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OBJECTIVE—To examine the prospective associations of
baseline vitamin D [25-hydroxyvitamin D; 25(OH)D] with insulin
resistance (IR), b-cell function, and glucose homeostasis in sub-
jects at risk for type 2 diabetes.

RESEARCH DESIGN AND METHODS—We followed 489
subjects, aged 50 6 10 years, for 3 years. At baseline and follow-
up, 75-g oral glucose tolerance tests (OGTTs) were administered.
IR was measured using the Matsuda index (ISOGTT) and the
homeostasis model assessment of IR (HOMA-IR), b-cell function
was determined using both the insulinogenic index divided by
HOMA-IR (IGI/IR) and the insulin secretion sensitivity index-2
(ISSI-2), and glycemia was assessed using the area under the
glucose curve (AUCglucose). Regression models were adjusted
for age, sex, ethnicity, season, and baseline value of the outcome
variable, as well as baseline and change in physical activity,
vitamin D supplement use, and BMI.

RESULTS—Multivariate linear regression analyses indicated no
significant association of baseline 25(OH)D with follow-up ISOGTT
or HOMA-IR. There were, however, significant positive associa-
tions of baseline 25(OH)D with follow-up IGI/IR (b = 0.005, P =
0.015) and ISSI-2 (b = 0.002, P = 0.023) and a significant inverse
association of baseline 25(OH)D with follow-up AUCglucose (b =
20.001, P = 0.007). Progression to dysglycemia (impaired fasting
glucose, impaired glucose tolerance, or type 2 diabetes) occurred
in 116 subjects. Logistic regression analyses indicated a signifi-
cant reduced risk of progression with higher baseline 25(OH)D
(adjusted odds ratio 0.69 [95% CI 0.53–0.89]), but this association
was not significant after additional adjustment for baseline and
change in BMI (0.78 [0.59–1.02]).

CONCLUSIONS—Higher baseline 25(OH)D independently pre-
dicted better b-cell function and lower AUCglucose at follow-up,
supporting a potential role for vitamin D in type 2 diabetes etiology.
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E
merging evidence suggests that vitamin D [25-
hydroxyvitamin D; 25(OH)D] may play a role in
the etiology of type 2 diabetes (1,2). Vitamin D
levels are lower in those with type 2 diabetes and

impaired glucose tolerance (IGT) compared with those
with normal glucose tolerance (NGT) (3–5). In addition,
most (6–9), but not all (10,11), prospective studies have
shown a significant inverse association of baseline serum
25(OH)D with incident diabetes. To date, however, the ex-
act mechanisms through which vitamin D affects diabetes
risk are not yet fully known, particularly whether vitamin D
plays a role in insulin resistance (IR) and/or b-cell dys-
function, the main pathophysiological disorders underly-
ing type 2 diabetes.

Previous studies have reported significant inverse as-
sociations of vitamin D with IR (12–16) and b-cell dys-
function (17,18), including our cross-sectional study in the
current cohort (19), although findings have been inconsistent
(14,16,20–22). These inconsistencies may be attributed to
the cross-sectional design of these studies or the use of
less precise measures of outcomes. Only two prospective
studies have been conducted to date, both of which reported
significant inverse associations of baseline 25(OH)D with
IR after 5 and 10 years of follow-up, respectively, in largely
white cohorts (6,23). No study has yet examined b-cell
function prospectively in relation to vitamin D. The ob-
jective of this study, therefore, was to examine the pro-
spective association of baseline serum 25(OH)D with IR,
b-cell function, and glucose homeostasis in a cohort of
489 subjects at high risk for type 2 diabetes.

RESEARCH DESIGN AND METHODS

A detailed methodology of the PROspective Metabolism and ISlet cell Evalu-
ation (PROMISE) cohort study has been published previously (19,24). In brief,
PROMISE study participants, aged $30 years, were recruited from Toronto
and London, Ontario, Canada, between May 2004 and December 2006. Par-
ticipants were at high risk for type 2 diabetes, as they were recruited on the
basis of the presence of one or more risk factors for diabetes, including
obesity, hypertension, a family history of diabetes, and/or a history of gesta-
tional diabetes or birth of a macrosomic infant (24). Participants were con-
tacted annually after the baseline visit to update contact information and
collect data on major health events. Participants were invited to return to the
clinic examination centers after 3 years for follow-up assessments.

At baseline, 654 individuals without diabetes participated; the mean age
was 50.19 6 9.67 years, 357 (73.01%) were female, and 142 (29%) were non-
whites (12% Hispanic, 7% South Asian, and 10% other). Of 654 participants,
contact was maintained with 549 (84%), and 496 (76%) participants attended
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the 3-year follow-up clinic visits. Those who attended the follow-up exami-
nation were more likely to be older, female, and white (P , 0.02) than those
who did not attend, but there were no significant differences in BMI or
measures of IR, b-cell function, or glucose homeostasis (P $ 0.07).
Measures. As part of the baseline and 3-year clinic assessment, fasting blood
samples were collected and 75-g oral glucose tolerance tests (OGTTs) were
conducted, with additional blood samples collected at 30 and 120 min for
glucose and insulin measurements. Fresh fasting and 30- and 120-min blood
samples were immediately processed for the determination of serum glucose,
and remaining samples were processed and frozen at 270°C. Glucose was
measured using an enzymatic hexokinase method on the Roche Modular plat-
form. Specific insulin was measured using the Elecsys 1010 immunoassay
analyzer (Roche Diagnostics, Basel, Switzerland) and the electrochemilu-
minescence immunoassay. This assay shows 0.05% cross-reactivity to intact
human proinsulin and the Des 31,32 circulating split form. Parathyroid hormone
(PTH) was measured using an electrochemiluminescence immunoassay on the
Roche Modular E170 Analyzer (Laval, Quebec, Canada), which has a detection
range from 0.127 to 530 pmol/L. Baseline C-reactive protein also was measured
in fasting samples using Roche Modular’s particle-enhanced immunoturbidi-
metric assay, with a minimum detection range of 0.03 mg/L.

Vitamin D status, specifically 25(OH)D, was measured in serum using the
DiaSorin 25 OH Vitamin D TOTAL competitive chemiluminescent immunoassay
on the automated LIAISON Analyzer (Stillwater, MN). This assay has 100%
specificity for both 25(OH)D2 and 25(OH)D3. The detection limit of the assay is
10 nmol/L, and we found that it has an intra-assay coefficient of variation of
6.7% and an interassay coefficient of variation of 11.6%. The 25(OH)D TOTAL
method has been validated against the DiaSorin radioimmunoassay (r = 0.92),
which is the first test approved for clinical diagnosis by the Food and Drug
Administration and also is the most widely used method (25). In addition, the
laboratory in which this assay was conducted participates in the International
External Quality Assessment Scheme for Vitamin D Metabolites (DEQAS,
Northwest Thames, U.K.), and it has been reported that the 25(OH)D results
from this laboratory were consistently within 1 SD of the group mean in the
international DEQAS proficiency surveys (25).

Anthropometric measurements were performed with participants in light
clothing and with shoes removed. Height and weight were measured to the
nearest 10th of a cm and kg, respectively, and BMI was calculated as weight
in kilograms divided by the square of height in meters (kg/m2). Waist cir-
cumference was measured at the natural waist, defined as the narrowest part
of the torso, as viewed from behind, or the minimal circumference between
the umbilicus and xiphoid process, as viewed from the front. Blood pressure
was measured twice in the right arm with the subject seated after a 5-min rest
using an automated sphygmomanometer. Each measure was determined twice
using standardized procedures, with the average used in the analysis. Physical
activity level was determined using a version of the Modifiable Activity Ques-
tionnaire (MAQ) (26), which collects information on both leisure and occu-
pational activity over the past year (including measures of frequency and
duration). The MAQ has been shown to have good reliability and validity (26).
Each reported activity from the MAQ is weighted by its relative intensity, re-
ferred to as a metabolic equivalent (MET) of the task, thereby deriving MET
hours per week (MET h/week) as the final unit of expression. Season was
defined using the date participants completed their baseline assessment
and was categorized as follows: May through October (summer/early fall);
November through April (winter/early spring). Supplement use, specifically
any vitamin or multivitamin containing vitamin D, was obtained through an
open-ended question on current medication use. Ethnicity, smoking, and the
participant’s family history of diabetes were assessed using structured ques-
tionnaires.
Outcome variables. IR was quantified using both the ISOGTT index of Matsuda
and DeFronzo (27) and the homeostasis model assessment of IR (HOMA-IR) of
Matthews et al. (28). The ISOGTT index, which is a measure of insulin sensi-
tivity (27), is defined as follows: 10,000/= (FPG 3 FPI) 3 (G 3 I), where FPG
refers to fasting plasma glucose, FPI refers to fasting plasma insulin, G refers to
mean glucose during the OGTT, and I refers to mean insulin during the OGTT.
This index reflects whole-body insulin sensitivity and has been validated against
the euglycemic-hyperinsulinemic clamp technique (27). HOMA-IR, which is
defined as FPG 3 FPI/22.5 (28), largely reflects hepatic IR and also has been
validated against the clamp (28). b-Cell dysfunction was calculated by taking
the insulinogenic index (IGI) divided by HOMA-IR (IGI/IR) (29), which is
a widely used measure of b-cell function. The IGI is calculated by taking the
ratio of 30 min insulin minus fasting insulin to 30 min glucose minus fasting
glucose (29) and has been validated against gold-standard measures of insulin
secretion (first-phase insulin secretion on intravenous glucose tolerance
testing [IVGTT]). The insulin secretion sensitivity index-2 (ISSI-2), which is

a more recently proposed measure of b-cell function that is analogous to the
disposition index but derived from the OGTT (30), also was calculated. This
index, which has been validated against directly measured disposition index
(31), is defined as the ratio of the area under the insulin curve (AUCinsulin) to
the area under the glucose curve (AUCglucose), multiplied by ISOGTT (31).
Glycemia was assessed using the AUCglucose during the OGTT, calculated us-
ing the trapezoidal rule. Progression to dysglycemia was defined as having
developed impaired fasting glucose (IFG), IGT, or incident type 2 diabetes
based on the OGTT at the 3-year follow-up. IFG, IGT, and diabetes were
categorized using 1999 World Health Organization criteria (32). In addition,
participants who reported being diagnosed with type 2 diabetes between
baseline and follow-up during either the annual telephone contacts or the
clinical examinations also were considered to have incident diabetes at follow-
up. Verification of self-reported diabetes was obtained from the participant’s
physician through a supplementary form requesting information on the date of
diagnosis, blood glucose levels supporting the diagnosis, and current treat-
ment.
Statistical analysis. SAS version 9.1 was used for all analyses. Continuous
variables were reported as means 6 SD or median (interquartile range) in the
case of skewed distributions, whereas categorical variables were reported as
n (%). Natural logarithmic transformations were applied for all non–normally
distributed variables. x2 Tests and Student t tests were used to examine dif-
ferences between those who did and did not attend the 3-year follow-up
examination. Changes in participant characteristics between baseline and
follow-up were tested using the McNemar test for categorical variables and the
paired Student t test or Wilcoxon signed-rank test for normally distributed or
non–normally distributed continuous variables, respectively. Percentage
change was calculated as the follow-up value minus the baseline value divided
by the baseline value, multiplied by 100. Multiple linear regression analyses
were conducted to investigate the association of baseline serum 25(OH)D as
the independent variable with measures of IR (ISOGTT and HOMA-IR), b-cell
function (IGI/IR and ISSI-2), and glycemia (AUCglucose) at the 3-year follow-up
as the dependent variables. Separate models were used for each outcome
variable, which included adjustment for the baseline value of the outcome
measure being assessed. Differences in baseline serum 25(OH)D, according to
glycemic progression status (NGT vs. IFG, IGT, or type 2 diabetes at follow-
up), were evaluated using t tests. The association of baseline serum 25(OH)D
with progression to dysglycemia was assessed using multivariate logistic re-
gression analysis. Odds ratios are presented to indicate the risk of progression
to dysglycemia per SD increase in 25(OH)D. Potential confounders were
identified on the basis of the results of previous cross-sectional analyses in the
PROMISE study cohort (19). Significant positive associations of baseline se-
rum 25(OH)D levels with age, vitamin D supplement use, and physical activity
and negative associations of 25(OH)D with BMI and waist circumference were
documented. On the basis of these findings, staged multivariate regression
models were constructed for the current analysis. Model 1 was adjusted for
age, sex, ethnicity, and season of the 25(OH)D measurement; model 2 was
additionally adjusted for baseline and change in physical activity and vitamin
D supplement use; and model 3 was additionally adjusted for baseline and
change in BMI. Possible effect modifiers including sex, ethnicity, BMI, and
season also were investigated.

RESULTS

Baseline vitamin D measurements were available for 489
(99%) of 496 participants who came back for their follow-
up visit. Of 489 participants, 116 (23.72%) progressed to
dysglycemia, of which 11 (2.25%) had IFG, 75 (15.34%)
had IGT, and 30 (6.13%) were classified as having type
2 diabetes. Of 30 participants with diabetes at follow-up,
6 were diagnosed between baseline and follow-up and
the remaining 24 were classified as having diabetes on
the basis of the OGTT at the 3-year clinic assessment.
Participant characteristics at baseline and at follow-up,
as well as percentage change in these characteristics
over the follow-up period, are presented in Table 1. The
mean baseline serum 25(OH)D concentration was
58.01 6 23.26 nmol/L. Based on the Institute of Medi-
cine’s 2011 Dietary Reference Intakes for Vitamin D
(33), we found that ~11, 22, and 63% of our cohort had
deficient (,30 nmol/L), insufficient (,40 nmol/L), and
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sufficient ($50 nmol/L) 25(OH)D levels, respectively.
Overall, participants gained weight over the 3 years and
also reported significantly higher vitamin D supplement
use at follow-up. In addition, the significant decrease in
ISOGTT and significant increase in HOMA-IR over the 3
years indicate worsening IR. There also was a signifi-
cant decrease in both IGI/IR and ISSI-2 and a significant
increase in AUCglucose, indicating that participants also
had deteriorating b-cell function and glucose homeo-
stasis over the follow-up period.

In the multivariate linear regression analyses (Table 2),
baseline serum 25(OH)D was not significantly associated
with follow-up ISOGTT in model 1 (b = 0.002, P = 0.12) and
remained nonsignificant with additional covariate adjust-
ment. Although an initial significant inverse association of
baseline 25(OH)D with follow-up HOMA-IR was observed
after adjustment for age, sex, ethnicity, season of the 25
(OH)D measurement, baseline HOMA-IR, and baseline and
change in physical activity and supplement use, these
findings were attenuated to nonsignificance after additional
adjustment for baseline and change in BMI (b = 20.001,
P = 0.32). In contrast, there was a significant positive as-
sociation of baseline serum 25(OH)D with both measures
of b-cell function at follow-up (b = 0.005, P = 0.015, and b =
0.002, P = 0.023, for IGI/IR and ISSI-2, respectively). There
also was a significant inverse association of baseline 25
(OH)D with follow-up AUCglucose (b = 20.001, P = 0.007).
Additional adjustment for serum PTH in these multivariate
analyses did not significantly change the results (data not
shown). A sensitivity analysis excluding subjects with di-
abetes at follow-up (n = 30) yielded similar findings for the
above associations (data not shown). In addition, no sig-
nificant interaction between 25(OH)D and sex, ethnicity,

BMI, or season was found in any of the regression models
(P $ 0.07).

Baseline serum 25(OH)D according to glycemic pro-
gression status is described in Fig. 1. Those who remained
normal glucose tolerant (n = 352) or regressed to NGT (n = 6)
at follow-up had significantly higher serum 25(OH)D levels
compared with those who were dysglycemic at follow-up
(n = 131) (59.84 6 23.07 nmol/L vs. 53.03 6 23.16 nmol/L,
respectively, P = 0.0041). Multivariate logistic regression
analyses indicated a significant reduced risk of progres-
sion to dysglycemia per SD increase in baseline serum
25(OH)D after adjustment for age, sex, ethnicity, season,
and baseline and change in both physical activity and vi-
tamin D supplement use (Fig. 2). However, this association
was attenuated with additional adjustment for baseline
and change in BMI (odds ratio 0.78 [95% CI 0.59–1.02]). In
addition, results were essentially the same in sensitivity
analyses additionally adjusting for PTH or for family his-
tory of type 2 diabetes and baseline C-reactive protein.

DISCUSSION

The current study found that baseline vitamin D status was
an independent predictor of better b-cell function and
AUCglucose after 3 years of follow-up in the PROMISE study
cohort. This is the first study to examine the prospective
association of serum 25(OH)D with b-cell function.

Previous studies assessing the association between
25(OH)D and b-cell function have used cross-sectional
designs and have reported inconsistent findings (14,16–
21,34). These inconsistencies may be attributed to the use
of less-detailed, fasting-based surrogate measures of b-cell
function (e.g., HOMA-b or C-peptide) in the majority of

TABLE 1
Participant characteristics at baseline and at the 3-year follow-up

Variable Baseline Follow-up Δ % Change P

Vitamin D (nmol/L) 58.01 6 23.26
PTH (pmol/L) 4.55 6 1.68
Anthropometry
Weight (kg) 85.75 6 19.70 86.27 6 19.67 0.9 (22.15 to 4.20) 1.06 0.0003
BMI (kg/m2) 30.33 (26.72–34.57) 30.43 (26.93–34.58) 0.39 (20.70 to 1.56) 1.23 ,0.0001
Waist circumference (cm) 98.43 6 15.43 99.12 6 15.60 0.50 (23.00 to 4.70) 0.93 0.0199

Physical activity (MET h/week) 19.59 (7.39–53.52) 23.13 (9.62–59.66) 1.56 (210.92 to 15.29) 3.94 0.1087
Smoking (% current) 30 (6.29) 25 (5.13) 25 (1.16) 216.67 0.09
Blood pressure
Systolic blood pressure (mmHg) 125.92 6 16.03 125.91 6 15.02 0.00 (27.5 to 9.5) 0.80 0.79
Diastolic blood pressure (mmHg) 80.16 6 10.32 80.17 6 10.10 1.00 (25.5 to 6.5) 0.86 0.76

Vitamin D supplement use 212 (43.35) 262 (53.58) 50 (10.23) 24.04 ,0.0001
Fasting glucose (mmol/L) 4.95 6 0.53 5.20 (4.8–5.6) 0.30 (0.0–0.6) 6.90 ,0.0001
2-h glucose (mmol/L) 5.72 6 1.37 6.10 (5.1–7.6) 0.65 (20.45 to 1.80) 11.87 ,0.0001
Insulin sensitivity
ISOGTT index 13.45 (8.52–20.79) 11.54 (6.89–18.85) 21.65 (25.64 to 1.62) 216.13 ,0.0001

IR
HOMA-IR 1.88 (1.19–3.09) 2.27 (1.41–3.76) 0.34 (20.25 to 1.00) 21.42 ,0.0001

b-Cell function
IGI/IR 9.55 (5.43–14.94) 7.41 (4.49–13.70) 21.30 (24.62 to 1.53) 220.80 ,0.0001
ISSI-2 727.49 (568.74–907.48) 613.51 (493.85–823.69) 293.31 (2219.93 to 27.72) 214.44 ,0.0001

AUCglucose 13.77 6 2.29 14.82 6 3.24 0.83 (20.5 to 2.5) 5.76 ,0.0001

Data are n (%) for categorical variables, means 6 SD for continuous variables, or median (25 and 75% interquartiles) for non–normally
distributed variables. Data are for all participants at follow-up with a baseline serum 25(OH)D measurement (n = 489). Tests of significance
are the McNemar test for categorical variables, the paired Student t test for normally distributed variables, and the Wilcoxon signed-rank test
for non–normally distributed variables. Percentage change was calculated as ([{follow-up – baseline}/baseline] 3 100).
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previous studies (16–18,20,34). Only two studies have used
gold-standard methods, including the hyperglycemic clamp
(14) and the IVGTT (21), but no significant association
between 25(OH)D and b-cell function was found after
adjusting for potential confounders. In contrast, the findings
in the current study support our cross-sectional results in
the PROMISE study cohort (19), in which OGTT-based
measures of b-cell function, specifically IGI/IR and ISSI-2,
were significantly associated with 25(OH)D. Other cross-
sectional studies also have reported a similar significant
association of 25(OH)D with b-cell function (17,18). In
addition to the observational literature, a limited number of
intervention studies have examined the effect of vitamin D
supplementation on measures of b-cell function (17,34–40);
these studies have similarly yielded inconsistent results.
However, most studies included small sample sizes, a short
duration of intervention, variation in vitamin D doses, and
surrogate measures of b-cell function, including C-peptide
and HOMA-b, both of which on their own do not account
for background IR. Three previous intervention studies
(35,37,38) used gold-standard IVGTT-based measures of
insulin secretion, with one study reporting that supplemen-
tation of 1,332 IU vitamin D3 per day resulted in increased
first-phase insulin secretion (35). However, given that
this study was not a randomized controlled trial, that it in-
cluded only 10 study participants, and that the IVGTTs were
not performed according to standard procedures, their
finding should be interpreted with caution. The remaining
two studies using IVGTT (37,38) found no effect of sup-
plementation with a synthetic analog of the active vitamin D
metabolite, calcitriol [i.e., 1,25(OH)D], on insulin secretion in
subjects with IGT. It is clear that current evidence is limited
and inconsistent regarding the association of 25(OH)D with
b-cell function.

In contrast to the findings regarding b-cell function, the
current study did not find a significant association of
baseline 25(OH)D with follow-up measures of IR. Most
cross-sectional studies have found significant inverse
associations between 25(OH)D and IR (12–16,22,41,42),T
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FIG. 1. Baseline serum 25(OH)D by glycemic progression status at
follow-up. DM, type 2 diabetes; Pre-DM refers to IFG or IGT. None of
the pairwise associations were statistically significant.
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including our recent study in the PROMISE study cohort
(19). However, some studies have reported no association
(20–22,43). In addition, only two prospective studies have
been conducted to date (6,23). Forouhi et al. (23) reported a
significant inverse association of baseline serum 25(OH)D
with HOMA-IR after 10 years of follow-up in white sub-
jects from the U.K. More recently, Gagnon et al. (6) found
a significant positive association of baseline 25(OH)D with
insulin sensitivity (HOMA-S) at 5 years in adults partici-
pating in the Australian Diabetes, Obesity, and Lifestyle
Study. Likewise, we also report an initial significant inverse
association of baseline 25(OH)D with follow-up HOMA-IR in
the current study, which was attenuated to nonsignificance
after adjustment for obesity. Given that our study pop-
ulation is more obese than the populations in these previous
studies, it is possible that obesity was a stronger determinant
of IR than 25(OH)D in this population.

The current study also found a significant inverse asso-
ciation of baseline serum 25(OH)D with AUCglucose at follow-
up, indicating that those with higher baseline 25(OH)D had
significantly better glucose homeostasis during the follow-up
OGTT, even after adjusting for baseline AUCglucose. Most
previous studies have reported significant inverse associ-
ations of 25(OH)D with various continuous measures of
glycemia, including fasting or 2-h glucose during the OGTT
(14,16,22,43,44). Forouhi et al. (23) also reported a signifi-
cant inverse association of baseline 25(OH)D with 2-h
OGTT glucose, but not fasting glucose, after 10 years of
follow-up, with multivariate adjustment.

In addition to the continuous outcomemeasures assessed,
this study also examined the association between baseline
serum 25(OH)D and the risk of progression to dysglycemia
at follow-up. The initial multivariate logistic regression
analyses indicated a significant reduced risk of progression
to dysglycemia with greater baseline 25(OH)D, but this as-
sociation was attenuated to nonsignificance with additional
adjustment for BMI in model 3. Although there is limited
evidence, most previous studies have found an inverse as-
sociation between vitamin D and diabetes risk (7–9,45–47),

but negative findings also have been reported (10,11,48).
As was documented in the current study, some investigators
also have reported attenuation of an initial significant as-
sociation after BMI adjustment (10,11), but most previous
studies have reported a significant association between
25(OH)D and diabetes even after accounting for body com-
position (6–9,45,47). Vitamin D is a fat-soluble vitamin, and
the consistently observed inverse association between
25(OH)D and adiposity is thought to be largely a result of
the sequestering of 25(OH)D in adipose tissue, where it is
no longer bioavailable (49). PROMISE study participants are
primarily overweight or obese, with 72.8% having a BMI
$27 kg/m2, and thus the sequestering effect of adipose
tissue on vitamin D bioavailability is one potential explanation
for the nonsignificant association with dysglycemia, after
BMI adjustment in this cohort. However, given that the
current study did find a significant prospective association
of baseline 25(OH)D with b-cell function and continuously
measured glycemia, increased power provided through a
longer follow-up duration may be needed to detect a sig-
nificant association of 25(OH)D with risk of progression to
dysglycemia.

The current study has a number of potential limitations.
First, only baseline 25(OH)D was collected, and an
additional serum 25(OH)D measurement at follow-up to
examine the effect of longitudinal changes in 25(OH)D on
the outcome measures would have strengthened the study.
Second, no information on diet was collected, but we did
have information on participants’ vitamin D supplement
use, which is an important contributor to 25(OH)D levels.
In addition, gold-standard measures of IR and b-cell
function were not used because these procedures are
costly and invasive and therefore not feasible for large
epidemiological studies. However, the current study used
extensively validated proxy measures to determine IR and
b-cell dysfunction based on glucose and insulin values
from multiple time points in the OGTT. In addition, we did
not have glucose data for 60 and 90 min during the OGTT,
which would have allowed for increased accuracy in the
calculation of AUCglucose. It also is important to note pos-
sible bias in our results given that those who returned for
the follow-up clinic visit were more likely to be older, fe-
male, and white than those who did not return. How-
ever, we did adjust for these variables in our multivariate
analyses. Last, because this was an observational study,
residual confounding is possible because unmeasured con-
founders may impact the association of serum 25(OH)D
with the outcomes. Strengths of this study include its pro-
spective design, which allows for the temporality of the
associations to be observed. In addition, the current study
examined a multiethnic cohort, whereas most previous
studies have focused solely on white populations. Ex-
amining non-white populations is valuable, considering
these individuals are at high risk for type 2 diabetes and
are known to have low 25(OH)D concentrations. The
current study also included the direct measurement of
serum 25(OH)D, versus reliance on diet and sun-exposure
data. In addition, multivariate analyses were adjusted for
numerous potential confounders, including vitamin D sup-
plement use, which has been excluded in most previous
studies (14,16,20,23).

In conclusion, the current study found that higher base-
line 25(OH)D independently predicted better b-cell function
and lower AUCglucose after 3 years of follow-up, even after

FIG. 2. Multivariate logistic regression analysis of associations of
baseline 25(OH)D with progression to dysglycemia at follow-up. Model 1:
adjusted for age, sex, season, and ethnicity. Model 2: adjusted as in
model 1 plus baseline physical activity, change in physical activity,
baseline vitamin D supplement use, and change in vitamin D supple-
ment use. Model 3: adjusted as in model 2 plus baseline BMI and
change in BMI.
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adjustment for baseline b-cell function and AUCglucose, re-
spectively. Higher 25(OH)D levels also were associated with
a reduced risk of progressing to dysglycemia, although this
association was not statistically significant after adjustment
for obesity (adjusted odds ratio 0.78 [95% CI 0.59–1.02]).
Longer follow-up of this cohort may reveal a significant
inverse association of 25(OH)D with risk of type 2 diabetes.
These results support a potential role for vitamin D in the
etiology of type 2 diabetes.
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