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So far, the connections between obesity and skeleton have been extensively explored,
but the results are inconsistent. Obesity is thought to affect bone health through a
variety of mechanisms, including body weight, fat volume, bone formation/resorption,
proinflammatory cytokines together with bone marrow microenvironment. In this review,
we will mainly describe the effects of adipokines secreted by white adipose tissue on
bone cells, as well as the interaction between brown adipose tissue, bone marrow
adipose tissue, and bone metabolism. Meanwhile, this review also reviews the evidence
for the effects of adipose tissue and its distribution on bone mass and bone-related
diseases, along with the correlation between different populations with obesity and bone
health. And we describe changes in bone metabolism in patients with anorexia nervosa
or type 2 diabetes. In summary, all of these findings show that the response of skeleton
to obesity is complex and depends on diversified factors, such as mechanical loading,
obesity type, the location of adipose tissue, gender, age, bone sites, and secreted
cytokines, and that these factors may exert a primary function in bone health.
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INTRODUCTION

Bone is a living tissue with metabolic functions. The size and shape of bones are accurately
modeled and reshaped over a lifetime to ensure skeletal structure and integrity (Xie et al.,
2014; Li et al., 2017). During bone remodeling, bone can coordinate the activities of osteoblasts,
osteocytes, and osteoclasts, thus maintaining the dynamic coupling balance of bone metabolism,
in which osteoblasts (bone formation) and osteoclasts (bone resorption) play pivotal roles in bone
metabolism. Bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate into
osteoblasts and adipocytes, which is also a dynamic balance (Li et al., 2015; Li C.J. et al., 2018). In
addition, bones exhibit the characteristics of endocrine organs, which secrete a variety of hormones
to participate in the endocrine cycle throughout the body. For instance, bone can secrete estrogen,
androgens, follicle suppressant and other sex hormones to participate in the reproductive process,
cellular senescence, and osteoporosis (OP). Moreover, bone marrow fat cells can also secrete a
series of adipokine including adiponectin, leptin through autocrine, and paracrine, which play an
important regulatory role in local and systemic metabolism of bone marrow. There are however
many metabolic osteopathy, including OP, bone tumor, and inflammatory arthritis, where this fine
equilibrium is disrupted (Sun et al., 2019).
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Overweight and obesity are identified as abnormal or excessive
fat accumulation that can lead to impaired health. Body mass
index (BMI) is a simple ratio of height to weight that is
often used to distinguish between overweight and obesity
adults. The WHO defines overweight as having a BMI of
25 to <30 kg/m2 and obesity as ≥30 kg/m2. In addition,
obesity can be divided into three grades, namely obese class
I (30 to <35 kg/m2), class II (35 to <40 kg/m2), and
class III (≥40 kg/m2) (Barba et al., 2004; Di Angelantonio
et al., 2016). However, the diversity of Asian countries is
mainly manifested in ethnic and cultural subgroups, degree of
urbanization, social and economic conditions, and nutritional
transformation. And compared with white people of the
same age, sex, and BMI, Asians typically have a higher
percentage of body fat. Therefore, the BMI cut-off points
for overweight and obesity may be more applicable in Asian
countries (Barba et al., 2004). Overweight and obesity are
associated with risk and prognosis for certain disease states
(Dalamaga and Christodoulatos, 2015).

The prevalence of obesity and obesity-related diseases is on
the rise worldwide due to the socioeconomic and demographic
transitions. The link between adiposity and bone health has
been extensively studied, but the impact of obesity on bones
has long been a subject of debate. This review will discuss the
correlation between adiposity and bone-related diseases from
multiple perspectives.

EXTRAMEDULLARY ADIPOSE TISSUE
AND BONE

Adipose tissue consists mainly of fat cells that have accumulated
in large numbers, which are divided into fat lobules by thin
layers of loose connective tissue and widely distributed in the
subcutaneous and around the internal organs. It is not only
involved in body construction and energy storage, but is also
a vital endocrine organ. Adipose tissue has an effect on insulin
sensitivity, blood pressure level, endothelial function, fibrinolytic
activity and inflammatory response, and participates in a variety
of important pathophysiological processes.

Adipose tissue exerts a primary function in obesity and related
diseases. According to different functions, adipose tissue can
be divided into white adipose tissue (WAT), brown adipose
tissue (BAT), and beige adipose tissue. WAT is an energy-
storing tissue that regulates energy metabolism by secreting
cytokines and hormones. Excessive accumulation of WAT in
the body can cause obesity and obesity-related diseases. BAT,
however, is an energy-consuming organization that is involved
in non-shivering heat and diet-induced heat production. Both
thermogenic mechanisms are due to the exclusive expression of
uncoupled protein-1 (UCPl) in the mitochondria of brown fat
cells, resulting in the uncoupling of fatty acids and ATP oxidation,
ultimately causing energy dissipation in the form of heat (Del
Mar Gonzalez-Barroso et al., 2001; Carobbio et al., 2017; Huang
et al., 2020). Thus, BAT can be capable of fighting obesity. Beige
fat is more widely distributed than the typical brown fat, which
is concentrated in the interscapular storage of rodents and in

the supraclavicular and mediastinal areas of humans (Frontini
and Cinti, 2010; Wiedmann et al., 2017). Beige fat also possesses
an innate ability to metabolize energy as heat release by non-
shivering thermogenesis (Zhang et al., 2018).

Leptin Secreted by White Adipose Tissue
and Bone
White adipose tissue has a main endocrine function secreting
many adipokines, especially leptin and adiponectin. These latest
findings suggest that adipokines are closely related to metabolic
diseases such as obesity, insulin resistance and diabetes, and
play an important regulatory role in bone disease (Conde
et al., 2011). Particularly, leptin and adiponectin have been
shown to act directly on certain bone cells, including BMSCs,
osteoblasts, and osteoclasts. Consistent evidence suggests that
leptin has a direct anabolic effect on osteoblasts. Astudillo
et al. (2007) observed that leptin can promote the proliferation
of bone marrow stromal cells, differentiation into osteoblasts,
and form mineralized nodules, but prevent the differentiation
into adipocytes. Thomas (1999) have also shown that leptin
leads to dose-dependent increases in mRNA and protein levels
of alkaline phosphatase (ALP), osteocalcin (OC), and type I
collagen. Gordeladze et al. (2002) found that continuous exposure
of leptin to ilium osteoblasts contributed to collagen synthesis,
cell differentiation, and in vitro mineralization, together with cell
survival and transition to preosseous cells.

Additionally, leptin may increase local bone mass and may
contribute to the link between bone formation and bone
resorption. Holloway et al. (2002) found that after adding human
macrophage colony stimulating factor (HM-CSF) and human
soluble NF-Kappab ligand receptor activator (sRANKL) to bone
culture, leptin can inhibit the formation of human peripheral
blood mononuclear cells (PBMCs) and mouse spleen cells to
osteoclasts. Leptin increased mRNA and protein expression
of osteoprotegerin (OPG, a protein that inhibits osteoclast
formation) in PBMC, suggesting that its inhibition may be
realized through the RANKL/RANK/OPG pathway (Holloway
et al., 2002). Leptin effectively attenuated trabecular bone loss,
trabecular structure change and periosteal bone formation.
Leptin also significantly reduced RANKL mRNA levels which
mainly regulates osteoclast development in cultured human bone
marrow stromal cells (Burguera et al., 2001; Reid et al., 2018).

In addition to having a direct anabolic effect on osteoblasts,
leptin also indirectly affects bones. Numerous studies have shown
that in mice lacking leptin or leptin receptors, spinal trabecular
volume increases, vertebral bone mass increases, while femur
bone mass decreases and femur bone marrow fat increases
sharply (Ducy et al., 2000; Steppan et al., 2000; Hamrick et al.,
2004). Remarkably, Steppan et al. (2000) found, compared with
the control group, leptin administration significantly increased
femur length, systemic bone area, bone mineral density (BMD)
and bone mineral content in leptin-deficient mice (ob/ob mice).
This conclusion has been confirmed in other studies as well
(Hamrick et al., 2005; Bartell et al., 2011; Philbrick et al., 2017).
In summary, the role of leptin in skeleton remains a highly
controversial area.
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Adiponectin Secreted by White Adipose
Tissue and Bone
Adiponectin, the most common adipokine in plasma, has
important metabolic and anti-inflammatory effects and is rapidly
becoming a valuable marker for treatment in metabolic diseases.
The role of adiponectin in certain bone cells including osteoblasts
and osteoclasts, has been extensively studied. Human adiponectin
promoted bone formation of primary human maxillary BMSCs
through the APPL1-P38 MAPK pathway (Pu et al., 2016). Also,
adiponectin induced osteogenesis of MSCs through adipoR1-
mediated phosphorylation of P38 MAPK. Then, p38 MAPK
phosphorylated c-Jun, which enhanced COX-2 (cyclooxygenase-
2) expression and ultimately lead to an increase in BMP2
expression (bone morphogenetic protein 2, a strong osteogenic
cytokine) (Lee et al., 2009; Huang et al., 2010). Similarly, Luo et al.
(2005) demonstrated that adiponectin promoted osteoblastic
proliferation, leading to increased alkaline phosphatase (ALP)
activity, generation of type I collagen and OC, and increase in
mineralized substrates in a dose-dependent and time-dependent
manner. The increase of ALP, type I collagen, and OC is a
marker of osteoblast differentiation and maturation, while matrix
mineralization is a marker of osteoblastic phenotype. This study
also provided evidence that adiponectin induced the proliferation
and differentiation of human osteoblasts, which was realized
through AdipoR/JNK pathway, while the differentiation was
realized through AdipoR/P38 pathway (Sowa et al., 2002; Nöth
et al., 2003; Luo et al., 2005).

Adiponectin also directly regulates osteoclast function.
Adiponectin down-regulated expression of osteoclast regulators
such as acid tartrate – resistant phosphatase and cathepsin K.
Adiponectin also enhanced osteoclast apoptosis and reduced
osteoclast precursor cells survival/proliferation (Tu et al., 2011;
Pal China et al., 2018).

Significantly, like leptin, in vivo studies showed that
the regulation of bone metabolism by adiponectin is also
contradictory. Several studies reported that compared with wild-
type mice, adiponectin knockout mice showed lower bone
mineralization and bone density (Shinoda et al., 2006; Naot
et al., 2016). But, others have shown that lack of adiponectin
exert a protective effect on skeleton. Pal China et al. (2018)
found KO mice prevented trabecular bone loss in mice caused
by ovariectomy, and showed better bone quality (Williams et al.,
2009). Taken together, the data from in vitro and in vivo studies
fail to provide any definitive conclusions about the relationship
between leptin, adiponectin and bone. And, white adipocytes can
not only synthesize and secrete hormones including adiponectin
and leptin, but also secrete proinflammatory factors such as
TNF-α, IL-6, which may negatively regulate bone metabolism,
further complicating the relationship between obesity and bone
(Fruhbeck et al., 2001).

Brown Adipose Tissue and Bone
It is well known that BAT not only exists in newborns, but
also exists in adults, and gradually decreases with age. In fact,
Ponrartana et al. (2012) have observed a significant correlation
between BAT volume and cross-sectional bone size, regardless

of gender. Moreover, recent findings suggest that BAT activity
is positively correlated with skeletal metabolism. In contrast,
some previous studies have shown that BAT can secrete fibroblast
growth factor 21 (FGF21) and increase plasma FGF21 levels.
Wei et al. showed that in animal models, transgenic mice
overexpressing FGF21 had a lower bone mass phenotype, while
mice given the drug dose of FGF21 also had a lower bone mass,
because of reduced bone formation and significantly increased
bone absorption (Wei et al., 2012). Also, Fazeli et al. (2015)
found that FGF21 was negatively correlated with trabecular
microstructural parameters, such as trabecular number (TbN),
in patients with anorexia nervosa (AN). Recently, plasma FGF21
level was found to be negatively correlated with bone density in
femoral neck and Ward’s triangle of hip region (Hao et al., 2018).
Taken together, these data reveal that FGF21 is a major negative
regulator of bone mass.

Interestingly, as an endocrine organ, bone can also secrete
a variety of bioactive substances to control energy metabolism
in adipose tissue. OC, a small molecular protein secreted by
osteoblasts, is a classic indicator of bone formation. Li Q. et al.
(2018) verified the specific role of OC in thermogenesis of
brown adipocytes. Their study showed that the OC signaling
pathway directly promoted the activation of the Gprc6a Tcf7
Ucp1 promoter through the positive feedback of the interaction
between the Wnt3a Tcf7 and the WNT/β-catenin pathway
(Li Q. et al., 2018).

In addition, bone regulates browning and energy metabolism
via the expression of peroxisome proliferator-activated receptor
(PPAR) in mature osteoblasts and osteocytes. Several studies
have confirmed that, in bone, PPAR plays a negative regulatory
role in bone formation by inhibiting osteoblast generation and
promoting osteoclast activity. Specific ablation of PPAR in mature
osteoblasts and osteocyte mice (OCY-PPAR-/-) was found to
induce high-bone mass and low fat mass phenotypes, as well as
increase fat browning and energy comsumption. Moreover, Ocy-
PPARγ-/- could partly prevent the dysmetabolism caused by high
fat intake (Brun et al., 2017). Interestingly, BMP7 levels were
also higher in Ocy-PPARγ-/- mice in conditioned medium and
serum. BMP7, derived from osteocytes, is believed to promote
browning and reduce steatosis through endocrine mechanisms
(Kinoshita et al., 2007; Sugimoto et al., 2007; Tseng et al., 2008;
Boon et al., 2013).

Collectively, these results indicate that bone and adipose tissue
can interact to regulate bone metabolism and energy metabolism,
which provides a new idea for the exploration and development
of treatment methods for bone-related diseases.

BONE MARROW ADIPOCYTES AND
BONE

Bone marrow adipose tissue (BMAT), which accounts for about
8% of total fat mass, is an important fat depot in the adult body
and exerts a significant function in bone homeostasis and energy
metabolism throughout the body (Tencerova et al., 2019). BMAT
is thought to be negatively correlated with bone density and bone
integrity, so it may be an important regulator of bone turnover
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(Fazeli et al., 2013). Studies have shown that BMAT in the lumbar
spine is an independent predictive factor of fracture (Wehrli
et al., 2000). BMAT is distinct from WAT and BAT. Excessive
accumulation of lipids interferes with the normal function of
cells and tissues, a condition known as lipotoxicity (Carobbio
et al., 2017; Piccolis et al., 2019). Lipotoxicity is caused primarily
by bone marrow fat through the secretion of adipokines and
free fatty acids (mainly palmitate). In bone marrow, lipotoxicity
is mainly manifested by the toxic effect of palmitate on bone
cells, especially osteoblasts (Al Saedi et al., 2020). Exposure to
adipocyte secretory factors can reduce the ability of BMSC to
differentiate into bone cells, but also promote fat formation, a
phenomenon that may be explained by a variety of mechanisms,
including oxidative stress and proinflammatory mediators (TNF-
α and IL-6) and adipokines (Horowitz et al., 2017; Singh
et al., 2018). Furthermore, Elbaz et al. (2010) observed that,
by co-culturing normal human osteoblasts (NHOst) with pre-
differentiation adipocytes in the absence of a fatty acids
synthase inhibitor (cerulenin), the differentiation and functional
levels of NHOst were significantly reduced due to the lower
mineralization and decreased expression of ALP, osterix, OC, and
Runx2 (Elbaz et al., 2010). Actually, some evidences, indicates
that palmitate has negative effects on osteoblast differentiation,
bone nodule formation and mineralization.

Apart from BMSC and osteoblasts, osteoclasts are also
affected by bone marrow fat to increase bone resorption and
decrease bone mass (Singh et al., 2018). Takeshita et al. (2014)
found that, during the differentiation of marrow stromal cells
into adipocytes, RANKL expression was induced, along with
the down-regulation of osteoprotegerin. The early adipogenic
transcription factors C/EBPβ and C/EBPδ could bind to the
RANKL promoter and ultimately stimulate RANKL gene
transcription (Takeshita et al., 2014; Paccou et al., 2015;
Hardouin et al., 2016).

Overall, these findings point to metabolic differences between
bone marrow fat and peripheral fat that may be related to the
development of therapeutic strategies for metabolic bone disease.

ANOREXIA NERVOSA, OBESITY, AND
BONE

Anorexia nervosa is a major mental disorder that mainly
affects women. Patients are unable to maintain normal weight
due to extreme self-imposed starvation, which is typical of
chronic malnutrition (Kaye et al., 2020). Bone loss is almost
the most common feature in many comorbidities associated
with this disease.

Interestingly, compared with normal-weight women, anorexic
patients showed less subcutaneous adipose tissue (SAT) and
visceral adipose tissue (VAT), but more BMAT (Bredella et al.,
2009). Previous studies have shown that increased BMAT level
has clinical significance and is related to bone density and bone
strength. In the above content, we mentioned that bone marrow
fat can inhibit bone formation and promote bone resorption. In
addition, marrow fat content increased in elderly patients with
OP and was inversely correlated with bone density in healthy

white women, and also in obese women (Justesen et al., 2001;
Shen et al., 2007; Bredella et al., 2011b). Similarly, in ovariectomy
animals, loss of bone mass was often accompanied by abnormal
accumulation of bone marrow fat (Bredella et al., 2009; Li S.
et al., 2018; Beekman et al., 2019). Given the negative correlation
between marrow fat and BMD, BMAT may be an important risk
factor for low bone density and increased fracture risk in patients
with AN. For example, increased BMAT and decreased bone
density and bone strength were observed in AN in women and
adolescents (Singhal et al., 2018; Fazeli et al., 2019). Moreover,
bone marrow fat in L4 vertebral body, femoral metaphyseal and
diaphyseal increased markedly in women with AN. Importantly,
marrow fat content had a highly significant negative association
with BMD in multiple bone sites including the lumbar spine, hip
and whole body (Bredella et al., 2009). One reason may be that
osteoblasts and fat cells are derived from the mesenchymal stem
cells in the bone marrow, the increased adipogenic differentiation
may lead to a decreased osteogenic differentiation in BMSCs.

However, studies have shown that in patients recovering
from AN, BMAT levels in L4 vertebrae are similar to those
in healthy controls (Fazeli et al., 2012). BMAT positively
correlated with VAT in overweight/obese women, while no
such association was observed in underweight women (Bredella
et al., 2011b; Polineni et al., 2020). These data may indicate
that BMAT is a dynamic depot, which may play different roles
under the condition of insufficient and adequate nutrition.
In addition, since hypercortisolemia and hypoestrogenism are
both characteristics of AN, these factors may result in marrow
adiposity (Putignano et al., 2001). In summary, during chronic
starvation, while other fat stores are used as energy sources, this
adipose tissue storage is retained, suggesting that it may have
significant functions. And, studying this paradox may lead to a
better understanding of the function of bone marrow fat.

TYPE 2 DIABETES, OBESITY AND BONE

Diabetes is a chronic disease characterized by neuropathy,
nephropathy and retinopathy, with type 2 diabetes mellitus
(T2DM) as the predominant type. The patient presents
primarily with insulin resistance, and relative insulin deficiency
(Compston, 2018; Su et al., 2019). This has been accompanied by
a sharp rise in the incidence of obesity, an important determinant
of type 2 diabetes. Abnormal accumulation of fat both inside
and outside adipose tissue not only results in structural and
functional disorders (insulin resistance) of adipose tissue itself,
but also affects muscles, liver, and pancreas (Tsatsoulis et al.,
2013; de Araujo et al., 2017). The bone disease of type 2
diabetes remains a mystery because the mechanism by which
diabetes affects the bone is multifactorial, including factors such
as obesity, hyperinsulinemia and insulin-like growth factors
(IGFs). The effect of insulin on bone metabolism is controversial.
Studies in vitro have reported that insulin signals in osteoblasts
can promote bone absorption (Ferron et al., 2010). Consistent
with in vitro results, Srikanthan et al. also confirmed that
insulin resistance, especially hyperinsulinemia, may adversely
affect femoral neck strength (Srikanthan et al., 2014). However,
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other in vivo studies show that insulin stimulates osteoblasts
to proliferate and increases the histologic markers of bone
formation (Shanbhogue et al., 2016). Furthermore, in the early
stages of diabetes, obesity and hyperinsulinemia often occur
together, and it is challenging to identify the unique contribution
of obesity and hyperinsulinemia to bone health.

It is believed that IGFs is associated with the pathogenesis
of diabetic complications. In addition, serum IGF-I level was
decreased in patients with poor blood glucose control (Thrailkill,
2000; Kanazawa et al., 2012). IGF I is thought to have anabolic
effects on bone. Circulating IGF-I activates bone remodeling and
plays an anabolic role in bone tissue (Johansson et al., 1992;
Zhang et al., 2002). Some clinical studies have suggested that
low serum IGF-I level is related to a higher risk of fractures
independent of BMD in patients with type 2 diabetes (Ardawi
et al., 2013; Miyake et al., 2017). Serum IGF-I level was found
to be significantly negatively correlated with the prevalence
of vertebral fractures in postmenopausal women with type 2
diabetes (Kanazawa et al., 2011, 2018). Based on the above
evidence, the reduced serum IGF-I may be involved in diabetes-
induced bone fragility and can be used to assess the risk of
fracture in patients with T2DM.

In addition to the factors described above, the effects of
hypoglycemic drugs on bone metabolism should also be taken
into account. Most studies have shown that sulfonylureas and
metformin have protective or neutral effects on fracture risk
(Vestergaard et al., 2005; Kahn et al., 2006; Monami et al.,
2008; Borges et al., 2011). In contrast, thiazolidinediones activate
PPARγ, which in turn stimulate adipogenesis and inhibit
osteogenesis (Gimble et al., 1996; Lecka-Czernik, 2017). Studies
have reported an increased risk of fracture in patients taking
thiazolidinedione (Dormuth et al., 2009; Zhu et al., 2014).
Incretin hormones are considered to have the potential to treat
type 2 diabetes. For instance, glucagon-like peptide-1 (GLP-
1) targets primarily pancreatic β cells, where it stimulates
insulin production, which helps control blood glucose levels
(Baggio and Drucker, 2007). More recently, there has been
growing evidence that incretins may also be beneficial for
skeletal strength. GLP-1 plays a key role in bone homeostasis,
inhibiting bone resorption and stimulating bone formation in
response to nutrient intake (Shanbhogue et al., 2016). Indeed,
GLP-1 receptor knockdown in mice can result in dramatic
changes in trabecular and cortical microstructures, as well as
adverse effects on bone tissue material properties (Mabilleau
et al., 2013; Mansur et al., 2015, 2016). Thus, the effect on
bone health should be considered when selecting hypoglycemic
drugs to avoid inducing or exacerbating fractures and bone
diseases in patients.

OBESITY AND BONE-RELATED
DISEASES

Osteoporosis
Osteoporosis is a skeletal metabolic disorder with multiple
causes, characterized by bone loss, microstructure degeneration,
increased brittleness, reduced bone strength, and increased risk

of fracture. Therefore, OP seriously affects the quality of life and
living standards of patients (Khaliq et al., 2016; Pagnotti et al.,
2019; Yang et al., 2019).

Bone mineral density is a commonly used indicator in the
diagnosis of OP, which is performed by dual energy X-ray bone
absorptiometry (DEXA). In addition, BMD can also be used to
track changes in OP and evaluate the efficacy of OP drugs.

Numerous studies strongly suggest that, abdominal obesity,
hypertension, dyslipidemia and dysglycemia are all considered as
components of metabolic syndrome (MS) and are closely related
to OP (Muka et al., 2015). Obesity may lead to an increase in
bone density because it is associated with higher 17β-estradiol
levels and higher mechanical loads, which may protect bones
(Nelson and Bulun, 2001). Qiao et al. (2020) observed that
adult obese patients had higher BMD in the lumbar spine and
femoral neck than those of healthy weight. In general, obesity
is negatively correlated with femoral neck OP, suggesting that
obesity is a protective factor for OP (Qiao et al., 2020). Kim
et al. (2010) found, however, that after adjusting for confounders,
bone density was significantly lower in men over 40 and in
postmenopausal women with MS. Moreover, the BMD decreased
with the increase of MS components. Among MS indicators,
waist circumference as a diagnostic criterion for abdominal
obesity is the most critical factor leading to this negative
correlation. Waist circumference was an important contributor
in this association, suggesting that visceral fat may contribute to
bone loss. The negative correlation between fat mass and bone
density further supports this hypothesis, especially in men (Kim
et al., 2010). Furthermore, pro-inflammatory molecules TNF-
and IL-6 released from visceral fat play a key role in regulating
bone resorption and participating in the pathogenesis of OP
(Nanes, 2004; Roy et al., 2016).

Vitamin D is known to play a major role in the development
and maintenance of bones and muscles in the body because of
its ability to regulate the absorption of calcium and phosphorus.
Low levels of vitamin D in the body are considered a potential
risk factor for OP and bone fractures. Serum vitamin D deficiency
prevents the intestinal tract from absorbing Ca2+ from diet,
eventually leading to elevated levels of parathyroid hormone
(PTH) secretion. Oversecretion of PTH induces osteoclast
formation, inhibits osteogenesis, and maintains optimal blood
calcium and phosphorus levels required for metabolic processes
and neuromuscular function (Roy, 2013). Recent studies have
found that the serum 25(OH)D of obese people is lower than that
of normal weight people, which is negatively correlated with body
weight, BMI, and fat mass (Fassio et al., 2018).

It is worth noting that recently, Li et al. proposed that
obesity may lead to low serum 25(OH)D, high serum leptin
and high bone density (Snijder et al., 2005; Konradsen et al.,
2008; Felson, 2010). In this context, femoral neck and spine
BMD were positively correlated with BMI and fat mass index.
Recombinant human (Rh) leptin in the treatment of BMSCs
significantly facilitated bone formation. In addition, leptin down-
regulated CYP24A1 and up-regulated CYP27B1, CYP27A1, and
VDR, all of which play key roles in vitamin D metabolism In
summary, this study confirmed the relationship between obesity,
vitamin D metabolism and osteoblastic development, and the
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direct effect of leptin on vitamin D metabolism and osteoblastic
differentiation of BMSCs may protect bone under the effect of
low serum 25(OH)D in obese people (Lim et al., 2019; Li J. et al.,
2020).

Fractures
Osteoporosis, sarcopenia, and obesity are commonly associated
with aging. Obviously, fall-related injuries and fractures are the
major causes of disability and death among the elderly, seriously
affecting their quality of life and survival (Rapp et al., 2010;
Sanchez-Riera et al., 2014).

Studies have shown that fat accumulation may contribute
to the deterioration of muscle and bone, thereby promoting
the development of sarcopenia and OP (Ilich et al., 2014).
Additionally, more and more studies have confirmed that
sarcopenia is not only closely related to low bone density, but also
an important risk factor for fractures (Tarantino et al., 2015).

Obesity was previously deemed to be a protective factor for
OP or brittle fractures because patients affected by obesity have
more soft tissue to protect bone tissue. That is, the positive impact
of mechanical load caused by body weight. But recent research
suggests that obesity may increase the risk of certain fractures
types (Cao and Picklo, 2015; Scott et al., 2016). Obesity may be a
protective factor for hip fracture in adults and significantly reduce
the risk of hip fracture (Tang et al., 2013). This view was driven in
part by the positive correlation between BMD and BMI. Similar
results were seen in obese patients with proximal femoral and
vertebral fractures (De Laet et al., 2005).

The association between obesity and fracture in
postmenopausal women may be site-dependent. Compared
with normal/underweight women, obesity may prevent hip and
pelvic fractures, but it increases the risk of proximal humerus
fractures. Some non-spinal fractures, such as proximal humerus
fractures, upper leg fractures, and ankle fractures, are at higher
risk (Compston et al., 2011; Prieto-Alhambra et al., 2012).

In principle, obesity does not completely prevent fractures,
and there are some specific site effects on fractures. In fact,
obese people are more likely to fall and break bones than people
of normal weight. Especially when BMI is over 30, obesity has
limited protection against fractures and may even increase the
risk of fractures (Kang et al., 2015).

Osteoarthritis
Osteoarthritis (OA) is the most common degenerative joint
disease that affects any joint in the elderly, especially the knee
joint. OA is characterized by the progressive deterioration of
articular cartilage and structural changes throughout synovial
joints, such as synovial membrane, knee meniscus, adipose tissue,
periarticular ligaments, and subchondral bone (Brandt, 2006;
Loeser et al., 2012; Hunter and Bierma-Zeinstra, 2019). Clinical
and animal studies have revealed that age-related OA is related
to many factors including age, sex, trauma, and obesity. Among
these factors, obesity is one of the most influential and modifiable
risk factors (Bijlsma et al., 2011).

Actually, a growing body of evidence suggests a strong link
between obesity and inflammation. Adipose tissue has been
shown to regulate inflammatory immune responses in cartilage

People and animals affected by obesity exhibit higher serum
levels of TNF-α, IL-1 and IL-6, all from macrophages in adipose
tissue (Park et al., 2005; Ding, 2011). In parallel, the levels of
TNF-α, IL-1 and IL-6 in synovial fluid, synovial membrane,
subchondral bone and cartilage in patients with OA were
increased, confirming their important roles in the pathogenesis of
OA TNF-α, IL-6, and IL-1 are the cytokines produced by adipose
tissue to directly and negatively regulate cartilage. In addition,
TNF-α, IL-1, and IL-6 can promote the formation of other
factors, matrix metalloproteinases (MMPs) and prostaglandins,
while restrain the synthesis of proteoglycans and type II collagen.
Therefore, they play an important role in OA cartilage matrix
degradation and bone resorption. Moreover, TNF-α, IL-1, and IL-
6 may indirectly cause OA by regulating adiponectin and leptin
secreted by fat cells (Koskinen et al., 2011; Wang and He, 2018;
Tu et al., 2019).

Reyes et al. (2016) subsequently found that being overweight
or obese increased the risk of OA in all three joint areas (knees,
hips, and hands), especially the knees. Overweight, class I obesity
and class II obesity increased the risk of knee OA by 2-, 3. 1-, and
4.7-fold, respectively (Reyes et al., 2016).

Adipokines represent a new class of compounds that are
currently considered to be key molecules involved in the
pathogenesis of rheumatic diseases (Felson and Chaisson, 1997;
Scotece et al., 2011; Gremese et al., 2014; Feng et al., 2019).
Resistin is an adipokines closely related to obesity, local low-level
inflammation and MS (Rong et al., 2019). Alissa et al. (2020)
recently found that serum resistin levels were higher in patients
with primary knee arthritis than in healthy controls. In addition,
elevated serum resistin levels were positively correlated with
indicators of obesity, markers of inflammation, and WOMAC
Index (an indicator of the severity of OA symptoms) (Alissa
et al., 2020). Furthermore, Koskinen et al. (2011) believed that
the combination of leptin and IL-1 could promote the production
of MMP-1, MMP-3, and MMP-13 in human OA cartilage. The
effect of leptin on MMP-1, MMP-3, and MMP-13 was mediated
by transcription factor NF-κβ, and protein kinase C and MAP
kinase pathways. Leptin concentration in synovial fluid was also
positively correlated with MMP-1 and MMP-3 levels in patients
with OA (Koskinen et al., 2011). The results showed that leptin
had catabolic effect on OA joints by increasing the production of
MMP in cartilage (Bao et al., 2010).

In addition, adiponectin has been reported to be involved in
the pathophysiological process of OA. Kang et al. (2010) reported
that the total amount of nitric oxide (NO) and the levels of
MMP-1, MMP-3, and MMP-13 were increased in adiponectin
stimulated OA chondrocytes compared with unstimulated cells.
NO is one of the main mediators of pro-inflammatory cytokines
acting on chondrocytes and also regulates different cartilage
functions, including chondrocyte phenotypic loss, apoptosis,
and extracellular matrix degradation (Otero et al., 2007). In
this study, adiponectin increased the expression of MMPs and
iNOS in human OA chondrocytes through AMPK and JNK
pathways, leading to the degradation of OA cartilage matrix
(Kang et al., 2010).

In summary, obesity not only increases the incidence of
OA, especially in weight-bearing joints such as knee joints,
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but also is related to non-weight-bearing joints such as finger
joints and wrist OA, suggesting that these metabolic mediators
lead to an increase in the incidence of OA in obese patients.
This may be because obesity increases the mechanical load of
articular cartilage, leading to its degradation, and fatty tissue
secretes metabolic factors (such as IL-1, TNF-A, adiponectin,
and leptin), leading to an increased prevalence of OA in obese
people (Oliveria et al., 1999; Grotle et al., 2008; Kalichman and
Kobyliansky, 2009).

Rheumatoid Arthritis
Rheumatoid arthritis (RA), the most common form of
inflammatory arthritis, is a chronic systemic autoimmune
disease characterized by aggressive symmetrical inflammation of
multiple joints (Kobayashi et al., 2010; Miossec, 2013; Minamino
et al., 2020). Epidemiological studies have shown that about 90%
of RA patients develop bone erosion within 2 years of onset,
resulting in joint deformity or even disability. Therefore, RA
has brought a heavy burden and great pain to affected families,
patients and even the whole society (Nam et al., 2017).

Overweight/obesity is associated with higher rates of chronic
autoimmune diseases and inflammatory diseases, including type
2 diabetes and RA (Zhang et al., 2014). There is evidence that
an increase in BMI is associated with an increased risk of RA
(Feng et al., 2019). As mentioned above, adipokines such as
adiponectin and visfatin have also been reported to play a key
role in the pathophysiology of autoimmune diseases (Coelho
et al., 2013). It has now been well established that patients with
RA show higher plasma adiponectin, leptin, and visfatin levels
compared with healthy controls (Otero et al., 2006). Visfatin is a
proinflammatory mediator that induces the production of TNF-
α, IL-1, IL-6, IL-8, and MMPs, which are typical manifestations
of RA joint inflammation (Brentano et al., 2007). Similarly,
adiponectin stimulated fibroblast-like synoviocytes (FLS) in
patients with RA to produce IL-6, IL-8, and PGE2 (Choi et al.,
2009; Lee and Bae, 2018). In addition, adiponectin increased the
production of VEGF and MMPs in RA FLS, which may induce
inflammation and joint destruction (Lee et al., 2014; Choi et al.,
2020; Figure 1).

Previous studies have shown that the frequency of circulating
T follicular helper cells (Tfh) is significantly increased in RA
patients, which is positively correlated with disease activity
and anti-CCP autoantibody levels (Liu et al., 2012, 2015).
RA FLSs stimulated by AD (adiponectin) promoted the
production of Tfh cells. In addition, intra-articular injection
of AD aggravated synovitis and increased the frequency of
Tfh cells in CIA mice treated with AD (Nurieva et al., 2008;
Liu et al., 2020).

Obesity is not only prevalent in RA patients, but also
associated with disease activity. Obesity reduces the chance of
RA remission and negatively affects disease activity and outcomes
reported by patients during treatment (Liu et al., 2017). Lee and
Bae (2018) observed that the levels of circulating adiponectin
and visfatin in RA patients were significantly higher than those
in the control group. The levels of visfatin in 28 joints were
positively correlated with disease activity score and CRP level
(Lee and Bae, 2018).

OBESITY TYPE AND BONE

On the one hand, obesity is divided into peripheral obesity
and abdominal obesity according to the distribution of fat in
the body. Abdominal fat is made up of abdominal wall fat
(SAT) and abdominal fat (VAT), also known as central obesity,
visceral obesity. Previous studies have shown that adipokins
are associated with bone metabolism, and that central obesity
can lead to osteopenia or OP because bone density decreases
with an increase in waist-to-hip ratio, an index of central
obesity (Mitsuyo et al., 2007). In one study, whole body bone
mineral content was positively correlated with HOMA-IR and
negatively correlated with the percentage of trunk fat, which is
a good representative of visceral fat, suggesting that abdominal
obesity may have an adverse effect on systemic bone parameters
(Krishnan et al., 2018).

Local fat is increasingly recognized as a determinant of
bone density, and this association may be mediated by
adipocytokines (Vicente et al., 2009). Russell et al. (2010)
proposed that VAT was a negative predictor of spine BMD,
apparent BMD, systemic BMD and bone mineral content for
obese adolescent girls aged 12–18 years (Katzmarzyk et al., 2012).
Importantly, VAT/SAT, adipokines, cytokines, E-selectin, and
adiponectin were negative predictors of bone density, while leptin
was positive. Consequently, VAT is an independent negative
determining factor of bone density in obesity (Jurimae et al., 2008;
Agbaht et al., 2009; Russell et al., 2010; Bredella et al., 2011a).

On the other hand, according to the different obesity
phenotypes, it can be divided into normal metabolic healthy
BMI, metabolic healthy obesity and metabolic abnormal obesity
(Karelis et al., 2004; Dobson et al., 2016). Marques Loureiro
et al. (2019) observed significantly increased deficiencies of
calcium, phosphorus, vitamin D, and PTH in the metabolically
unhealthy obese (MUHO) group compared to the metabolically
healthy obese (MHO) group. In summary, the MUHO phenotype
presents a higher risk of bone metabolism-related changes, which
may contribute to the development of metabolic bone disease
(Marques Loureiro et al., 2019; Figure 2).

DIFFERENT POPULATIONS WITH
OBESITY AND BONE

Children and Adolescents
While childhood obesity has always been a major health problem,
its prevalence has been on the rise. In addition, childhood
obesity may be associated with multiple complications, such
as hyperinsulinemia, hypertension, MS, and non-alcoholic fatty
liver disease (NAFLD; Oh et al., 2016). Childhood obesity may
affect the growth patterns of children and adolescents, according
to several studies Children influenced by obesity may develop
accelerated skeletal maturity and advanced bone age beyond their
actual age (Johnson et al., 2012; Marcovecchio and Chiarelli,
2013). A study of 232 children (aged 6–15 years) found that
the prevalence of advanced bone age increased significantly with
increased body weight, height, BMI, and waist circumference
percentiles (Oh et al., 2020).
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FIGURE 1 | Changes of various factors caused by obesity on the regulation of bone disease. Obesity can increase mechanical load, visceral fat and bone marrow
fat. In addition, obesity is associated with increased adipokines, increased TNF – or, IL-1, IL- 6, decreased vitamin D, and accompanied by hypertension,
dyslipidemia, and dysglycemia. They regulate bone disease by affecting bone formation, bone resorption, and cartilage.

FIGURE 2 | Effects of factors secreted by adipose tissue on bone metabolism. Adipose tissue can secrete leptin, adiponectin, visfatin, TNF-a, IL-6, and IL-1 These
factors act on chondrocytes, osteoblasts, osteoclasts, respectively, to regulate bone formation and resorption, as well as cartilage degradation.

Instead, a study of young people with an average age
of 10–17 confirmed that obese children and adolescents had
higher bone mass and density than their normal-weight peers
(Chaplais et al., 2018).

Notably, Zhao et al. (2020) recently found that obesity had no
benefit for BMD in Chinese children aged 0-5 years. t BMD was
positively correlated with age, height/length, and inversely with
BMI. The BMD gradually increased in the range within 21.2kg,
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but began to gain slowly and even decreased when the body
weight exceeded 21.2kg (Zhao et al., 2020).

As noted above, although there have been several studies on
the effects of fat mass on skeletal health in normal weight and
obese adolescents, the results remain controversial.

Postmenopausal Women
Osteoporosis is considered a major public health problem for
postmenopausal women. Low estrogen levels lead to rapid bone
loss in women five to seven years after menopause (Kanis et al.,
2008). Actually, some evidences, indicated that age and BMI
were important factors influencing BMD. The BMD of obese
postmenopausal women was higher than that of normal size
women, and the reduction of BMD of obese women can be
delayed by weight bearing (Méndez et al., 2013).

At the same time, Cherif et al. also observed that the left femur,
right femur, total hip joint, and overall bone density were higher
in obese women (Cherif et al., 2018).

In addition, adipokines secreted by fat are considered as
potential pathophysiological factors of OP. Several studies have
shown that leptin has significant effects on bone growth and bone
metabolism through central and peripheral pathways, and may
be involved in the occurrence of various bone diseases (Chen and
Yang, 2015). Studies have shown a positive correlation between
leptin levels and BMI. And higher BMI is associated with higher
bone density. However, obesity had no effect on adiponectin and
resistin secretion in postmenopausal women with OP, so leptin
was the only one of the adipokines studied to be considered as
a protective factor for bone tissue in postmenopausal women
(Pasco et al., 2001; Glogowska-Szelag et al., 2019).

Thus, the above results indicate that, adiposity may be
beneficial to bone density in postmenopausal women. The
protective effect of high body weight and BMI may be due
to hormonal influences in the body. Postmenopausal women
affected by obesity have more adipose tissue and more estrogen
conversion, resulting in higher estrogen levels in their bodies.

Elderly Patients With Obesity
Obesity, sarcopenia, and OP are common chronic diseases in
the elderly. Sarcopenia is a newly discovered age-related disease
related to lipid metabolism and insulin resistance. The main
diagnostic criteria for sarcopenia are reduced skeletal muscle
mass, muscle strength, and function. Older people continue to
lose muscle mass as they age, while body fat, especially visceral
fat, tends to rise, known as "sarcopenic obesity" (SO; Stenholm
et al., 2008; Arango-Lopera et al., 2013). A recent study found that
women with SO were more easy to show elevated blood glucose,
while men with SO were more likely to present with OP and
dyslipidemia (Du et al., 2019). On the other hand, muscles secrete
a set of cytokines called myokines, thereby regulating bone
metabolism. Myostatin, as a key myokine, has been reported for
its effect on bone. Myostatin can inhibit osteogenic differentiation
of BMSCs, as well as osteoblast differentiation and mineralization
(Hamrick et al., 2007; Chen et al., 2017). Likewise, myostatin may
inhibit osteogenesis by activating the RANKL signaling pathway,
thus showing an adverse impact on bone mass (Saad, 2020). In
addition, myostatin itself is an important autocrine/paracrine

factor that inhibits skeletal muscle growth (Rodriguez et al., 2014;
Cui et al., 2020). Thus, inhibition or blocking of the myostatin
signaling pathway may provide potential therapeutic targets for a
number of diseases, particularly in sarcopenia and OP.

Several studies have reported the links between BMD and body
fat and lean mass. When body weight was stratified into lean body
mass and fat mass, the increase in BMD was more pronounced for
lean body mass, whereas fat mass was only beneficial for men and
premenopausal women. Santos et al. also observed a more direct
relationship between lean body mass and bone density (total bone
density, femur, and spine), while sarcopenia was associated with
OP. Obesity was more likely to be a protective factor for OP in old
subjects aged 80 and over (Santos et al., 2018). At the same time,
Barrera et al. demonstrated the beneficial effects of high BMI on
femoral neck bone density in older adults. Men and women with
a BMI of more than 30 kg/m2 had about a 33% risk of bone mass
loss compared to those with a normal BMI (Barrera et al., 2004).
In particular, obese people were reported to have higher bone
density, but they also showed damaged bone microstructures and
different fall patterns (Compston, 2013; Ilich et al., 2016).

HIGH-FAT DIET INDUCED OBESITY AND
BONE

Conclusions about the relationship between obesity and bone in
humans rely on statistical correlations or models, rather than
controlled trials. Therefore, the establishment of obesity mouse
model is helpful to study the effect of high-fat diet (HFD)-
induced obesity on bone metabolism. Studies have shown that
obese animals burn the same amount of energy, no matter
how much fat is in their diet (Brown et al., 2003; Tortoriello
et al., 2004; Relling et al., 2006). The mice provided a model for
studying the relationship between body size, obesity and skeletal
characteristics. High fat intake in rodents leads to obesity, and
several studies have shown a strong link between bone size,
strength and body size. However, mice are not always reliable
indicators of human pathophysiology. Human can enjoy more
colorful life style, more abundant food and more complicated
living environment. Moreover, patients with obesity often have
multiple complications, not just weight gain. These factors make
the relationship between obesity and bone more complex in
humans than in mice.

Cancellous Bone
The effects of a high-fat diet on cancellous bone in rodents
have been shown to be harmful. Previous studies have reported
that after 4, 8, and 12 weeks of HFD treatment, the trabecular
density of 6-week-old male C57BL/6J mice decreased with the
increase of adipocytes and trabecular degeneration. In addition,
in obese mice, serum leptin levels were associated with bone
trabeculae, but not cortical bone density, while adiponectin
and total cholesterol levels were not associated with bone mass
(Fujita et al., 2012). Scheller et al. (2016) also noted that bone
trabecular volume fraction, bone mineral content, and quantity
decreased after 12, 16, or 20 weeks of high-fat feeding compared
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with normal rat chow (ND) controls, and only partial recovery
after weight loss.

In addition, Inzana et al. (2013) found that femoral cancellous
metaphyseal bones were more susceptible to adverse effects of
high-fat diet before bone maturation, and had poor recovery
ability after dietary correction (low-fat diet, LFD).

A recent study conducted by Tian et al. showed that the bone
mass of femoral trabecular bone in C57BL/6J mice increased
significantly after 8 weeks of HFD, but decreased significantly at
16 and 24 weeks (Tian et al., 2017). In other words, after short-
term feeding, HFD may show a positive effect on bone mass,
however, after long-term feeding, bone mass was significantly
decreased in HFD mice.

Cortical Bone
However, the effects of diet induced obesity on cortical bone in
rodents are less clear, with positive, negative, and neutral results
reported. The femoral cortical thickness and cross-sectional area
of 4-week old male mice were increased after feeding HFD-DAG
(Diacylglycerol). HFD-DAG had obvious promoting effect on
bone and bone metabolism (Choi et al., 2015). In addition, Silva
et al. recently suggested that a high-fat diet had beneficial effects
on most femoral size and skeletal mechanical properties, as well
as radius size and stiffness (Silva et al., 2019). However, Ionova-
Martin et al. found that femur strength, hardness, and toughness
were significantly lower in both young and adult mice fed HFD
than in the control group (Ionova-Martin et al., 2011).

In contrast, Cao et al. concluded that feeding mice HFD for
14 weeks reduced proximal tibial cancellous bone mass in young
mice, but had no effect on cortical bone mass (Cao et al., 2009).
Halade et al. (2011) also revealed that mice fed corn oil (CO) for
6 months showed a 66% reduction in distal femoral trabecular
volume fraction, with no significant effect on cortical bone. To
sum up, in the above studies, the effect of HFD on cortical bone
was not as significant as that on cancellous bone.

It is generally believed that age-related OP has three main
processes. The first and most important process is reduction of
trabecular bone, the second is continuous bone resorption on
the cortical surface, and the third is cortical bone loss (Chen
et al., 2009). Similarly, the above studies indicate that the most
significant change in obesity-related bone loss is the reduction
of femoral trabecular bone Combined, these results suggest that
HFD could regulate the changes of trabecular and cortical bone
in different ways. This may be due to the fact that cancellous
bone generally responds more strongly to diet or drug therapy,
physiological conditions, or aging than cortical bone, because
cancellous bone is more active in remodeling because of its
larger surface to volume ratio than cortical bone (Morgan et al.,
2008). On the other hand, bearing capacity and mechanical stress
are important factors in determining cortical bone mass, while
trabecular bone density is affected by sex maturation related
hormones (Mora et al., 1994).

Bone Formation/Resorption
In addition to affecting bone structure, HFD can also have
significant effects on cell function. Bone mass reflects the
balance between bone formation and bone resorption and is

involved in the coordination and regulation of the number and
activity of osteoblasts and osteoclasts at the cellular level. The
RANKL/RANK/OPG signaling pathway plays a major role in
this regulation. A previous study showed that the expression
of RANKL, the ratio of RANKL to OPG, and the level of
serum TRAP in osteoblasts from HFD mice were increased,
suggesting that HFD can promote osteoclast activity and bone
resorption (Cao et al., 2009). Notably, Halade et al. reported that
in mice fed HFD, the accumulation of bone marrow adipocytes
resulted in significantly higher levels of pro-inflammatory factors,
leading to increased bone resorption. In addition, increased
expression of osteoclast-specific cathepsin K and RANKL and
decreased osteoblast-specific RUNX2/Cbfa1 in CO-feeding mice
also supported bone resorption (Halade et al., 2011).

Furthermore, Shu et al. (2015) revealed that the lower
trabecular volume, but increased osteoclast numbers could be
found in the femoral metaphyseal sections of HFD-fed mice
after 3, 6, and 12 weeks. The elevated osteoclast precursor
frequency, increased osteoclast formation, and bone resorption
activity, along with increased osteoclastogenic regulators such as
RANKL, TNF, and PPARγ were seen in bone marrow cells from
HFD-fed mice. But, osteoblast function was also increased after
12 weeks of HFD (Shu et al., 2015). A possible explanation is
that mechanical load of body weight stimulates bone formation,
reduces apoptosis, and enhances proliferation and differentiation
of osteoblasts and osteocytes. Therefore, it was not surprising
that bone formation rates and osteoblast numbers increased in
this study, since HFD mice were significantly heavier than the
control group (Bonewald and Johnson, 2008). In conclusion, it is
reasonable to believe that the bone loss caused by HFD is mainly
related to the promotion of osteoclast differentiation and activity
by changing the bone marrow microenvironment.

Based on these findings, the effect of HFD is bipolar and may
be the result of a combination of body weight, fat mass, bone
formation/absorption, pro-inflammatory mediators and bone
marrow microenvironment. Obesity initially has a beneficial
effect on bones, possibly due to anabolic effects that increase
mechanical load. However, due to the development of metabolic
complications including systemic inflammation, the second stage
is followed by a reduction in bone formation (Lecka-Czernik
et al., 2015). As mentioned above, these results may support
the idea that as obesity rises, the benefits for bone health
are diminishing.

CONCLUSION

In conclusion, obesity or overweight is strictly related to bone
metabolism, although the correlation has not yet been fully
unified. Adipose tissue interacts with bone by secreting various
cytokines, so as to regulate bone health. Meanwhile BMAT also
exerts a crucial impact on bone density and bone microstructure.
In addition, human obesity is a complex problem that involves
not only excessive fat intake but also other nutrient consumption
imbalances such as vitamin D, calcium and phosphorus, which
are known to affect bone metabolism, further making it difficult
to determine the impact of obesity on human bone health.
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Moreover, while BMI is closely related to the gold standard
of body fat, it does not distinguish between lean and fat
mass, nor does it provide an indication of the distribution
of body fat. The loss of muscle mass in the elderly means
that BMI is also less accurate at predicting body fat in this
group. Therefore, determining whether obesity causes changes
in bone mass based on BMI is less accurate. Central obesity
measures, including waist circumference, waist-to-height ratio
and waist-to-hip ratio, are better predictors of visceral obesity,
bone-related disease and mortality than BMI. Simply put, all
of these findings indicate that skeletal response to obesity has
either a positive or negative effect on bone, suggesting that
the influence of obesity on bone metabolism is intricate and
depend on diverse factors, such as mechanical load by the weight,
obesity type, the location of adipose tissue, gender, age, and
bone sites, along with secreted cytokines, these factors may play
a major function for bone health. The effects of obesity on
bone metabolism and bone microstructure involve these multiple
factors, which may exert different regulatory mechanisms and
ultimately affect the skeletal health. The investigation of the
relationship between obesity and bone is conducive to finding

new targets for the treatment of bone-related diseases, including
OP, fractures, RA, and OA.
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