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Abstract: Microwave radar sensors have been developed for non-contact monitoring of the health
condition and location of targets, which will cause minimal discomfort and eliminate sanitation issues,
especially in a pandemic situation. To this end, several radar sensor architectures and algorithms
have been proposed to detect multiple targets at different locations. Traditionally, beamforming
techniques incorporating phase shifters or mechanical rotors are utilized, which is relatively complex
and costly. On the other hand, metamaterial (MTM) leaky wave antennas (LWAs) have a unique
property of launching waves of different spectral components in different directions. This feature
can be utilized to detect multiple targets at different locations to obtain their healthcare and location
information accurately, without complex structure and high cost. To this end, this paper reviews
the recent development of MTM LWA-based radar sensor architectures for vital sign detection and
location tracking. The experimental results demonstrate the effectiveness of MTM vital sign radar
compared with different radar sensor architectures.

Keywords: metamaterial (MTM); leaky wave antenna (LWA); radar sensor architecture; vital sign
detection; location tracking

1. Introduction

Microwave radar sensors have been developed in physiological [1–10] or location
tracking [11–16] of human targets over the past decades, with the development of semi-
conductors and algorithms. Owing to non-contact and penetrable characteristics of the
radar sensor, this will cause minimal discomfort for the detected target and avoid the
sanitation issues, which has gained much interest in the pandemic situation. Among
them, the conventional homodyne radar sensor for vital sign detection illuminates the
transmitted radiofrequency (RF) signal towards the target via the transmitting (Tx) antenna,
while the reflected signal received by the receiving (Rx) antenna will be down-converted to
the baseband signal through the mixer, as shown in Figure 1. Efforts have been made by
researchers to improve the homodyne radar sensor architecture in recent years, in order to
achieve accurate performance on vital sign detection. For example, quadrature Doppler
radar receiver system is employed to solve the null point problem [17]. Furthermore, to
mitigate the strong interference signal that is mainly caused by random body movement,
a two-transceiver radar system with different polarizations and frequencies is placed at
different body orientations to detect vital sign signals [18]. Another challenge for vital
sign detection based on this architecture is 1/f noise, which can be overcome by low
intermediate-frequency (IF) heterodyne radar sensor architectures [19].

Besides vital sign detection, microwave radar sensors can also be used for location
tracking of the target. In [20], the distance to the target can be acquired by analyzing
the direct current (dc) information associated with the target’s position from baseband
signals with different beam-steering angles. On the other hand, a frequency-modulated
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continuous-wave (FMCW) modulation scheme is proposed to detect the distance to the
target [21]. While the distance to the target can be obtained, directional information of
targets is still a challenge for location tracking. To this end, mechanical rotors [22,23] and
phased arrays [24] are proposed to detect different targets at different locations and obtain
their directional information, respectively. Nonetheless, mechanical devices are bulky
while phased arrays are complex and costly.
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(AOA) from the received signal, which is an indicator for the estimation of the target’s 
location with directional information. However, the implementation of multiple trans-
ceivers increases the systematic complexity and cost. As such, efforts have been made to 
reduce the systematic complexity. For instance, single-input multiple-output (SIMO) with 
different mechanisms, such as the digital beam forming (DBF) technique [28] or angle di-
vision multiplexing sensing (ADMS) [29], as well as the RF switch-based radar system [30] 
using a transceiver instead of a multiple radar system are employed to detect multiple 
targets. Although the number of transceivers can be effectively reduced, the radar systems 
still adopt multiple antennas at the transmitter or receiver end. Furthermore, the imple-
mentation of a control algorithm for the selection of corresponding antennas still increases 
the complexity of radar system. 

On the other hand, metamaterial leaky wave antennas (MTM LWAs) [31] exhibit a 
unique frequency to space mapping feature, which can be used to overcome the afore-
mentioned shortcomings. In general, MTM is an artificial structure with unusual proper-
ties, such as negative index of refraction, which cannot be found in nature. It was first 
investigated by the Russian physicist Viktor Veselago in 1967, which he termed left-
handed (LH) substance [32]. After more than 30 years, inspired by the work of J.B. Pendry 
et al., LH material was realized by Smith and colleagues at the University of California, 
San Diego (UCSD), consisting of copper split-ring resonators (SRRs) and thin copper 
wires, which exhibit negative permittivity (ߝ) and permeability (ߤ) [33]. In 2002, Caloz et 
al. [34] and Iyer et al. [35] proposed LH materials based on a transmission line (TL) struc-
ture. However, in practice, it is impossible to implement a purely LH TL structure because 
of unavoidable right-handed (RH) parasitic series inductance and shunt capacitance ef-
fects. Therefore, a composite right/left-handed (CRLH) structure is introduced in 
[31,36,37] to form MTM TLs. It is noted that the CRLH structure can also be realized based 
on the resonant-type approach [38], such as the use of split ring resonators (SRRs) or com-
plementary split ring resonators (CSRRs). Based on the CRLH structure, MTM LWAs are 
shown to exhibit frequency-dependent beam-steering capability at the fundamental mode 
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Recently, multiple-input multiple-output (MIMO) radar systems [25–27] have at-
tracted considerable attention because of their capability for measuring angle-of-arrival
(AOA) from the received signal, which is an indicator for the estimation of the target’s loca-
tion with directional information. However, the implementation of multiple transceivers
increases the systematic complexity and cost. As such, efforts have been made to reduce
the systematic complexity. For instance, single-input multiple-output (SIMO) with different
mechanisms, such as the digital beam forming (DBF) technique [28] or angle division
multiplexing sensing (ADMS) [29], as well as the RF switch-based radar system [30] using
a transceiver instead of a multiple radar system are employed to detect multiple targets.
Although the number of transceivers can be effectively reduced, the radar systems still
adopt multiple antennas at the transmitter or receiver end. Furthermore, the implementa-
tion of a control algorithm for the selection of corresponding antennas still increases the
complexity of radar system.

On the other hand, metamaterial leaky wave antennas (MTM LWAs) [31] exhibit a
unique frequency to space mapping feature, which can be used to overcome the aforemen-
tioned shortcomings. In general, MTM is an artificial structure with unusual properties,
such as negative index of refraction, which cannot be found in nature. It was first investi-
gated by the Russian physicist Viktor Veselago in 1967, which he termed left-handed (LH)
substance [32]. After more than 30 years, inspired by the work of J.B. Pendry et al., LH
material was realized by Smith and colleagues at the University of California, San Diego
(UCSD), consisting of copper split-ring resonators (SRRs) and thin copper wires, which
exhibit negative permittivity (ε) and permeability (µ) [33]. In 2002, Caloz et al. [34] and
Iyer et al. [35] proposed LH materials based on a transmission line (TL) structure. However,
in practice, it is impossible to implement a purely LH TL structure because of unavoidable
right-handed (RH) parasitic series inductance and shunt capacitance effects. Therefore, a
composite right/left-handed (CRLH) structure is introduced in [31,36,37] to form MTM
TLs. It is noted that the CRLH structure can also be realized based on the resonant-type
approach [38], such as the use of split ring resonators (SRRs) or complementary split ring
resonators (CSRRs). Based on the CRLH structure, MTM LWAs are shown to exhibit
frequency-dependent beam-steering capability at the fundamental mode (n = 0) [39–42],
which is different from other fundamentally slow-wave periodic structure-based LWAs
operating at the higher spatial harmonics (|n| > 0) in order to generate fast waves, where
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n is an integer representing the order of spatial harmonic [43–45]. Figure 2 illustrates
the equivalent circuit of a CRLH TL unit cell, which can exhibit backward-to-forward
frequency-dependent beam scanning capability. Such characteristics have been widely
used in antenna applications [46–48].
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As shown in Figure 2, the CRLH TL unit cell consists of LH series capacitor (CL) and
shunt inductor (LL) with parasitic RH series inductor (LR) and shunt capacitor (CR). Its
general propagation constant can be obtained as:

γ = jβ =
1

∆z

√
Z′Y′, (1)

where,

Z′ = jωLR +
1

jωCL
, Y′ = jωCR +

1
jωLL

, (2)

which leads to:

β(ω) =
s(ω)

∆z

√
ω2LRCR +

1
ω2LLCL

−
(

LR
LL

+
CR
CL

)
, (3)

where β(ω) is the phase constant of a TL, s(ω) and ∆z are the sign function and the length
of unit cell, respectively. For the balanced case, i.e., LRCL = LLCR, Equation (3) can be
simplified as:

β(ω) = βRH + βLH =
ω

∆z

√
LRCR −

1
ω∆z
√

LLCL
, (4)

Equation (4) shows the phase constant β(ω) can be changed from negative value to
positive value as the frequency increases, which corresponds to the left-handed (LH) effects
and right-handed (RH) effects. Its dispersion diagram is shown in Figure 3. In the fast
wave region where the phase velocity is greater than the speed of light, radiation occurs
with frequency-dependent radiation main beam angle θ for a CRLH TL given by Figure 4.

Specifically, the radiation angle of the main beam can be expressed as:

θ(ω) = sin−1
(

β(ω)

k0

)
(5)

where k0 is the free space wave number. As the frequency varies, phase constant β(ω)
of the CRLH TL is changed, which leads to the change of θ(ω). As a result, the CRLH
MTM LWA is able to scan from the backfire to endfire direction, when β(ω) changes from
negative to positive according to Equation (5). Owing to the frequency-dependent beam
scanning capability of the MTM LWA, the target directional information can be easily found
based on its radiation pattern and operational frequency.
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The rest of this paper is organized as follows. Section 2 reviews homodyne architec-
tures with one-dimensional (1D) MTM LWAs [49,50], which are employed for vital sign
detection and location tracking based on the arctangent demodulation. Section 3 presents a
self-injection-locked (SIL) radar architecture integrated with MTM LWAs to detect vital
sign signals and track locations using frequency-shift keying (FSK) method [51]. Section 4
introduces a two-dimensional (2D) MTM LWA array for vital sign detection at 24 GHz
band [52]. Finally, conclusions are made in Section 5.

2. Metamaterial Leaky Wave Antenna (MTM LWA)-Based Homodyne Architecture

While conventional microwave radars have been widely studied for vital sign detec-
tion and location tracking of single target [17,53–55], the ability to perform multi-target
detection has gained much interest recently [56,57]. Lu et al. applied a linearly polarized
MTM LWA structure at 24 GHz band to detect the vital sign information of multiple targets
and track their motions with homodyne architecture [49]. Figure 5 shows the layout and
the radiation pattern of the 1D frequency-dependent beam scanning MTM LWA. In this
design, a 1D frequency-dependent beam scanning MTM LWA consists of vialess unit cells
with gap capacitors and open stub-loaded resonators, where CL is provided by a gap
capacitor and LL is the inductance of an open stub, LR represents that parasitic inductance
caused by current gradient flowing across gap capacitor, and CR is provided by the parallel
plate effects between the signal layer and ground plane. According to its radiation pattern,
the scanning angle of the MTM LWA can be changed from −30◦ to +50◦ as the operation
frequency sweeps from 24.3 GHz to 27.3 GHz. It is noted that there is a 3 dB decrease in
the radiation gain at the broadside, which may be avoided by forcing both series and shunt
elements to contribute equally to the radiation [58,59].
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The system block diagram of the proposed radar sensor module is shown in Figure 6.
The radar transceiver chip is employed to control the operation frequency of MTM LWA.
Consequently, based on its radiation pattern, the interrogating signal is transmitted via Tx
MTM LWA towards the target along a specified direction, which can be expressed as:

θ(ω) = sin−1
(

β(ω)

k0

)
(6)

where f represents the operation frequency of MTM LWA and Φ(t) is the phase noise.
The reflected signal, modulated by the target, is received by the Rx MTM LWA. Then
it is down-converted to the I- and Q-baseband signals. A micro controller unit (MCU)
digitalizes the signals, which are then transmitted through Bluetooth to the laptop for post
processing. By normalizing the signal amplitude, the digitized I- and Q-baseband signals
can be expressed as:

BI(n) = cos
[

4πd0

λ
+

4πxv(n)
λ

+ θ0 + ∆Φ
]
+ DCI(n), (7)

BQ(n) = sin
[

4πd0

λ
+

4πxv(n)
λ

+ θ0 + ∆Φ
]
+ DCQ(n), (8)

where d0 is the nominal distance from the radar sensor to the target, θ0 accounts for the
phase response due to the phase change at the target surface and phase delay between the
antenna and mixer, ∆Φ represents the phase residue, and DCI(n)/DCQ(n) are the dc offset
of the in-phase and quadrature (I/Q) channels. Because xv(n) represents the displacement
related to the vital sign signal of target, it can be denoted as:

xv(n) = Abr cos(2π fbrt) + Bh cos(2π fht), (9)

where Abr, Bh are the displacements related to respiration and heartbeat activities and f br,
f h are their corresponding frequencies. After calibrating the dc offset, the vital sign signals
can be extracted in the frequency domain by performing fast Fourier transform (FFT) based
on the arctangent demodulation method.

In the experimental setup, shown in Figure 7, the vital sign signals of two targets sitting
in front of the radar at different directions are chosen to be detected using the proposed radar
sensor module. Target A sits at θ = −30◦ in the backward side and target B sits at θ = +30◦

in the forward side, in which the corresponding frequencies are 24.3 GHz and 26.3 GHz,
according to the radiation patterns of MTM LWA. The distance to the targets is 0.8 m.

For vital sign information of target A, the I- and Q-baseband signals in the time
domain are shown in Figure 8a. As a result, corresponding respiration and heartbeat rate
in the frequency domain are shown in Figure 8b. In the same way, the I- and Q-baseband
signals for the vital sign information signal of Target B and his corresponding respiration
and heartbeat rate are shown in Figure 9.
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It is worth mentioning that a digital Butterworth high pass filter with the cutoff
frequency of 0.5 Hz is employed to identify the heartbeat rate in the frequency domain in
case the heartbeat information is overwhelmed by the harmonics coming from the stronger
respiration signals. After performing FFT and filtering, the respiration and heartbeat
rate of Target A are 18.6 beats/min and 56.4 beats/min, while the ground truth of the
respiration and heartbeat rate of Target A are 17 beats/min and 58 beats/min, respectively.
On the other hand, for Target B, the respiration and heartbeat rate are 15 beats/min and
56 beats/min, while the ground truth are 15 beats/min and 59 beats/min, respectively.

In addition to the vital sign signal detection, the target motion can also be tracked by
using MTM LWA-based homodyne radar sensor module [50]. According to Equations (7)
and (8), the I- and Q-baseband signals incorporate distance information between radar
sensor and the target. Therefore, by calibrating the dc offset, the I- and Q-baseband signals
can be expressed as:

BI(n) = cos
[

4πd0

λ
+

4πxv(n)
λ

+ θ0 + ∆Φ
]

, (10)

BQ(n) = sin
[

4πd0

λ
+

4πxv(n)
λ

+ θ0 + ∆Φ
]

, (11)

By applying the arctangent demodulation method [17], the phase information of
baseband signals can be extracted as:

Φ(n) = tan−1
(

BQ(n)
BI(n)

)
=

4πd0

λ
+

4πxv(n)
λ

+ θ0 + ∆Φ, (12)

where the small movement xv(n) can be neglected compared with the distance d0, and ∆φ
can be ignored due to the range correlation theory with a small detection displacement [60].
Assuming θ0 is a constant for the target, the relative distance ∆d = d0(n1)− d0(n2) can be
obtained based on Equation (13):

∆d ≈ λ·∆Φ(n)
4π

, (13)

The experimental setup of the multi-target motion detection is shown in Figure 10a.
The main beam of the radar sensor illuminates two human targets with different operation
frequencies. In this case, Target A moves back and forth with directional angle at θ = −30◦

in the backward side of the MTM LWA and Target B moves back and forth with directional
angle at θ = +30◦ in the forward side of the MTM LWA. The top view sketch is shown in
Figure 10b, where the corresponding operation frequencies of MTM LWA are 24.3 GHz
and 26.3 GHz, respectively.
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baseband signals and its measured relative moving distance are plotted in Figure 12. As 
can be seen, for Target A, the measured relative moving distance is from 0 to 63 cm, while 
the ground truth is from 0 to 60 cm, leading to 5% deviation. On the other hand, for Target 
B, the measured relative moving distance is from 0 to 75 cm and the ground truth is from 
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Figure 11. (a) Measured I- and Q-baseband signals for Target A motion at 24.3 GHz; (b) measured relative moving distance 
of Target A [50]. 

Figure 10. (a) Experimental setup for multi-target motion detection using MTM LWA-based homodyne radar sensor module;
(b) its top view sketch.

The I- and Q-baseband signals for Target A motion and the measured relative moving
distance, based on Equation (13), are shown in Figure 11. For Target B, the I- and Q-
baseband signals and its measured relative moving distance are plotted in Figure 12. As
can be seen, for Target A, the measured relative moving distance is from 0 to 63 cm, while
the ground truth is from 0 to 60 cm, leading to 5% deviation. On the other hand, for Target
B, the measured relative moving distance is from 0 to 75 cm and the ground truth is from 0
to 78 cm, which only leads to 3.8% deviation.
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3. MTM LWA Based on Self-Injection Locked (SIL) Radar Architecture

In addition to conventional radar sensor architectures, vital sign radar detection based
on self-injection locked (SIL) architecture has been proposed recently [61], which has
gained much attention because of its low system complexity and high sensitivity [61,62].
Yuan et al. [51] proposed a new architecture of SIL radar sensor integrated with an MTM
LWA, where its block diagram is shown in Figure 13. In this scenario, the interrogating
RF signal with free-running oscillation frequency, ωosc, is illuminated via an MTM LWA
coming from a self-injection locked oscillator (SILO). The reflected signal modulated by
the target locks the oscillator into SIL state. Therefore, the output frequency ωout(t) of the
SILO will be injection-locked to a different value. Based on Adler’s equation [62], it can be
expressed as:

ωout(t) = ωosc −ωLRcosα(t), (14)

where ωLR denotes as the locking range and α(t) is phase delay of SIL path, which can be
given by:

ωLR =
ωosc

2Qtank

Einj

Eosc
, (15)

α(t) =
2ωosc

c
(do + xv(t)), (16)

where Qtank is the quality factor of SILO’s tank circuit, Einj is the amplitude of injection
signal and Eosc is the amplitude of the free-running signal of the SILO. Therefore, the
frequency-modulated output signal of MTM LWA is:

Sout(t) = Aoutcos(ωoutt), (17)

where Aout is the amplitude of output signal. The signal will then be sent into a first-
order microwave differentiator to convert the frequency modulation (FM) of signal to an
amplitude modulation (AM) signal, which is given by:

dSout(t)
dt

= −ωout Aoutsin(ωoutt), (18)
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A quadrature coupler followed by two envelope detectors is then utilized to perform
AM demodulation for the I/Q channel. The vital sign signals with distance informa-
tion of multiple targets at different locations can be obtained by performing FFT of the
demodulated I/Q signals.
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To detect multiple targets at different locations, a 1D linearly polarized frequency-
dependent beam scanning MTM LWA with MTM-based coupler operating at the 2.4 GHz
band is designed. Its layout and prototype are shown in Figure 14, which consists of
10 CRLH unit cells. Based on its radiation pattern shown in Figure 15a, the scanning angle
of MTM LWA can be changed from −50◦ to +30◦ when the operation frequency varies
from 1.85 GHz to 2.85 GHz. The reflection coefficient (S11) is close to −10 dB within the
same operation frequency range, as shown in Figure 15b.
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Figure 16 presents the prototype of the radar sensor module. The operation frequency
of MTM LWA can be tuned from 2.04 GHz to 2.48 GHz through a tunable oscillator,
which is designed based on the negative resistance method [63] with common source
configuration. The oscillator output is connected to Port 1 of the MTM LWA integrated
with the MTM-based coupler to transmit and receive RF signals. When the modulated
signal within the frequency band of 2.04 GHz to 2.48 GHz is received by MTM LWA, it
will be sent through the MTM-based coupler to the first-order microwave differentiator
for frequency demodulation [64], whose magnitude response is linear with respect to the
frequency from dc to 3.1 GHz [65]. Consequently, the modulated signal can be converted to
the RF signal with the corresponding frequency-dependent amplitudes. Then a quadrature
coupler followed by the two envelope detectors is included to demodulate the frequency
dependent amplitude signal into I/Q signals for further post processing.

To validate the proposed MTM SIL radar, the experimental setup and its top view
sketch are shown in Figure 17. In Figure 17a, Target 1 is located at a distance of 0.6 m
with θ = −10◦, whereas Target 2 is located at a distance of 0.65 m with θ = −40◦ in
the backward side. The breath rate and heartbeat incorporated with a high pass filter at
the cutoff frequency of 0.5 Hz for both targets are presented in Figure 18. The measured
respiration rates for target 1 and target 2 are 18.3 beats/min and 18 beat/min, while
the ground truth for both targets is 18 beats/min. The heartbeat rates for target 1 and
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2 are 85.8 beats/min and 81.9 beats/min, while the ground truth are 87 beats/min and
81 beats/min for both targets, respectively.
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quency difference ∆݂ ൌ ଶ݂ െ ଵ݂ are chosen to illuminate the target, presented in Figure 19. 
In this case, the radiation angle ߠ for f1 and f2 are assumed to be the same, due to the small 
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Figure 17. (a) Experimental setup for detecting vital sign signals of two targets at different locations using MTM LWA based
on SIL radar sensor module; (b) its top view sketch [51].

The proposed MTM SIL radar sensor can track target location as well as detecting vital
sign signals concurrently. For location tracking, the angular information of targets can be
obtained from the dispersion relation based on the radiation pattern of MTM LWAs [47,66].
To further obtain the distance to the target, based on the frequency-shift keying (FSK)
method [67,68], two closely adjacent carrier frequencies f 1 and f 2 with a small frequency
difference ∆ f = f2 − f1 are chosen to illuminate the target, presented in Figure 19. In
this case, the radiation angle θ for f 1 and f 2 are assumed to be the same, due to the small
frequency difference.
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To illustrate the method, the transmitted signal is represented as:

Tk(t) = cos[2π fkt + Φk(t)], (19)

where k = 1, 2 and φk(t) are the phase noise from the voltage-controlled oscillator (VCO).
When a human target is located at the distance of d0, the reflected signal with phase
including the distance information, is injected into the oscillator. Neglecting the amplitude
response for simplicity, it can be expressed as

Rk(t) = cos
[

2π fkt− 4π(d0 + xv(t))
λk

+ Φk

(
t− 2d0

c

)]
, (20)
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where xv(t) represents the cardiac activity. According to Equation (19), because xv(t) is
much smaller than the distance d0, the phase term is approximately:

θk(t) =
4π(d0 + xv(t))

λk
≈ 4πd0

λk
, (21)

Therefore, by imposing the FSK method under pulse-width modulation (PWM) con-
trol, where the block diagram is shown in Figure 20, the phase difference of the two adjacent
tones is:

∆θ = θ2 − θ1 =
4πd0

λ2
− 4πd0

λ1
=

4π∆ f d0

c
, (22)
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As such, the distance between the target and radar sensor can be calculated using:

d0 =
c∆θ

4π∆ f
, (23)

If f 1 and f 2 are switched repeatedly at a small time interval of T1 and T2, respectively,
f 1 and f 2 can be considered to work simultaneously. Meanwhile, because of the small
frequency difference ∆ f , their frequency spectrums under the same Doppler frequency
have almost the same amplitude response, but different phase responses. Consequently,
once the phase difference ∆θ is obtained through executing the FFT, the distance can be
calculated from (23). Figure 21 depicts the I- and Q-baseband signals and their zoomed-in
view in the time domain with the PWM control signal, when the target is at the distance
of 0.65 m. It is noted that the periodic amplitude change can be observed clearly, which
is related to the chest motion due to the respiratory activity of the human target. The
normalized spectrum and phase information of the target are presented in Figure 22.

The measured breath rate is 18 beats/min, which agrees well with the ground truth.
Meanwhile, the phase response at the Doppler frequency, f = 0.3 Hz, is utilized to calculate
the distance through Equation (23), which gives 0.7 m with the actual distance of 0.65 m.
Along with the angular information obtained from the radiation pattern of the MTM LWA,
the target location in 2D space can be obtained. In Figure 17b, when both targets sit at
different locations in front of the radar sensor, the mean values of calculated distance with
corresponding respiration and heartbeat rate are summarized in Tables 1 and 2, respectively.
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Figure 22. Normalized spectrum with phase information of the target located at the distance of 0.65 m.

Table 1. Calculated distance results for both targets.

Mean of the Calculation
Results (m) Ground Truth (m) 1 Error (m) Standard

Deviation (m)

Target 1
0.55 0.6 0.05 0.03
0.81 0.85 0.04 0.04
1.01 1 −0.01 0.02

Target 2
0.7 0.65 0.05 0.08
0.77 0.8 0.03 0.06
0.98 1 0.02 0.04

1 The uncertainty of the ground truth for distance is 0.08 m.

Table 2. Vital sign results for both targets.

Distance (m) Respiration
(beats/min) Ground Truth Heartbeat

(beats/min) Ground Truth

Target 1
0.6 18.3 18 85.8 87

0.85 18 17 86.7 86
1 16.5 17 75 77

Target 2
0.65 18 18 81.9 81
0.8 15 15 83.4 83
1 15 16 79 80

4. Two-Dimensional (2D) Beam Scanning Metamaterial LWA Design

As indicated in (5), the CRLH TL can be applied to fabricate the MTM LWA to achieve
the frequency-dependent beam scanning capability. To realize the 2D beam scanning for
vital sign detection, a 2D MTM LWA array operating at 24 GHz band is proposed [52],
which incorporates four 1D frequency-dependent beam scanning MTM LWAs with a
series feeding network, shown in Figure 23. The series feeding network contributes to the
different phase responses for four 1D frequency-dependent beam scanning MTM LWAs
at one operation frequency, illustrated in Figure 24a. Therefore, 2D beam scanning can be
realized by controlling the phase difference between each 1D antenna element. Figure 24b
shows the reflection coefficient (S11) is less than −6 dB from 23.4 to 25.4 GHz. Within the
same operation frequency range, its radiation pattern is shown in Figure 25. It can be seen
that the main beam scans in a 2D fashion with respect to the frequency change.
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As such, the designed 2D frequency-dependent beam scanning MTM LWA array can
be used to detect the vital sign signals of multiple targets. To verify the 2D beam scanning
capability, the designed MTM LWA array connected with a vector network analyzer (VNA)
is utilized to detect vital sign signals of two persons with different heights, as shown in
Figure 26. In this scenario, Person 1 sits with his chest facing the radiation angle of the
main beam at 24.1 GHz, while Person 2 stands with his chest facing the radiation angle of
the main beam at 24.4 GHz. By performing the FFT on the scattering parameters obtained
from the VNA, vital sign signals, including respiration and heartbeat rates, can be obtained
as shown in Figure 27. The measured respiration and heartbeat rates of Person 1 are
18 beats/min and 99 beats/min, respectively. Meanwhile, the measured respiration and
heartbeat rates of Person 2 are 18 beats/min and 90 beats/min, respectively.
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5. Conclusions

Over the past few decades, vital sign detection and location tracking using radar
sensor modules have become a hot topic because of their non-contact and penetrable
characteristics. With the development of semiconductors and algorithms, it has been
demonstrated that different radar sensor architectures can obtain accurate vital sign in-
formation and target locations. On the other hand, multi-target detection based on radar
sensor module is likely to be a trend for detecting vital sign information and location
tracking. The main properties of different methods for multi-target detection using radar
sensors are summarized in Table 3. As can be seen, MTM LWA-based vital radar sensors
have several advantages such as low complexity and compact size. To this end, this paper
reviews the recent development of radar sensors based on frequency-dependent beam
scanning using MTM LWA, including MTM LWA-based homodyne architecture, MTM
LWA using the self-injection locked (SIL) radar architecture, and 2D beam scanning MTM
LWA design. Experimental detection results reveal the effectiveness of vital sign signals
and location tracking for multiple targets using MTM LWAs based on these architectures.

Table 3. Main properties of methods for multi-target detection using radar sensors.

Radar Configuration Signal Processing Method Number of Antennas Used System Size

Mechanical Rotors [23] FFT Low Large
SIMO [29] ADMS etc. High Medium
MIMO [26] Frequency analysis etc. High Medium

RF switch-based radar system [30] Heuristic digital signal processing High Medium
MTM LWA [51] FFT Low Small

Author Contributions: C.-T.M.W. conceived and designed the experiments; Y.Y. performed the exper-
iments analyzed the data and wrote the paper. All authors have read and agreed to the published
version of the manuscript.
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