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A B S T R A C T   

At the end of 2019, a novel coronavirus, COVID-19, was ravaging the world, wreaking havoc on public health 
and the global economy. Today, although Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold 
standard for COVID-19 clinical diagnosis, it is a time-consuming and labor-intensive procedure. Simultaneously, 
an increasing number of individuals are seeking for better alternatives to RT-PCR. As a result, automated 
identification of COVID-19 lung infection in computed tomography (CT) images may help traditional diagnostic 
approaches in determining the severity of the disease. Unfortunately, a shortage of labeled training sets makes 
using AI deep learning algorithms to accurately segregate diseased regions in CT scan challenging. We design a 
simple and effective weakly supervised learning strategy for COVID-19 CT image segmentation to overcome the 
segmentation issue in the absence of adequate labeled data, namely LLC-Net. Unlike others weakly supervised 
work that uses a complex training procedure, our LLC-Net is relatively easy and repeatable. We propose a Local 
Self-Coherence Mechanism to accomplish label propagation based on lesion area labeling characteristics for 
weak labels that cannot offer comprehensive lesion areas, hence forecasting a more complete lesion area. Sec-
ondly, when the COVID-19 training samples are insufficient, the Scale Transform for Self-Correlation is designed 
to optimize the robustness of the model to ensure that the CT images are consistent in the prediction results from 
different angles. Finally, in order to constrain the segmentation accuracy of the lesion area, the Lesion Infection 
Edge Attention Module is used to improve the information expression ability of edge modeling. Experiments on 
public datasets demonstrate that our method is more effective than other weakly supervised methods and ach-
ieves a new state-of-the-art performance.   

1. Introduction 

As of April 17, 2022, the COVID-19 pandemic has already claimed 
over 6 million lives and infected over 500 million people [1]. COVID- 
19′s estimated [2] incubation period is longer than that indicated by 
earlier studies on SARS, MERS, and COVID-19. On January 30, 2020, the 
World Health Organization classified the novel coronavirus outbreak 
(2019-nCov) as a Public Health Emergencies of International Concern 
(PHEIC). On March 11, 2020, COVID-19 was declared a pandemic by the 
World Health Organization. As of April 5, 2022, the latest news from the 
World Health Organization (WHO) warns of a new variant of the re-
combinant Omicron strains BA.1 and BA.2, “XE”, which may be more 
transmissible than any new strain of Coronavirus previously seen. At 

present, Shanghai and Changchun from China are the hardest hit areas 
of this round of new variants, which proves that the social danger of this 
variant is great. 

Most patients with COVID-19 have mainly lower respiratory symp-
toms, and clinical trial data show that common symptoms of COVID-19 
are fever, cough, sputum, weakness of the extremities, and headache. 
Some patients only show diarrhea, low fever, slight weakness, drowsi-
ness, etc., without pneumonia manifestations, some patients even have 
no clinical manifestations [3,4]. The current primary medical screening 
tool utilizes real-time reverse transcription polymerase chain reaction 
(PCR) for the determination. In addition to this, X-rays, computed to-
mography (CT) and ultrasound, have all proven their effectiveness in 
detecting infectious diseases, tracking and assessing and estimating 
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disease evolution. Among them, CT is more commonly used as an 
adjunct to detection because of its ability to unfold a three-dimensional 
view of the lung lesion area and its high contrast analysis. In performing 
CT processing for COVID-19 applications, performing segmentation 
characterization of focal areas of lung infections is a critical operation. 
Investigating the statistical analysis, it usually takes 7 h to mark and 
process the one CT scan with 250 slices using manual segmentation [5]. 
Therefore, there is currently a huge challenge in combating the outbreak 
both in terms of symptom presentation and medical analysis of the 
pathogen. Thus, there is an urgent need to develop smarter, more ac-
curate and efficient detection methods to combat variant viruses. 

In recent times, the use of AI technology in medical disease diagnosis 
has become increasingly common, particularly in the highly visible field 
of COVID-19 research. In [6], the patient’s chest imaging data infor-
mation was attempted to be applied to the COVID-19 diagnosis with the 
help of a deep network model, and the method was demonstrated to be 
feasible. In [7], considering the limited training samples of the current 
COVID-19 data, the authors used multiple random sampling of lesion 
regions to increase the training sample size in disguise to improve the 
training sample accuracy. In [8], the network model is divided into 
encoder and decoder, with the encoder stage enhancing the extraction of 
feature information of COVID-19 focal areas and the decoder stage using 
different feature information to further optimize the fusion to improve 
the judgment accuracy. In [9], model training at point-level supervision 
is attempted to improve the accuracy by comparing the gap between 
ground truth and point-level segmented images. In [10], training at-
tempts are made using Scribble weakly supervised Annotation, and the 
training samples are divided into teacher-student models after different 
scale transformations to learn the optimized model by comparison. 
Despite the fact that various complementary strategies for diagnosing 
novel COVID-19 have arisen, almost no research has been expended in 
the domain of minimally supervised investigations. 

Given that the majority of medical segmentation deep learning re-
searchers continue to rely on a wide variety of sample labeling methods 
for network feature training, the fundamental reason remains that the 
accuracy of weakly supervised and unsupervised approaches is low and 
cannot meet clinical standards. To address the issue of unsatisfactory 
weak supervision segmentation accuracy, we first design the Local 
Lesion Coherence solution in the field of medical segmentation, which 
we call Local Lesion Coherence Network (LLC-Net) for this innovative 
solution of 2D CT weakly supervised labeling image COVID-19 lung 
infection segmentation. Weakly supervised research work in the process 
of in-depth deep learning techniques rely on strong training samples. 
Therefore, the most difficult problem at the moment is how to mine 
more effective information in the training samples without precise la-
beling to compensate for the lack of precise labeling of training samples. 
To begin, a simple point-level method is employed to identify the 
affected zone. Second, for a specific calibration region, there must be 
some non-correlation between the junction of the infected and non- 
infected regions, and we believe that this local correlation is useful for 
region mining. Following that, we discuss how to expand the training 
effect in a limited number of weakly labeled samples, and the multi-scale 
transformation strategy has demonstrated its usefulness numerous times 
in recent years at various top computer vision conferences. Finally, the 
infected region’s border information is the only effective characteristic 
that can be reused to prevent the prediction of the focal area from 
growing, and the boundary information is used to further suppress the 
non-effective infected region to increase accuracy. 

2. Relate work 

2.1. Deep learning in medical image segmentation 

Deep learning technology is currently a prominent and effective tool 
in Medical Image Segmentation research. Deep learning is used in 
clinical practice to identify distinct lesions from Medical Image 

Segmentation to provide vital information for clinicians to make pre-
liminary diagnoses. Many relevant algorithms have been developed in 
recent years to get good results. For example in [11], X-ray and CT scan 
imaging modalities are described in terms of their advantages and 
problems for COVID-19 detection, and the application of AI technology 
to COVID-19 detection is fully recognized as a valuable research. Beyond 
that, [12] fully acknowledges the role of medical images in the field of 
image segmentation, while it considers the technique as the initial and 
most important component of the diagnostic and therapeutic pipeline. It 
is often used to distinguish homogeneous regions. In [13], in the face of 
the difficulties of medical image segmentation such as limited labeling 
data, propose to add the a priori medical knowledge to the deep learning 
model with the loss function to improve the accuracy of segmentation. 
The loss function is based on the deep atlas prior loss and the likelihood 
loss, which contains a priori information for accurate segmentation such 
as organ location and shape. In [14] presents a fully automated deep 
learning approach to obtain robust medical image segmentation, where 
first the encoding–decoding forward system predicts the segmentation 
result from the input image, which is then encoded by a full convolu-
tional network (FCN) based context feedback system, and this encoded 
feature space is fused back into the forward learning process of the 
forward system. In [15] proposes a multilayer boundary perception-self 
attention mechanism deep learning model of image segmentation al-
gorithm R-UNET segmentation model, focusing on solving the boundary 
localization problem in model segmentation, while deep mining 
network structure to build global information features to reverse the 
accuracy of segmentation. In [16] major contribution is to embed the 
attention residual network into the deep learning framework structure 
to build the COVID-19 CT image detection model and prove its effec-
tiveness. In [17] adopting deep learning network AlexNet as the back-
bone is used. During the training process, in order to improve the 
training efficiency and prevent the internal covariance shift, its data set 
is normalized and the classifier of AlexNet fully connected layer is 
redesigned. In [18] study proposed a novel deep rank-based average 
pooling network, whose main contribution is the design of an n-cony 
rank-based average pooling module to avoid overfitting phenomenon in 
classification. 

2.2. Semantic segmentation for COVID-19 infected area 

For COVID-19 disease, semantic segmentation techniques are used in 
applications for patient diagnosis, especially in the CT image layer. In 
[19], COVID-19 lung infection region segmentation process has chal-
lenging problems such as irregular shapes and different sizes. Co- 
supervision and attention fusion strategy is used to guide the network 
to learn edge and semantic features by enhancing the information of 
supervision and fusing different levels of multi-scale feature maps. In 
[20], adopted a novel pixel-precision attention model that can extract 
cues such as boundaries and shapes from CT contours and use these 
features to refine the infected region, and also added cross-context 
attention fusion upsampling to robustly reconstruct deep semantic fea-
tures back into the high-resolution segmentation map. In particular 
[21], a novel deep learning framework structure with multi-view slice 
decomposition is proposed for fine-grained CT lesion area segmentation 
evaluation, and prior knowledge is integrated into the model training to 
effectively improve the model performance. In [22], a multilayer seg-
mentation network learning method, CHS-Net, was designed capable of 
automatic deep learning of COVID-19 from CT images, with shrinking 
and expanding phases of depth-separable convolution and hybrid 
pooling to efficiently encode and decode semantic and focal region 
feature information. In [23], Lung Ultrasound data and deep learning 
were proposed as a deep fusion artificial neural network framework to 
assess COVID-19 severity using Lung Ultrasound data. In [24], it is 
pointed out that the convolutional neural network based on CT images 
used to extract the image mask process does not do enough amount of 
optimization work, and multi-agent deep reinforcement learning 
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approach is able to extract effective visual features of the lesion area and 
enhance the performance of the segmentation network. In [25], a multi- 
task regression network is proposed to segment COVID-19 lesions in a 
framework MT-nCov-Net, which customizes lesion segmentation based 
on multi-task regression to cope with segmentation of task low-level, 
intermediate-level, and high-level features. Multi-scale feature 
learning module is used to learn lesion when reducing semantic divide 
between different scales, the fine-grained lesion localization module 
adaptive dual attention mechanism to explore lesion infection. In [26], 
an expanded dual-attention U-Net network structure D2A U-Net based 
on attention mechanism and hybrid null convolution is proposed to cope 
with the problem of fuzzy boundaries and low sensitivity in the accuracy 
and automatic segmentation of COVID-19 lung infection, and its main 
contribution is to refine the feature maps using the dual-attention 
mechanism to reduce the semantic gaps between different levels of 
feature maps, which is introduced into the decoding model by expanded 
null convolution to obtain a larger perceptual field of view. 

2.3. Weakly supervised semantic segmentation for COVID-19 infected 
area 

Despite the value of COVID-19 focal zone segmentation for disease 
assessment, segmentation of COVID-19 infection has not been exten-
sively studied due to difficulties in data labeling and the limited avail-
ability of data samples. Recently, researchers have gradually shifted 
their focus to weakly supervised semantic segmentation for COVID-19 
Infected Area. In [27], proposes a Weak Variational Autoencoder for 
Localisation and Enhancement framework, in order to solve the problem 
of effective anomaly localisation without pixel-level annotations, with a 
new gradient-based technique for variational autoencoders in local-
isation of COVID-19 lung infection regions, and use of post-hoc attention 
maps to generate pseudo segmentation datasets for images. In [28] 
propose a novel attention framework to estimate weakly annotated CT 
COVID-19 dataset, a non-locality approach that correlates ground-glass 
opacities and consolidations features across different parts and spatial 
scales of the 3D Scan. In [29], the main contribution is to build a deep 
learning model using normal CT images and then perform focal zone 
labeling on unlabeled images using a focal zone feature recognition 
approach to demonstrate the validity of his proposed integration of 
COVID-19 positive diagnosis and lesion analysis into a unified frame-
work, and that the approach can be extended to other needle-detection 
applications for chest diseases. In [10], weakly supervised learning 
using scribble annotation method, an uncertainty-aware mean teacher 
to enhance different perturbations for different CT images, while 
introducing pixel-level uncertainty methods in to guide the student 
model to get reliable predictions. In [30], a weakly supervised seg-
mentation method based on image-level labeling of the generative 
adversarial network (GAN) is proposed to develop guiding the generator 
to capture feature matching strategies for complex texture feature in-
formation in CT images chests. In [31], a weakly supervised COVID-19 
framework based on the U-Net structure was designed to segment the 
patient’s lung region first using the U-Net pre-trained model, then 3D 
deep neural network to predict the probability of COVID-19 infectious, 
The activation regions in the classification network and the unsuper-
vised connected components are combined to locate COVID-19 lesions. 

2.4. Local coherence for weakly supervised 

In our research work in the area of weak supervision, we aim to 
quantify and evaluate problems using as limited a set of information as 
possible. In [32] focuses its main efforts on multi-scale to change the 
network structure, thus, weakly supervised single datasets are 
improved, and the training effect is advanced in reverse. [33] separating 
low-level and high-level local feature information for feature inter-
weaved aggregation. The low-level appearance features and high-level 
semantic features are retained to fully improve the utilization of 

limited local information. In [34], a new set of loss function is designed 
for weakly supervised labeling, and cross-entropy loss is performed for 
locally labeled information, and unlabeled regions are evaluated using 
gated CRF loss. In [35] argues that most research efforts have focused on 
the localization information ignoring rule-based appearance informa-
tion. In addition, the article attempts to establish guidance mining se-
mantic affinities between pixels consistent with the image’s local and 
global consistency. In [36] generates affine transform in a limited data 
set to form a siamese network to improve the accuracy of performance, 
the essential core of which is still to enhance the base of training sam-
ples. In addition, [37] also performs aggregation after deeply mining the 
model information of different layers, and monitors the detail changes 
between different local intervals to continuously optimize the objective. 

2.5. Research gaps 

Medical image segmentation has been studied in the field of COVID- 
19 so far, and although many effective methods have been proposed, 
some problems have been found to be in urgent need of solution during 
the research process, and solving such problems is an excellent contri-
bution to enhance the research results in this field.  

(1) Despite the fact that the global outbreak region is extensive, data 
collection and tagging are difficult to complete in a short period 
of time due to high labor expenses and time constraints [11,38]. 
Weakly supervised learning is of particular research interest that 
are less labor and time compared to traditional training labeling 
methods.  

(2) Medical images differ substantially from natural images in terms 
of class correlation, there is a greater probability of no correlation 
between lesion regions [39], and it is difficult to mine deeper 
valid information in a weakly supervised domain using only se-
mantic correlation between network structure layers [33,34]. For 
weakly supervised learning, studying local autocorrelation is a 
better entry point to break through the lack of label information.  

(3) Research on weakly supervised learning of medical images has 
been reported rarely [9,10,28], and it is in the initial stage of 
development. Therefore, the need to propose an effective and 
simple segmentation network model appears to be of great 
research value. 

2.6. Research contributions 

In summary, the key contributions of this research are reported as 
follows: 

(1) Presented a point-level weakly supervised COVID-19 CT seg-
mentation network is proposed. The main innovation contains 
three parts: Local Self-Coherence (LSC), Scale Transform Mech-
anism (ST), and Lesion Infection Edge Attention Module (EAM).  

(2) LLC-Net demonstrated the effectiveness of the COVID-19 focal 
zone segmentation method on diverse medical datasets that were 
weakly supervised, and its performance was state-of-the-art when 
compared to other weakly supervised methods.  

(3) To the best of our knowledge, Local Lesion Coherence solution is 
the first optimization solution for the general problem in the field 
of medical weakly supervised images, which does not care about 
the original network structure model and has a certain plug-and- 
play nature, and also has a certain improvement effect for other 
problems of medical image classification and segmentation. 

3. Methodology 

In this subsection, we will focus on the LLC-Net structure in terms of 
its design ideas, core overview of the three core components. 
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3.1. Motivation 

Since deep learning has been applied to the cross-field of medicine, 
the effect has been outstanding. In the past two years, moreover, due to 
the explosion of COVID-19, various related disease diagnosis solutions 
relying on deep learning technology have been emerging, but the 
problem of large number of training samples annotated with cost has 
also become a pressing challenge in the research process [40,41]. In [5], 
it was mentioned that it could take up to 7 h to manually segment the 
lesion from the one CT scan with 250 slices. It is the specialized nature of 
the markers and the high time costs that make the use of weakly su-
pervised medical images in disease diagnosis all the more important. 
Medical images are different from natural images in that successive 
image lesion areas have certain similarity but no regularity. Only their 
own characteristics can be combined to mine effective information in 
the research process. In [31] is a relatively early proposal to use the 
weakly supervised approach for COVID-19 disease diagnosis solution, 
but limited by the short time of research in this field, there are few 
published articles in this category. Therefore, it is of great interest to find 
a flexible solution. 

3.2. Local lesion coherence for COVID-19 infection segmentation network 
architecture 

The structure of the LLC-Net network framework is shown in Fig. 1. 
The images generated by CT scan are transmitted to the backbone 
network layer for extracting low-level semantic features and high-level 
resolution information. Firstly, the feature information after encoder 
processing is local self-coherence roughly to localize the lung infection 
region. Secondly, the scale transform is enhanced in the decoder stage to 
enhance the data information. It is of interest that these modules are 
constructed using a cascade approach between them. Finally, the lesion 
Infection Edge information is guided at the very end stage to further 
optimize the prediction map of the lung infection region. In the 
following, the design logic for the construction of each key component is 

specified. 

3.3. Local self-coherence mechanism 

Weakly supervised images cannot be evaluated by point annotations 
alone for effective pixels of the image lesion region. The lack of infor-
mation about the extent, size, etc. of the lesion region makes learning 
structural features more complicated. Therefore, it is necessary to 
improve its structure learning model by digging into local autocorrela-
tion information. In this case, the most similar learning approach says to 
find local relevance, so we propose the Local Self-Coherence Mechanism 
(LSC), For the CT imageI, defineI ∈ RB×H×W, pixelsk,j, which belong tok,
j ∈ H× W, the local relationships between pixels are as follows: 

I = Norm
⃒
⃒Ik − Ij

⃒
⃒ (1) 

Where Ik and Ij denote the weights of the pixel k and j prediction 
lesion, respectively. L1 − Norm is used to calculate the distance between 
two pixel points. The corresponding Gaussian kernel method is invoked 
here to solve the local self-consistency problem: 

L(k, j) = exp
‖d(k) − d(j) ‖2

− ‖m(k) − m(j) ‖2

ω
(
σ2

d − σ2
m

) (2) 

Where L(k, j) is the pixel, and Gaussian evaluation of the similarity of 
the two locations’ proximity, d(⋅) is the distance between the two pixels, 
m(⋅) pixels color difference value, Gaussian kernel hyper parameter 
values are represented byσ. 

3.4. Scale transform for self-correlation 

The feature representation capability of scale transformation for 
segment [42] has proved its importance. Inspired by this, this paper 
argues that it is a very good solution for the case of insufficient samples 
of effective training data, and in addition the prediction models of 
different scales should have consistent results to be a good guiding 

Fig. 1. Overall architecture of the proposed LLC-Net framework. LLC-Net consists of an Local Self-Coherence Mechanism (LSC), Scale Transform for Self-Correlation 
component (SC), and a Lesion Infection Edge Attention Module (EAM), respectively. 
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direction. CT image after scale variation over CNN to get low-level 
feature informationf ∈ RB×C×H×W. In this case, do the following: 

f (ω) = Up(ζ(Trans(f ; θ) );ω ) (3) 

Where Up(⋅) is a bilinear interpolation operation with a sampling size 
parameterω, Trans(f ; θ) is a convolutional transformation operation 
with parameters θ on the features f of the CT image. ζ(⋅) is a linear 
transformation. 

However, it is difficult to monitor the different scales effectively, so 
scale transform for self-correlation is designed to monitor the prediction 
effect more effectively: 

f̂ (
ωi ,ωj)

= AvgPool
(

f (ωi) × f (ωj)
)
−
(

AvgPool
(

f (ωi) × f (ωj)
))2

(4) 

AvgPool is to perform average pooling operations on it, while doing 
the following: 

STup =
(

2 × AvgPool
(

f (ωi) × f (ωj)
)
+ α

)
×
(

2 × f̂ (
ωi ,ωj)

+ β
)

(5) 

α,β is the hyper parameter, in order to avoid the unstable fluctuation 
of the value: 

STL =

(

AvgPool
(
f (ωi)

)2
+ AvgPool

(
f (ωj)

)2
+ α

)

(6)  

STR =

(

AvgPool
(
f (ωi)

)2
+ AvgPool

(
f (ωj)

)2
+ α

)

×
(

f̂
(ωi ,ωi)

+ f̂ (
ωj ,ωj)

+ β
)

(7) 

For the supervised information value of the scale transformation, 
that is: 

ST = ρ
(

1
2
⋅
(

1 −
STUP

STL + STR

)

; θ
)

(8) 

The ρ define linear value constraint, scale correlation of the network 
can be improved based on the hyper parameter and continuously learn 
to scale transform for self-correlation according to Eq. (8). 

3.5. Lesion infection edge attention module 

The supervised role of the edge information in the lesion region is 
strongly guiding for the learning of the network model, and it has been 
shown in [43] that effective edge information is effectively constraining 
for feature segmentation. The given CT image has more accurate edge 
information in the lower layer of the CNN, and the second layer in Fig. 1, 
IConv2 is selected to establish significant edge feature information in the 
specific operation. To summarize: 

f (ω)

pred = ρ
(
f (ω); ϛ

)
(9) 

ϛ denotes the activation function, sigmoid is used here, refer to Eq. 
(8) expression, guiding the network’s handling of lesion infection edge 
concerns: 

f (ω)

EAM =

⃒
⃒
⃒log

(
1 − f (ω)pred

)
⋅ME(IConv2; θ)

⃒
⃒
⃒+

⃒
⃒
⃒

(
1 − f (ω)

pred

)
⋅log(1 − ME(IConv2; θ) )

⃒
⃒
⃒

(10) 

ME(IConv2; θ) denotes the second convolutional layer of the network 
mask edge feature extraction. With the lesion infection edge attention 
module, the network is able to feed a more accurate edge outline 
without any additional information. 

4. Experiments 

4.1. Experimental datasets standard 

To more fairly evaluate the performance of weakly supervised net-
works, the first publicly available and very widely used medical seg-
mentation dataset [44] is cited here, contains mostly of 9 volumetric 
COVID-19 Chest CT, DICOM format is the medical industry standard, 
which contain 829 slices infection. In addition, considering the small 
sample size of this sample data set, in order to demonstrate the effec-
tiveness of our method, increase the sample data set more rich [45], two 
radiologists designated the lungs and infection sites, which were then 
verified by an experienced radiologist, 3520 slices in a volume of 20 
COVID-19 chest CT. 

4.2. Data augmentation 

Data augmentation is a routine pre-processing operation in medical 
images, and in this paper, we only do simple data augmentation to 
enhance generalization without adding too much performance overhead 
on the basis of a limited data set, and to prevent overfitting. 

As shown in Fig. 2, only three types of processing, Rotate, Crop and 
noise, were done on the images during the experimental training phase. 
Owing to the different standards of the acquired image sizes, they are 
adjusted here according to standard 352 × 352, for original images X 
processed as shown in Eq. (11). 

Y = Resize(X, [352, 352]) = {x1, x2, x3…, xn} (11) 

Rotation is a common method of data augmentation, the rotation 
angle θ = (0◦, 90◦) was applied. 

to the images: 

zRo(i)
̅̅̅→

= FRo[Y(i)] = [YRo(i, θ1), ...YRo(i, θn)] (12) 

Where the value of θi has a certain randomness, and FRo denotes the 
rotation function. In addition to the rotation method, the pre-processing 
process of cropping only does a certain amount of edge cropping to 
avoid the loss of valid data information. 

zCrop(i)
̅̅̅̅→

= FCrop[Y(i)] = [YCrop(i, r1), ...YCrop(i, rn)] (13) 

Where the value of rn is the intersection ratio between the cropped 
image and the original image, generally not more than 10 % here. In 
addition to the traditional methods of rotating and cropping augmen-
tation data, injecting noise is also an effective way to enhance learning. 
Here use both simple Pretzel noise, and Gaussian noise for random noise 
generation. 

zNoise(i)
̅̅̅̅ →

| =FNoise[YNoise(i)] = [YNoise(i), ...YNoise(i)] (14)  

4.3. Experimental results 

Implementation Details. The experiment is deployed in the Ubuntu 
20.04 environment, LLC-Net model is implemented in Pytorch, using 
transfer learning techniques with VGG-16 as the base backbone [9], pre- 
trained on ImageNet as baseline [46]. The experiments were carried out 
using an NVIDIA DGX Station deep learning workstation equipped with 
a 24 GB Tesla P40 graphics card. The tuned hyper-parameters of the 
model were the Learning Rate (LR), Batch Size (BS), Epochs, Optimizer, 
and Dropout Rate (DR). The BS, Epochs, DR, and LR initial values were 
set at 16, 120, 0.4, and 0.01, then optimized by SGD to obtain the best 
experimental results. 

In the model parameter setting stage, the BS needs to be set first. 
According to the performance of Tesla P40 graphics card, 8, 16 and 24 
parameter values were set during the experiment for experimental 
comparison. As shown in Fig. 3, when the BS parameter is set to 16, the 
loss reduction is very stable and the performance is optimal. At the same 
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time, it can be seen that the loss converges when Epoch reaches 120, so 
the value of Epoch parameter is set to it values. 

The importance of LR is usually higher than that of DR. Under normal 
circumstances, the value of LR is set at 0.001, 0.01 or 0.1. In Fig. 4, the 
loss works best when the LR parameter value is set to 0.01. 

DR selection standard is generally around the value of 0.5, according 
to loss and Precision to select the evaluation parameters. The values of 
the DR parameter are set to 0.4, 0.5 and 0.6 in the same epoch training 
cycle for evaluation. As shown in Fig. 5, when DR is set to 0.4, the loss 
convergence and the Precision are optimal compared to others. 

Metrics of Performance Evaluation. The process of selecting the 
performance evaluation metrics for our proposed LLC-Net segmentation 
network is consistent with other papers, six widely adopted metrics to 
quantitatively evaluate the method, this makes it easier to evaluate, 
including Dice similarity Coefficient (Dice), Intersection Over Union 
(Iou), Sensitivity (Recall), Specificity (SP), Accuracy (Acc) and Precision 
(Prec). The corresponding Equations are expressed below: 

Dice =
2⋅TP

2⋅TP + FP + FN
(15) 

Among them, TP represents true positive, FP and FN denote false 

positive, false negative, respectively. Dice is a popular segmentation 
evaluation criterion, and the higher the value of similarity between 
samples, the more similar they are, with values often ranging from 0 to 
1. 

Recall =
TP

TP + FN
(16) 

Recall, also known as Sensitivity, is used to evaluate the proportion 
of positive sample evaluations to the total positive sample of the model, 
and it mainly examines the positive sample detection rate of the model. 

Iou =
TP

TP + FP + FN
(17) 

Iou is used to calculate the ratio of the intersection and union of a 
category’s prediction result and the true value. 

SP =
TN

FP + TN
(18) 

TN indicates true negative in Eq. (18), exhibiting the same premise as 
Eq. (17), which primarily evaluates the negative sample completion 
rate. 

Fig. 2. Visualizing Data Augmentation effects.  

Fig. 3. Impact of Batch Size parameters on loss.  
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Acc =
TP + TN

TP + TN + FP + PN
(19) 

In Eq. (19), the Accuracy rate is an important indicator of a good or 
bad classifier, and the higher the value, the more valuable the classifi-
cation model is. 

Prec =
TP

TP + FP
(20) 

The model classification process, for a certain class of prediction 
evaluation criteria is represented by Precision. 

4.4. Comparison with State-of-the-arts approaches 

To research the planned LLC-Net segmentation performance, we 
compared our methods with other six state-of-the-art approaches, 
including FCN8s [47], U-Net [48], PSPNet [49], DeepLabV3+ [50], 
WSCL [9] and Inf-Net [51] in Fig. 6. To more fairly compare the 

superiority of our method, according to the other six methods, we 
conduct the approaches are implemented on dataset [44]. 

Table 1 shows the weakly supervised segmentation performance of 
different network models on COVID-19 in the [44] dataset, all experi-
mental results in Table 1 are averages based on 5-fold cross-validation 
[52]. In the metrics, Dice is the one that most commonly used. With the 
help of local lesion coherence on CT images, our method significantly 
outperforms other weakly supervised segmentation of COVID-19 infec-
tion methods. 

In addition, we evaluated performance on the dataset [45], and as 
shown in Table 2, according to the WSCL experimental standards, the 
data set is separated into separate and mixed evaluations. Reference [9] 
for more information on the relevant data set division standard. Local 
lesion consistency on CT images significantly increases performance 
when compared to the WSCL technique. We believe that local lesion 
consistency is particularly effective for weakly supervised COVID-19 
infection segmentation so far. 

Fig. 4. Impact of Learning Rate parameters on Loss.  

Fig. 5. Impact of Dropout Rate parameters on Loss and Precision.  
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4.5. Ablation study 

In this subsection, the performance of each key point optimization of 
LLC-Net is performed by performing on the experimental dataset [44], 
which are LSC, SC and EAM. Refer to Table 3 for detailed data. 

To demonstrate the LLC-Net training process, added Fig. 7. As shown 
in the figure, the horizontal axis coordinates represent Epoch, the left 

vertical axis corresponds to the training Loss, and the right vertical axis 
represents the Acc value, Prec value of the validation datasets during the 
training process. Along with the reduction of training Loss, the Acc value 
tends to be stable and almost close to 100 %, Prec reaches the highest 
value of 64.91 at epoch 109 stage, which is almost 2 percentage points 
higher compared to WSCL under the same testing conditions. 

Qualitative Ablation Visualization. In Fig. 8, to demonstrate the 
effect of different stages of the ablation experiment, we randomly 
selected 4 example figures from the [44] dataset for presentation. The 
leftmost column is the sampling information of the CT scan lung images, 
the second column is the ground truth with COVID-19 lung infection 
after labeling, and the third to the sixth columns are the evaluation ef-
fects of different stages of the ablation experiment, which can be 
referred to Table 3 for better argumentation analysis. In the third col-
umn our method can effectively capture the infected region, although 
there are obvious misjudgments. In the fourth column, thanks to the 
Local Self-Coherence Mechanism, the irrelevant judgment regions are 
removed, but some of the prediction maps mask the important focal 
areas. In the fifth column, the effective focal areas are re-labeled by the 
Scale Transformation for Self-Correlation Mechanism. In the last col-
umn, the edge of the focal area is further modified and enhanced by the 
lesion infection Edge Attention Module. 

5. Conclusions 

In this research, we propose LLC-Net, a simple and effective weakly 
supervised CT infection region segmentation network for COVID-19. 
Our method is particularly useful since it has a minimal overall de-
pendency on the network topology and has some reference and porta-
bility. For lesion area detection, propose a Local Self-Coherence 
Mechanism. In addition, the Scale Transform for Self-Correlation solves 
the problem of insufficient sample size. More crucially, we apply the 
Lesion Infection Edge Attention Module to improve the edge informa-
tion of the lesion region, decreasing the unfavorable influence of the 
Local Self-Coherence Mechanism. We successfully demonstrate that our 
strategy beats state-of-the-art weakly supervised segmentation models 
and enhances the performance of state-of-the-art in public data tests. 

Fig. 6. Qualitative segmentation results comparison by ours methods and others state-of-the-art methods. From the left to right, Weakly Supervised approaches 
contains FCN8s [47], U-Net [48], PSPNet [49], DeeplabV3+ [50], Inf-Net [51], WSCL [9] and Ours. 

Table 1 
Comparison with other state-of-the-art methods of different methods on [44] 
datasets.  

Methods Publication Dice Iou Recall SP 

FCN8s [47] CVPR 2015  66.45  49.82  81.97  98.56 
U-Net [48] MICCAI 2015  66.58  49.93  82.12  98.52 
PSPNet [49] CVPR 2017  68.79  52.43  81.67  98.70 
DeepLabV3+ [50] ECCV 2018  58.50  43.35  72.33  98.25 
Inf-Net [51] IEEE TMI 2020  73.01  57.50  83.55  98.80 
WSCL [9] WACV 2021  74.13  58.92  77.93  99.07 
Ours 76.31  61.71  89.55  98.79  

Table 2 
On [45] datasets, compare performance with WSCL [9].  

Standard Methods Dice Iou Recall SP 

Separate WSCL[9]  0.75  0.59  0.86  0.97 
Ours  0.77  0.62  0.91  0.99 

Mixed Split WSCL[9]  0.68  0.51  0.85  0.99 
Ours  0.70  0.54  0.82  0.99  

Table 3 
Ablation experiments with all the blocks results.  

Base LSC ST EAM MedSeg [44] Datasets Metrics (%) 

Dice Iou Recall SP 

√    75.43 60.55 96.44 98.57 
√ √   75.77 60.99 95.71 98.62 
√ √ √  76.37 61.77 95.99 98.66 
√ √ √ √ 77.24 62.92 86.44 99.09  
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Fig. 7. LLC-Net model training performance fluctuation chart.  

Fig. 8. Qualitative COVID-19 infection segmentation results presented by our different component approach. Ours, Ours+, and Ours++ in the table are shown with 
reference to the model settings in the second, third, and fourth rows of the Table 3. 
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