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ABSTRACT

Objectives: To propose a visual display—the probability threshold plot (PTP)—that transparently communicates

a predictive models’ measures of discriminative accuracy along the range of model-based predicted

probabilities (Pt).

Materials and Methods: We illustrate the PTP by replicating a previously-published and validated machine

learning-based model to predict antihyperglycemic medication cessation within 1–2 years following metabolic

surgery. The visual characteristics of the PTPs for each model were compared to receiver operating characteris-

tic (ROC) curves.

Results: A total of 18 887 patients were included for analysis. Whereas during testing each predictive model had

nearly identical ROC curves and corresponding area under the curve values (0.672 and 0.673), the visual charac-

teristics of the PTPs revealed substantive between-model differences in sensitivity, specificity, PPV, and NPV

across the range of Pt.

Discussion and Conclusions: The PTP provides improved visual display of a predictive model’s discriminative

accuracy, which can enhance the practical application of predictive models for medical decision making.
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BACKGROUND AND SIGNIFICANCE

Predictive models using machine learning hold promise as a tool to

support precision medicine. Such models may be used to estimate an

individual patient’s predicted probability (Pri) of benefit and/or

harm from a medical intervention, or of experiencing a future out-

come.

A probability threshold (Pt) is required when applying a predic-

tion model to inform a clinical decision such as whether to give an

intervention. Patients with a predicted risk greater than the proba-

bility threshold, Pri > Pt, may be selected (or disqualified) for an in-

tervention. For example, consider the situation where a model is

developed to predict 5-year future risk of stroke. The model assigns

each patient a personalized 5-year risk of stroke. To determine

which patients should be prescribed statins, a clinician may apply

the prediction model and then give patients with a predicted risk

>10% a statin. In this case, the Pt is 10%.

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 1

JAMIA Open, 00(0), 2021, 1–4

doi: 10.1093/jamiaopen/ooab017

Brief Communications

https://academic.oup.com/
https://academic.oup.com/


The value of the Pt used for decision making impacts the operat-

ing characteristics when implementing the prediction model and the

choice is subjective. Published prediction models generally only

provide information about the operating characteristics for a limited

selection of Pt values, but this knowledge is required to ensure the

most suitable Pt is used when making a decision. Some previous

researchers have adopted the strategy of reporting the Pts associated

with a selected set of target performance characteristics in a tabular

format; for example, Carrell et al1 reported the Pts needed to

achieve excellent (0.90), good (0.80), or acceptable (0.75) values of

characteristics such as PPV, along with the values of various other

operating characteristics associated with that specific Pt. Others

have recommended to report operating characteristics for multiple

selected Pts.2

Furthermore, a challenge in selecting Pt is that a tradeoff exists

between false negative and false positive classification when increas-

ing or decreasing the Pt for a clinical decision rule. Although the

expected prevalence of an outcome, or perhaps a predicted probabil-

ity >50%, may be selected as the default Pt for a clinical decision

rule, there may be a desire to select an alternative Pt at which certain

operating characteristics receive greater emphasis (e.g., PPV may be

emphasized for interventions with risk of iatrogenic effects).

The ROC curve itself is perhaps the most ubiquitous visual dis-

play of discriminative accuracy for predictive modeling.3 ROC

curves are an elegant way to depict the tradeoff between sensitivity

(true positive rate) and false-positive rates (1–specificity) across the

distribution of Pts for a given predictive model. The area under the

ROC curve (AUC) is a summary of discriminative ability across all

Pt values and provides no information on what Pt value to use when

implementing a model.

Nevertheless, ROC curves are limited in communicating infor-

mation to inform the selection of Pt; the value of the Pt correspond-

ing to a point on the ROC curve is unclear, ROC curves are limited

to sensitivity and the false positive rate but miss other important op-

erating characteristics such as PPV; the ROC curve fails to visually

display the dependence of PPV and NPV on the expected prevalence

of the outcome in a population; the ROC curve does not communi-

cate the simultaneous trade-offs among sensitivity, specificity, PPV

and NPV for the range of Pts; and the specificity value is dominated

by the true negatives when the outcome is rare, in which case PPV

may be an important measure to consider.4,5

Whereas the ROC curve is a useful tool for the evaluation and

comparison of predictive models, there is currently no standard vi-

sual display that directly conveys information to support the selec-

tion of Pt for application of a final predictive model for medical

decision making. In this Brief Communication, we suggest a

standard visual display that transparently and comprehensively com-

municates measures of discriminative accuracy, such as sensitivity,

specificity, PPV and NPV, along with the complete range of Pt to visu-

ally assist in the selection of a Pt for a clinical decision rule: the PTP.

MATERIALS AND METHODS

To illustrate the PTP, we replicated a previously published and vali-

dated machine learning-based modeling approach to predict the out-

come of antihyperglycemic medication cessation within 1–2 years

following metabolic surgery, using the IBM MarketScanVR Commer-

cial insurance claims database.6 The predictive modeling approach

is described in Johnston et al, which identified insulin use within 6

months prior to metabolic surgery as the strongest predictor of anti-

hyperglycemic medication cessation.6 We created two predictive

models, each one applied to a different population: one for patients

with prior insulin use (model A) and one for patients without prior

insulin use (model B). The R Code used to generate the PTP is pro-

vided in the Appendix.

At each Pt value (x-axis, range 0%–100%), the PTP plots a pre-

dictive model’s measures of discriminative accuracy (y-axis, range

0%–100%). We show the sensitivity, specificity, PPV, and NPV;

however, other measures such as the F1 score, accuracy, or queue

rate may also be conveyed.

RESULTS

A 75%/25% training/test set split of the original sample was used to

train and internally validate the models. For model A (patients with-

out insulin use prior to metabolic surgery), 9 972 patients were used

for training and 3 323 were used for testing; the N (%) of patients

experiencing antihyperglycemic medication cessation within 1-2

years after metabolic surgery was 8 161 (81.8%) for training and 2

720 (81.9%) for testing. For model B (patients with insulin use prior

to metabolic surgery), 4 194 patients were used for training and 1

398 were used for testing; the N (%) of patients experiencing antihy-

perglycemic medication cessation within 1–2 years after metabolic

surgery was 1 951 (46.5%) for training and 650 (46.5%) for testing.

LAY SUMMARY

The extent to which a predictive model can accurately predict an outcome is often communicated via visual displays, most

commonly by receiver operating characteristic (ROC) curves. However, ROC curves are limited sensitivity and 1-specificity

and omit measures such as positive predictive value (PPV) and negative predictive value (NPV). Furthermore, the ROC curve

does not communicate the trade-offs among operating characteristics across the range of predicted probability thresholds,

and the area under the curve (AUC) can be misrepresentative in the presence of rare outcomes, in which case PPV may be

more important. We suggest a standard visual display that transparently communicates measures of discriminative accu-

racy, such as sensitivity, specificity, PPV and NPV, along with the range of predicted probability thresholds from a predictive

model: the probability threshold plot (PTP). In the present study, two separate predictive models generated nearly identical

ROC curves and corresponding AUCs; however, the visual characteristics of the PTPs revealed substantive between-model

differences in operating characteristics across the range of predicted probability thresholds; the PTP provides improved vi-

sual display of a predictive model’s discriminative accuracy, which can facilitate the selection of the Pt and thereby translate

predictive models into more useful decision tools enhance the practical application of predictive models for medical deci-

sion-making.
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Figure 1. Receiver operating characteristic curves of two predictive models with similar areas under the receiver operating curve. Figures are based on internal

validation of the models using a 25% test set after training the model in the other 75%. For model A (patients without insulin use prior to metabolic surgery), the

area under the receiver operating curve was 0.725 for training and 0.673 for testing. For model B (patients with insulin use prior to metabolic surgery), the area

under the receiver operating curve was 0.700 for training and 0.672 for testing.

Figure 2. Probability threshold plot (PTP) of two predictive models with similar areas under the receiver operating curve. Pt for a clinical decision rule is the

threshold above or below which patients are classified as either “test positive” or “test negative” based on their personalized Pri, and at which a model will pos-

sess a Pt-specific set of operating characteristics arising from the corresponding true/false classification. Whereas each predictive model had nearly identical

ROC curves (Figure 1) and corresponding AUCs for the test set (0.672 and 0.673 among patients with vs. without prior insulin use, respectively), the PTPs for the

test sets reveal substantive between-model differences in sensitivity, specificity, PPV, and NPV across the range of Pt. The PTP also transparently visualizes the si-

multaneous tradeoffs among various operating characteristics along with the distribution of Pt for a clinical decision rule (e.g., increasing PPV at the cost of de-

creasing sensitivity). For example, if Pt were selected to reflect the outcome prevalence within the testing and training data (e.g., Pt set to �82% for model A), a

clinician selecting patients without prior insulin use to undergo metabolic surgery if they have Pri>Pt can expect that 12.4% of patients may not experience anti-

hyperglycemic medication cessation despite undergoing metabolic surgery (PPV ¼ 87.6%), and they will have missed 31.4% of those may would have experi-

enced such benefits (sensitivity ¼ 68.6%); setting the Pt to a higher value (e.g., 90%) reduces sensitivity to 22.5% in favor of an increase in PPV to 92.0%. PPV,

positive predictive value; NPV, negative predictive value.
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Whereas each predictive model had nearly identical ROC curves

(Figure 1) and corresponding AUCs for the test set (0.672 and 0.673

among patients with vs. without prior insulin use, respectively), the

PTPs (Figure 2) reveal substantive between-model differences in

sensitivity, specificity, PPV, and NPV across the range of Pt. We see

in the PTP, for example, that at a Pt¼0.60, the model among

patients with prior insulin use possesses PPV¼68.1%,

NPV¼57.0%, sensitivity¼20.6%, and specificity¼91.5%. In

other words, a clinician choosing patients with Pri>0.60 to undergo

metabolic surgery (i.e., setting Pt¼0.60) can expect that 32.9% of

patients may not experience antihyperglycemic medication cessation

despite undergoing metabolic surgery, and they will have missed

79.4% of those may would have experienced such benefits. In con-

trast, among patients without prior insulin use, PPV¼83.3% and

sensitivity¼97.8% at Pt¼0.60. Although the between-model dif-

ferences are accentuated by the underlying differences in the preva-

lence of the outcome between the samples used for model A and

model B, the PTP illustrates how two models with nearly identical

ROC curves and AUCs can possess very different operating charac-

teristic at a given Pt.

The PTP also shows how adjusting Pt would affect the trade-off

between dimensions of discriminative accuracy: e.g., increasing PPV

at the cost of decreasing sensitivity. For example, if Pt were selected

to reflect the outcome prevalence within the testing and training

data (e.g., Pt set to �82% for model A), a clinician selecting patients

without prior insulin use to undergo metabolic surgery if they have

Pri>Pt can expect that 12.4% of patients may not experience anti-

hyperglycemic medication cessation despite undergoing metabolic

surgery (PPV¼87.6%), and they will have missed 31.4% of those

may would have experienced such benefits (sensitivity¼68.6%);

setting the Pt to a higher value (e.g., 90%) reduces sensitivity to

22.5% in favor of an increase in PPV to 92.0%.

DISCUSSION AND CONCLUSIONS

The PTP transparently visualizes the simultaneous tradeoffs among

various operating characteristics along the distribution of Pt. This

can aid in the final selection of a Pt for a clinical decision rule, which

should also be informed by context-dependent information on the

relative importance of true/false and positive/negative classification,

such as health economic evaluations or patient preference informa-

tion.2,7–9 A future area for research to further improve the PTP is

the potential addition of measures of variability for each operating

characteristic at a given Pt, such as 95% confidence intervals

through the normal approximation or bootstrapping methods.

With the increasing use of machine learning-based predictive

models to aid clinicians in precision medicine, improved visual dis-

plays of model results can enhance the practical application and

communication of predictive models. The PTP is a new visual tool

to facilitate the selection of the Pt based on values of the PPV, NPV,

sensitivity, specificity and accuracy, and thereby translate predictive

models into more useful decision tools for medical decision making.
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