development of type 2 diabetes. We examined
whether exercise training could restore mitochondrial function
and insulin sensitivity in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS—Eighteen male type 2
diabetic and 20 healthy male control subjects of comparable
body weight, BMI, age, and VO2max participated in a 12-week
combined progressive training program (three times per week
and 45 min per session). In vivo mitochondrial function (assessed
via magnetic resonance spectroscopy), insulin sensitivity (clamp),
metabolic flexibility (indirect calorimetry), and IMCL content (his-
tochemically) were measured before and after training.

RESULTS—Mitochondrial function was lower in type 2 diabetic
compared with control subjects (P � 0.03), improved by training
in control subjects (28% increase; P � 0.02), and restored to
control values in type 2 diabetic subjects (48% increase; P �
0.01). Insulin sensitivity tended to improve in control subjects
(delta Rd 8% increase; P � 0.08) and improved significantly in
type 2 diabetic subjects (delta Rd 63% increase; P � 0.01).
Suppression of insulin-stimulated endogenous glucose produc-
tion improved in both groups (�64%; P � 0.01 in control subjects
and �52% in diabetic subjects; P � 0.01). After training, meta-
bolic flexibility in type 2 diabetic subjects was restored (delta
respiratory exchange ratio 63% increase; P � 0.01) but was
unchanged in control subjects (delta respiratory exchange ratio
7% increase; P � 0.22). Starting with comparable pretraining
IMCL levels, training tended to increase IMCL content in type 2
diabetic subjects (27% increase; P � 0.10), especially in type 2
muscle fibers.

CONCLUSIONS—Exercise training restored in vivo mitochon-
drial function in type 2 diabetic subjects. Insulin-mediated glu-
cose disposal and metabolic flexibility improved in type 2
diabetic subjects in the face of near–significantly increased IMCL
content. This indicates that increased capacity to store IMCL and
restoration of improved mitochondrial function contribute to
improved muscle insulin sensitivity. Diabetes 59:572–579,
2010

S
keletal muscle insulin resistance is one of the
earliest hallmarks of the development of type 2
diabetes. The combination of increased intramyo-
cellular lipid (IMCL) and a low oxidative capacity

are key features in the development of muscular insulin
resistance (1–3). Thus, mitochondrial dysfunction has
been suggested to be involved in accretion of IMCL.

In type 2 diabetes, smaller and damaged mitochondria
have been reported (4). In line with this, gene expression
of a key transcriptional cofactor in mitochondrial biogen-
esis (PGC1�), and its target genes encoding key enzymes
in oxidative mitochondrial metabolism, was lower in (pre-)
diabetic subjects (5,6). We confirmed lower expression of
PGC1� in type 2 diabetic patients and a restoration toward
control values upon treatment with rosiglitazone (7), indi-
cating that PGC1�-mediated defects in mitochondria are
reversible.

Importantly, these defects can translate into a lower in
vivo ATP synthesis rate in first-degree relatives of type 2
diabetic patients, as determined using 31P–magnetic reso-
nance spectroscopy (MRS) (8). Using an alternative 31P-
MRS method, we recently reported that type 2 diabetic
patients are also characterized by reduced in vivo mito-
chondrial function, as reflected by a prolonged postexer-
cise phosphocreatine resynthesis rate (9). More recently,
we extended this observation with ex vivo data indicating
intrinsic mitochondrial defects in patients with type 2
diabetes (10). Under all of these conditions, compromised
mitochondrial function was observed in overweight-to-
obese, BMI-matched populations with comparable IMCL
content. Together, these data support the hypothesis that
a low oxidative capacity may contribute to the develop-
ment of insulin resistance in the presence of high IMCL
content (11).

Current American Diabetes Association/American Heart
Association–based guidelines in the prevention and treat-
ment of type 2 diabetes target a diet-induced weight loss of
5–10% body weight and at least 150 min of moderate
activity per week (12). Interestingly, although both are
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insulin-sensitizing interventions, diet-induced weight loss
and physical exercise training differentially affect IMCL
content. While a diet-induced reduction in body mass
results in declined IMCL content (13), exercise training
leads to IMCL accretion (11,14–16). The net effect of
combined dietary and exercise interventions may thus be
similar IMCL levels pre- and postintervention. Indeed, in
patients with type 2 diabetes, it has been shown that a
combined exercise-dietary intervention improved insulin
sensitivity without changes in IMCL but with an improve-
ment in mitochondrial function (13). On the other hand,
diet-induced weight loss alone reduces IMCL content
without affecting mitochondrial capacity, suggesting that
to improve muscular insulin resistance the balance be-
tween IMCL content and oxidative capacity is critical (13).

At present, the effect of exercise without dietary restric-
tions and without targeted weight loss on IMCL content,
mitochondrial function, and insulin sensitivity is unknown.
In addition, it is not known whether the response to
exercise training in type 2 diabetes—with respect to
insulin sensitivity, mitochondrial content and function,
and IMCL—differs from the response in BMI-matched
normoglycemic control subjects. Therefore, we aimed to
investigate the effect of a well-controlled 12-week training
program in type 2 diabetic patients and carefully matched
obese healthy control subjects on insulin sensitivity, in
vivo mitochondrial function and content, and IMCL
content.

RESEARCH DESIGN AND METHODS

Eighteen male type 2 diabetic subjects and 20 healthy male control subjects
matched for body weight, BMI, and age were included. Exclusion criteria were
cardiac disease, impaired liver or renal function, BMI �35 kg/m2, diabetes
complications, exogenous insulin therapy, and prior participation in training
studies. For control subjects, a family history of type 2 diabetes was added to
the exclusion criteria. Glucose tolerance was examined by an oral glucose
tolerance test (17). Diabetic patients were diagnosed with type 2 diabetes for
at least 1 year before the start of the study, had well-controlled diabetes
(A1C �7.2%), and were using oral antidiabetes agents (metformin only or in
combination with sulfonurea derivatives). Medication use did not change
during the study. None of the subjects were on a diet, and all had a sedentary
lifestyle. The institutional medical ethics committee approved the study. Body
composition was measured through hydrostatic weighing (18), and maximal
work load and oxygen uptake were assessed during a graded cycling test until
exhaustion (19).
Exercise training protocol. Subjects enrolled in a tightly controlled exer-
cise program for 12 weeks. Aerobic exercise was carried out on a cycling
ergometer twice a week for 30 min at 55% of a previously determined maximal
work load (Wmax). Resistance exercise was performed once a week and
comprised one series of eight repetitions at 55% of subjects’ previously
determined maximal voluntary contraction (MVC) and two series of eight
repetitions at 75% MVC and focused on large muscle groups (Chest press, leg
extension, lat pull down, leg press, triceps curls, biceps curls, abdominal
crunches, and horizontal row). The MVC test was preceded by a familiariza-
tion trial. Warming-up and cooling-down sessions of 5 min were performed on
a stationary bike at 45% Wmax. Every 4 weeks, MVC was reassessed; maximal
aerobic capacity was reassessed after 6 weeks, and training loads were
readjusted accordingly. Supervised training sessions were performed with
four subjects at a time.
Hyperinsulinemic-euglycemic clamp. A 6-h hyperinsulinemic-euglycemic
insulin clamp (40 mU/m2 per min) was performed before and after the training
period essentially as previously described (7). Dietary habits were stable, and
physical exercise was avoided 3 days prior to the clamp. Diabetic subjects
discontinued antidiabetes medication 7 days prior to the clamp. Glucose
tracer ([6,6-2H2]glucose) was used to determine rates of glucose appearance
(Ra) and disposal (Rd). The first 3 h (t � 0–180 min, where t represents time)
were used to determine non–insulin stimulated Ra and Rd. At t � 180, a
primed constant infusion of insulin started and glucose infusion rates were
adjusted to maintain euglycemia. In the final 30 min of the non–insulin
stimulated period (t � 150–180) and under steady clamp conditions (t �
330–360), blood was sampled and indirect calorimetry (ventilated hood) was

performed. Muscle biopsies from the m. vastus lateralis were obtained under
local anesthesia (2% lidocaine) before and after the clamp.
Tracer calculations. Isotopic enrichment of plasma glucose was determined
by electron ionization gas chromatography–mass spectrometry. Steele’s sin-
gle-pool non–steady-state equations (20) were used to calculate glucose Ra
and Rd. Volume of distribution was assumed to be 0.160 l/kg for glucose.
Insulin-stimulated glucose disposal was computed as the difference between
Rd under insulin-stimulated conditions and Rd under basal non–insulin-
stimulated conditions (delta Rd). Endogenous glucose production was calcu-
lated as Ra � exogenous glucose infusion rate. Nonoxidative glucose disposal
was calculated as Rd � carbohydrate oxidation.
Blood sample analysis. Arterialised blood samples were collected from a
hand vein. Plasma free fatty acids (FFAs) and glucose were measured
spectrophotometrically. Insulin concentration was determined using a radio-
immunoassay (Linco Research, St. Charles, MO).
Metabolic flexibility. Fat and carbohydrate oxidation in the basal and
insulin-stimulated state was calculated according to the methodology of Frayn
(21), with protein oxidation considered negligible. Metabolic flexibility was
expressed as the change in respiratory exchange ratio from the fasted state to
the insulin-stimulated condition.
31P-MRS–based measurement of mitochondrial function. 31P-MRS mea-
surements were performed in vastus lateralis muscle on a 1.5 T whole-body
scanner (Intera; Philips Health Care, Best, the Netherlands) essentially
accoring the methodology of Schrauwen-Hinderling et al. (9). Data are
expressed as rate constant (ln 2/PCr recovery time in sec). The higher the rate
constant, (s�1), the better in vivo mitochondrial function.
IMCL content. IMCL content was assessed histochemically in muscle
cross-sections using a modified oil red O staining for fluorescence microscopy
(28) and combined with muscle fiber typing.
Western blotting. Uncoupling protein 3 (UCP3) content was determined by
Western blotting, using a rabbit polyclonal antibody. Five different structural
components of the electron transport chain were measured at the protein
level as a reflection of mitochondrial density. The components include ND6
subunit of complex I, the 30 kDa Ip subunit of complex II, the 47 kDa core
protein 2 of complex III, subunit II of cytochrome C oxidase (COXII), and the
� subunit of the F1F0 ATP synthase (complex V) and were measured using
monoclonal antibodies (MitoSciences, OR, USA) (29). Gels were loaded with
equal amounts of protein of pre- and posttraining lysates of two control and
two type 2 diabetic subjects per gel to allow valid comparison between pre-
and posttraining samples. To adjust for inter-gel variation, and hence variation
in the mean of the control group and the type 2 diabetic group, the optical
density of the band of interest per subject was normalized to the mean optical
density of the complete gel. Protein content was expressed as arbitrary units
(AU).
Statistics. Data are presented as mean � SE. In four control and three type
2 diabetic subjects no pre- or post data for MRS analyses could be obtained
due to claustrophobia or metal parts in their body. Statistical analyses were
performed two-sided using SPSS for Windows 15.0 software (SPSS, Chicago,
IL). Statistical significance was set at P � 0.05. A two-way ANOVA model for
repeated measures was applied using control and type 2 diabetic subjects as
between-subject variables and pre- and posttraining data as repeated within-
subject variables. Using this model we did not find significant interaction
effects.

RESULTS

Subject characteristics. Control subjects and type 2
diabetic patients were included and matched for body
weight (94.7 � 2.7 and 93.8 � 2.9 kg), BMI (29.7 � 0.8 and
30.0 � 0.8 kg/m2), and age (59.0 � 0.8 and 59.4 � 1.1
years). Training induced a modest but near-significant
decline in body weight and BMI in control subjects (94.7 �
2.7 to 93.6 � 2.7 kg and 29.7 � 0.8 to 29.4 � 0.8 kg/m2,
respectively, both P � 0.06), but did not result in signifi-
cant changes in type 2 diabetic subjects (Table 1). Fat
mass tended to decline in control subjects (30.0 � 1.8 to
29.2 � 2.0 kg after training; P � 0.09) and declined
modestly but significantly after training in type 2 diabetic
subjects (29.4 � 1.9 to 28.0 � 1.8 kg; P � 0.04). Fat free
mass was similar between both groups and did not change
after training (Table 1).
Exercise capacity. Before training, maximal oxygen up-
take was comparable in both groups and increased upon
training (�6.4 � 2.6%, P � 0.04 in control subjects and
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�11.3 � 2.2%, P � 0.01 in type 2 diabetic subjects).
Maximal oxygen uptake and Wmax increased similarly in
control and type 2 diabetic subjects (�15.0 � 2.4% and
�16.9 � 3.0% in control and type 2 diabetic subjects,
respectively, P � 0.01) and persisted after correction for
body mass. Resistance training profoundly improved mus-
cle strength (�22.2 � 2.0% and �23.9 � 1.9% in control
and type 2 diabetic subjects, respectively, P � 0.01, Table
1).

Whole-body insulin-stimulated glucose disposal. Insu-
lin-stimulated glucose disposal (delta Rd) was consider-
ably higher in control than in type 2 diabetic subjects
(Table 2). Training induced a near-significant increase in
delta Rd in control (17.1 � 2.4 to 18.4 � 2.1 �mol � kg�1 �
min�1, P � 0.08) and a profound significant increase in
type 2 diabetic subjects (from 6.8 � 1.4 to 11.1 � 1.4 �mol �
kg�1 � min�1, P � 0.01). The significant increase observed
in patients with type 2 diabetes originates from a reduction

TABLE 1
Subject characteristics

Control Type 2 diabetes
Pretraining Posttraining Pretraining Posttraining

Age (years) 59.0 � 0.8 — 59.4 � 1.1 —
Years since diagnosis — — 3.9 � 0.9 —
Weight (kg) 94.7 � 2.7 93.6 � 2.7 93.8 � 2.9 92.8 � 3.1
Height (cm) 178.5 � 1.3 — 176.7 � 1.3 —
BMI (kg/m2) 29.7 � 0.8 29.4 � 0.8 30.0 � 0.8 29.8 � 0.9
Body fat (%) 31.5 � 1.4 30.6 � 1.6 31.1 � 1.4 29.9 � 1.3*
Fat mass (kg) 30.0 � 1.8 29.2 � 2.0 29.4 � 1.9 28.0 � 1.8*
Fat-free mass (kg) 64.6 � 2.0 65.4 � 2.0 64.3 � 1.7 64.8 � 1.8
Vo2max (ml � min�1 � kg�1) 28.8 � 1.0 30.2 � 1.2* 27.5 � 1.2 31.1 � 1.2*
Wmax (Watt) 207 � 10 236 � 9* 202 � 9 233 � 9*
Average strength (kg) 85.8 � 3.2 104.0 � 3.5* 83.7 � 3.5 102.4 � 4.2*
Fasting glucose (mmol/l) 5.9 � 0.1 5.5 � 0.1* 9.0 � 0.4† 9.0 � 0.4†
A1C (%) 5.8 � 0.1 5.7 � 0.1* 7.2 � 0.2† 7.2 � 0.2†
Triacylglycerol (mmol/l) 1.52 � 0.13 1.49 � 0.15 1.77 � 0.16 1.68 � 0.14

Data are expressed as means � SE. *Posttraining significantly different from pretraining. †Type 2 diabetic group data significantly different
from control group data.

TABLE 2
Substrate kinetics pre- and posttraining

Control Type 2 diabetes
Pretraining Posttraining Pretraining Posttraining

Plasma insulin (mU/l)
Basal 18.1 � 2.4 16.1 � 2.1* 16.4 � 1.2 14.6 � 0.8*
Clamp 112.5 � 5.4 112.1 � 5.5 107.6 � 4.8 103.1 � 2.7

Plasma FFA (�mol/l)
Basal 479.0 � 22.9 454.9 � 28.3 519.4 � 25.3 500.1 � 34.1
Clamp 84.7 � 7.2 67.5 � 6.9* 107.1 � 8.7 87.6 � 8.7*

Rd glucose (�mol � kg�1 � min�1)
Basal 8.7 � 0.7 8.3 � 0.6 11.6 � 0.7† 9.9 � 0.6*
Clamp 25.8 � 2.3 26.7 � 2.3 18.4 � 1.4† 21.0 � 1.4*†
Delta 17.1 � 2.4 18.4 � 2.1 6.8 � 1.4† 11.1 � 1.4*†

Endogenous glucose production (�mol � kg�1 � min�1)
Basal 8.7 � 0.6 8.7 � 0.6 10.3 � 0.6 9.1 � 0.7
Clamp 2.8 � 0.8 1.0 � 1.0* 2.9 � 0.5 1.4 � 0.3*
Delta �5.7 � 1.1 �7.2 � 1.2 �7.9 � 0.6 �7.7 � 0.8

CHO oxidation (�mol � kg�1 � min�1)
Basal 6.5 � 0.5 7.1 � 0.5 8.1 � 0.6 7.3 � 0.4
Clamp 12.5 � 0.8 13.0 � 0.7 11.7 � 0.8 13.2 � 0.8
Delta 5.9 � 0.7 5.9 � 0.6 3.6 � 0.8† 5.9 � 0.7*

Nonoxidative glucose disposal (�mol � kg�1 � min�1)
Basal 2.3 � 0.7 1.1 � 0.6 3.5 � 0.9 2.6 � 0.8
Clamp 13.5 � 1.7 13.7 � 2.3 6.7 � 1.2† 8.0 � 1.2†
Delta 11.3 � 1.9 12.6 � 1.9 3.2 � 1.4† 5.3 � 1.2†

Lipid oxidation (�mol � kg�1 � min�1)
Basal 1.08 � 0.05 1.03 � 0.05 1.08 � 0.05 1.09 � 0.05
Clamp 0.63 � 0.04 0.55 � 0.04 0.75 � 0.04† 0.59 � 0.05*
Delta �0.46 � 0.05 �0.48 � 0.06 �0.32 � 0.06 �0.49 � 0.06*

Data are expressed as means � SE. *Posttraining significantly different from pretraining. †Type 2 diabetic group data significantly different
from control group data.
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in basal glucose disposal rate as well as from improved
disposal rate under insulin-stimulated conditions (Table
2). Nevertheless, insulin-stimulated glucose disposal re-
mained higher in control after training compared to type 2
diabetic subjects. Basal endogenous glucose production
before training tended (P � 0.07) to be lower in control
than in type 2 diabetic subjects. Insulin sensitivity of the
liver in control and type 2 diabetic subjects improved

significantly (endogenous glucose production drops from
2.8 � 0.8 pretraining to 1.0 � 1.0 in control, P � 0.01 and
from 2.9 � 0.5 pretraining to 1.4 � 0.3 �mol � kg�1 � min�1

in type 2 diabetic subjects, P � 0.01). Insulin-mediated
nonoxidative glucose disposal was significantly higher in
control than in type 2 diabetic subjects and was not
significantly affected by exercise training (P � 0.14 and
0.13 in control and type 2 diabetic subjects, respectively,
Table 2). In contrast, delta glucose oxidation in type 2
diabetic subjects restored to control values (Table 2).
In vivo mitochondrial function by 31P-MRS. We con-
firmed compromised mitochondrial function in type 2
diabetic compared to BMI-matched control subjects (rate
constant: 0.036 � 0.002�1 and 0.030 � 0.001s�1 in control
and type 2 diabetic subjects, respectively, P � 0.03).
Mitochondrial function improved after training in control
and type 2 diabetic subjects (�28% and �48%, respec-
tively), resulting in similar in vivo mitochondrial function
after training (P � 0.84) (Fig. 1). There was no difference
in end-exercise pH values between control and type 2
diabetic subjects and no difference between pre- and
posttraining values (7.05 � 0.02 and 7.02 � 0.02 for control
pre- and posttraining and 7.01 � 0.02 and 6.99 � 0.03 for
type 2 diabetic subjects pre- and posttraining,
respectively).
Metabolic flexibility. Prior to training, metabolic flexi-
bility was significantly higher in control subjects com-
pared to type 2 diabetic subjects (Fig. 3), due to a more
profound increase in insulin-stimulated glucose oxidation
(5.9 � 0.7 and 3.6 � 0.8 �mol � kg�1 � min�1 in control and
type 2 diabetic subjects, respectively, P � 0.04), with a
concomitant tendency (P � 0.10) to more profound insu-
lin-mediated suppression of fat oxidation (�0.46 � 0.05
and �0.32 � 0.06 �mol � kg�1 � min�1 in control and type
2 diabetic subjects, respectively) (Table 2). Exercise train-
ing did not affect metabolic flexibility in control but fully
restored flexibility in type 2 diabetic subjects (control
versus type 2 diabetic subjects; P � 0.84, Fig. 3), due to
improved insulin-stimulated increases in glucose oxida-
tion (from 3.61 � 0.78 to 5.94 � 0.72 �mol � kg�1 � min�1;
P � 0.02) and suppression of fat oxidation (from �0.32 �
0.06 to �0.49 � 0.06 �mol � kg�1 � min�1; P � 0.01) (Table
2). Remarkably, insulin-stimulated substrate oxidation
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rates were comparable between type 2 diabetic and con-
trol subjects after training, indicating that the lower insu-
lin-stimulated glucose uptake after training in type 2
diabetic subjects was completely accounted for by a lower
insulin-stimulated nonoxidative glucose uptake.
IMCL. IMCL content pretraining was comparable in both
groups and did not change after training in the control
group (Fig. 2). In the group with type 2 diabetes, however,
training tended to increased IMCL content (from 1.5 � 0.2
to 1.9 � 0.3 AU; P � 0.10), which was predominantly
accounted for by a near-significant increase in IMCL in
type 2 muscle fibers (from 1.1 � 0.2 to 1.5 � 0.3 AU; P �
0.07 [Fig. 2]).
Blood sample analysis. Fasting glucose levels and A1C
were significantly lower in control than in type 2 diabetic
subjects prior to the training program. Twelve weeks of
exercise training induced a slight but significant decrease
in A1C and in fasting glucose levels in the control group.
There was no change in A1C or fasting glucose levels in
the group with type 2 diabetes (Table 1). Fasting plasma
insulin levels were comparable pretraining and decreased
significantly in both groups after training (Table 2). Fast-
ing plasma FFA levels were similar across groups and did
not change after training. Under insulin stimulation, how-

ever, FFA levels tended to be lower in the control group
compared with those in the group with type 2 diabetes and
decreased significantly after training in both groups (Table
2), suggesting improved insulin-mediated suppression of
adipose tissue lipolysis posttraining in both groups.
Markers of mitochondrial density. Mitochondrial den-
sity was evaluated by measuring the protein content of five
structural subunits of the distinct complexes of the elec-
tron-transport chain. Neither the individual complexes
(Table 3) nor the averaging of the protein content of these
complexes revealed difference in mitochondrial density
between the control and type 2 diabetic groups pretraining
(0.66 � 0.11 and 0.59 � 0.08 AU, respectively; NS).
Training resulted in increased mitochondrial density in
both groups (Table 3). The increase in mitochondrial
density tended to be more pronounced in type 2 diabetic
subjects compared with that in control subjects (P � 0.07).
UCP3 content. We confirm our previous reports showing
a 	50% lower UCP3 content in type 2 diabetic than in
control subjects (30,31) (Table 3). Training increased
UCP3 content twofold in control subjects and almost
fourfold in type 2 diabetic subjects. This resulted in similar
UCP3 content in control and type 2 diabetic subjects after
training (Table 3).

DISCUSSION

Mitochondrial dysfunction has been reported in type 2
diabetic patients (4,32,33) and in young, lean, insulin-
resistant offspring of parents with type 2 diabetes (2),
although not all studies support this (34,35). The present
study confirms our previous observation of compromised
mitochondrial function measured in vivo in patients with
type 2 diabetes (9,10). Importantly, exercise training in
patients with type 2 diabetes completely restored mito-
chondrial function toward values observed in control
subjects after training. In patients with type 2 diabetes,
restoration of mitochondrial function was paralleled by
improved (but not restored) insulin-stimulated glucose
disposal and by complete restoration of metabolic flexi-
bility and insulin-stimulated substrate oxidation toward
control values—both in the face of a near-significant
increase in IMCL content. In control subjects, training also
improved mitochondrial function, while insulin-stimulated
glucose disposal increased only marginally and metabolic
flexibility and IMCL content remained unaltered.

The ability of patients with type 2 diabetes to increase
mitochondrial function indicates that despite aberrations
in the transcriptional control of mitochondrial biogenesis
(5,6), a lifestyle intervention comprising physical exercise
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FIG. 3. Metabolic flexibility, measured as the change in respiratory
quotient (respiratory exchange ratio [RER]) from the fasted state to
the insulin-stimulated state before (black bars) and after (white bars)
training. Data are expressed as means � SE. #Type 2 diabetic (T2D)
group significantly different from control (C) group. *Posttraining
significantly different from pretraining.

TABLE 3
Mitochondrial density and UCP3 protein content (AU)

Control Type 2 diabetes
Pretraining Posttraining Pretraining Posttraining

Complex I 0.61 � 0.19 1.11 � 0.32 0.66 � 0.18 1.65 � 0.42
Complex II 0.61 � 0.18 1.13 � 0.30 0.60 � 0.15 1.74 � 0.37*
Complex III 0.73 � 0.06 1.18 � 0.12* 0.60 � 0.05 1.55 � 0.13*†
Complex IV 0.66 � 0.07 1.21 � 0.09* 0.57 � 0.07 1.63 � 0.12*†
Complex V 0.76 � 0.12 1.06 � 0.12* 0.62 � 0.07 1.51 � 0.14*†
Average of the complexes 0.66 � 0.11 1.14 � 0.16* 0.59 � 0.08 1.62 � 0.20*
UCP3 0.71 � 0.12 1.43 � 0.20* 0.39 � 0.05† 1.50 � 0.22*
UCP3 normalized to mitochondrial density 1.22 � 0.21 1.37 � 0.16 0.73 � 0.09† 1.03 � 0.11*

Data are expressed as means � SE. *Posttraining significantly different from pretraining. †Type 2 diabetic group data significantly different
from control group data.
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is potent enough to overcome these apparent defects.
Increased mitochondrial content and improved function
have previously been observed in type 2 diabetic patients
following a combined dietary exercise intervention target-
ing �7% of body weight loss (13). Here, we show that
exercise training, even without substantial loss of body
mass, not only improves mitochondrial function but even
results in complete restoration toward the control values
observed in age- and BMI-matched normoglycemic control
subjects. The observation of compromised mitochondrial
function in patients with type 2 diabetes compared with
that of control subjects, despite comparable mitochondrial
density (as indicated by measurement of the protein
content of five structural components in the electron-
transport chain), supports previous findings of intrinsic
defects in mitochondria of patients with type 2 diabetes
(10,36). Interestingly, mitochondrial protein content mark-
edly increased after exercise training, suggesting that at
least a major part of the restoration of mitochondrial
function after training is due to increased mitochondrial
biogenesis. Although it remains to be established whether
exercise training also improves intrinsic mitochondrial
function, it is of interest to note that protein expression of
UCP3, a protein with a putative role in ameliorating
lipotoxicity and oxidative stress via mild uncoupling (37),
was significantly lower in type 2 diabetic patients com-
pared with that in control subjects, confirming previous
work (30,31). UCP3 content restored to control values
after training in type 2 diabetic subjects even after adjust-
ment for the increase in structural components of the
electron-transport chain. This may indicate that exercise
training in patients with type 2 diabetes not only improves
mitochondrial content but also results in adaptive re-
sponses within mitochondria to cope better with the
myocellular metabolic stress in the insulin-resistant state.

Part of the metabolic stress in type 2 diabetes may
originate from myocellular fat storage. IMCL content cor-
relates negatively with insulin sensitivity in untrained
subjects (11,38,39). On the other hand, endurance-trained
athletes also have high levels of IMCL (11,40) while being
insulin sensitive. It has thus been suggested that low fat
oxidative capacity and a concomitant increase in fatty acid
metabolites induces insulin resistance rather than IMCL
levels per se (11,41). Our present study confirms previous
findings of reduced mitochondrial function in type 2
diabetes with IMCL content similar between control sub-
jects and type 2 diabetic patients (9,10). This suggests that
high IMCL levels combined with compromised mitochon-
drial function may contribute to impeded insulin sensitiv-
ity. This notion is substantiated by our observation that
exercise training improved mitochondrial function and
alleviated muscular insulin resistance in patients with type
2 diabetes even though IMCL levels increased posttraining.

Training-induced increases in IMCL content may origi-
nate from improved partitioning of fatty acids in IMCL due
to exercise-induced increases in diacylglycerol-acyl trans-
ferase (DGAT1) (42,43), the rate-limiting enzyme in IMCL
synthesis. Indeed, enhancing IMCL storage capacity by
overexpression of DGAT1 improved insulin sensitivity
(42). These findings support the idea that the capacity to
effectively store fatty acids as IMCL along with appropriate
mitochondrial function are major determinants of myocel-
lular insulin sensitivity. We observed increased IMCL
content in type 2 diabetic patients after combined endur-
ance and resistance training in glycolytic type 2 muscle
fibers, which in human possess lower IMCL levels than the

more oxidative type 1 fibers. It could therefore be sug-
gested that, due to the resistance exercise, previously
inactive type 2 fibers were now recruited and increased
their storage capacity for fatty acids as IMCL, thereby
contributing to the insulin-sensitizing effect of training.
This implies that it might be of added value for insulin-
sensitizing training interventions to also include exercise
at an intensity that requires recruitment of type 2 muscle
fibers.

Metabolic inflexibility is another characteristic of insu-
lin-resistant muscles (44), possibly reflecting a reduced
ability of mitochondria to shift fuel selection. Metabolic
inflexibility in insulin resistance may reflect reduced
insulin-stimulated glucose uptake, thereby reducing the
availability of glucose for oxidation, rather than a mito-
chondrial defect in substrate selection (45). The present
study partly supports this notion. Impaired metabolic
flexibility in type 2 diabetes before training was indeed
accompanied by a reduced insulin-stimulated rate of glu-
cose disappearance. Moreover, upon training, insulin-stim-
ulated glucose disposal improved in the type 2 diabetic
subjects in conjunction with improved metabolic flexibil-
ity. Although the improvement in insulin-stimulated glu-
cose disposal completely matched the restoration of
metabolic flexibility, restoration of mitochondrial function
may be needed to facilitate this. In control subjects,
training did not alter metabolic flexibility and also only
marginally improved insulin-stimulated glucose disposal.
It thus seems that after training, insulin-stimulated glucose
oxidation was working at its maximal capacity in both
control and type 2 diabetic subjects. Very interestingly,
despite a restoration of metabolic flexibility, mitochon-
drial function, and insulin-stimulated glucose oxidation,
insulin-stimulated glucose disposal was still lower in type
2 diabetic than in control subjects. This was completely
accounted for by a lower nonoxidative glucose disposal.
Thus, upon exercise training the oxidative component of
insulin-stimulated glucose disposal is fully restored—in
contrast to nonoxidative glucose disposal. Compromised
nonoxidative glucose disposal in type 2 diabetes has
previousl been reported (46), and treating insulin-resistant
first-degree relatives of type 2 diabetic patients with met-
formin normalizes nonoxidative glucose disposal (47),
supporting the notion that restoring nonoxidative glucose
disposal may be crucial for normalizing insulin sensitivity
and possibly plasma glucose in type 2 diabetes.

In a model of one-legged exercise training, nonoxidative
glucose disposal improved along with increased fractional
velocity of glycogen synthase (48). The different training
regimes applied (one vs. two-legged exercise six times per
week vs. three times per week and aerobic exercise solely
vs. a combination of aerobic and resistance exercise) in
the one-legged exercise study vs. the present study are
likely to explain the differences. It should be noted that
also in the present study nonoxidative glucose disposal
improved in 	30% of patients with type 2 diabetes (albeit
nonsignificantly) but was still lower than that of the
control group. More recently, restoration of nonoxidative
glucose disposal upon exercise training in type 2 diabetic
patients has been reported (49). In that study, however,
nonoxidative glucose disposal was measured as the resid-
ual of glucose disposal rate minus oxidative glucose
disposal and may therefore be biased by hepatic glucose
production; thus, the results are hard to compare with the
data from the present study. Future studies are needed to
identify the mechanism(s) underlying the defective nonoxi-
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dative glucose disposal in patients with type 2 diabetes and
how to reinstate these defects before full restoration of
insulin-stimulated glucose disposal can occur.

While skeletal muscle insulin resistance is a hallmark of
type 2 diabetes, insulin resistance of liver and adipose
tissue also contributes to the pathogenesis of type 2
diabetes. In this respect, it is relevant to note that exercise
training also resulted in beneficial adaptations beyond
those reported for muscle. Likewise, we observed that
under hyperinsulinemic clamp conditions plasma FFA
levels were significantly lower post- than pretraining,
possibly reflecting improved antilipolytic activity of insulin
in adipose tissue. In addition, exercise training in type 2
diabetic patients improved the ability of insulin to inhibit
hepatic glucose output. At present, the routes or mecha-
nisms responsible for these beneficial training-mediated
multiple organ adaptations are unknown and warrant
further study.

In conclusion, restoration of mitochondrial dysfunction
in type 2 diabetes by physical exercise improves insulin-
mediated glucose disposal in the presence of increased
IMCL storage. Restoration of mitochondrial function and
metabolic flexibility in type 2 diabetes by exercise is at
least partly accounted for by increased mitochondrial
content and possibly by intrinsic mitochondrial adapta-
tions. The insulin-sensitizing effect of exercise training
occurs in the absence of major changes in body mass and
is not restricted to improved muscle insulin sensitivity but
extends to improved hepatic and adipose tissue insulin
sensitivity.
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