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Abstract

Objective With pancreatic cancer’s dismal prognosis, developing accurate predictive tools is crucial for personalized
treatment. This study aims to develop and evaluate a radiomics-3D deep learning fusion model to enhance survival
prediction accuracy and explore its potential for clinical risk stratification in pancreatic cancer patients.

Methods This study retrospectively analyzed from pancreatic cancer patients treated at two hospitals between
2013 and 2023. Patients were split into training and test cohorts (7:3). Baseline clinical data and portal venous phase
contrast-enhanced CT images were collected. Two physicians independently delineated tumor regions of interest
(ROIs), and 1,037 radiomic features were extracted. After dimensionality reduction via Principal component analysis
(PCA) and feature selection with LASSO regression, a radiomics model was developed using the random survival
forest (RSF) algorithm to predict overall survival, accounting for censored data. A separate 3D-DenseNet model was
trained using ROI-based image inputs to extract deep features. For fusion models, we adopted a binary classification
approach to predict survival status at 1-, 2-, and 3-year time points. Radiomics features, 3D-DenseNet outputs, and
clinical variables were integrated using logistic regression, random forest, support vector machine, and decision tree
classifiers. Model performance was evaluated using receiver operating characteristic (ROC) curves, area under the
curve (AUCQ), and accuracy. The best-performing fusion model was selected for clinical risk stratification. Kaplan-Meier
curves and Log-rank tests were used to assess survival differences between risk groups.

Result A total of 880 eligible patients were included in this study. In the test cohort, the performance of each model
in predicting 1-year, 2-year, and 3-year survival was evaluated. The radiomics model achieved AUC values of 0.78, 0.85,
and 0.91, with corresponding accuracies of 0.75,0.77, and 0.77. The 3D-DenseNet model demonstrated AUC values
of 0.81,0.79, and 0.75, with accuracies of 0.72, 0.76, and 0.77. The fusion model, developed using logistic regression,
exhibited superior predictive performance with AUC values of 0.87,0.92, and 0.94, and accuracies of 0.84, 0.86, and
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demonstrated potential utility in patient risk stratification.

0.89, outperforming the individual unimodal models. Risk stratification based on the fusion model categorized
patients into high-risk and low-risk groups, revealing a statistically significant difference in OS between the two
groups (P<0.001). Feature contribution analysis indicated that the 3D-DenseNet model had the greatest influence on
the predictions of the fusion model, followed by the radiomics model.

Conclusion This study developed a fusion model incorporating radiomics features, deep learning-derived features,
and clinical data, which outperformed unimodal models in predicting survival outcomes in pancreatic cancer and

Keywords Pancreatic cancer, Radiomics, Deep learning, 3D-DenseNet, Prognostic prediction

Introduction

Pancreatic cancer is one of the most aggressive and lethal
malignancies globally, with a 5-year relative survival
rate of only 12.8% [1]. In 2022, it ranked 9th in cancer-
related mortality in China, with the 7th highest number
of deaths [2]. The asymptomatic nature of the disease
in its early stages often leads to late diagnosis, typically
when the tumor is already in advanced stages. Therefore,
timely prognostic prediction after diagnosis is crucial for
improving survival rates in pancreatic cancer patients.
Stratifying patients based on mortality risk before treat-
ment can assist physicians in developing personalized
treatment plans and provide important guidance for sub-
sequent relapse monitoring and follow-up. Developing
accurate and reliable prognostic prediction methods for
pancreatic cancer remains an urgent challenge.

Tumor staging and differentiation play a critical role in
determining the prognosis of pancreatic cancer patients.
However, the prognostic factors for pancreatic cancer
are multifactorial, and even among patients with the
same stage of disease, there can be significant variation
in recurrence rates and survival outcomes [3]. Recent
studies have identified numerous histopathological fea-
tures, clinical factors, and biological fluid biomarkers that
could serve as prognostic predictors for pancreatic can-
cer [4, 5]. However, many of these factors require invasive
procedures or are expensive, which limits their clinical
utility. Moreover, common prognostic factors may be
affected by interobserver variability, and their sensitiv-
ity and specificity can vary significantly. In this context,
radiomics, as a technique for extracting quantitative fea-
tures from medical imaging [6], has shown potential in
prognostic prediction of tumors [7, 8].

The concept of radiomics was first formally introduced
by Lambin et al. in 2012, and later further refined and
expanded in 2017 [9, 10]. Radiomics utilizes computa-
tional algorithms to extract a wide range of high-dimen-
sional, quantifiable features from medical imaging, such
as shape, texture, intensity distribution, and contrast,
which can reflect the tumor’s microstructure and biologi-
cal behavior, and subsequently assist in disease diagnosis
and treatment [11].

In recent years, the development of 3D deep learning
technology has further advanced this field. Traditional
radiomics methods typically rely on two-dimensional
imaging data and predefined feature extraction tech-
niques, which may overlook the full spatial heterogene-
ity of the tumor. In contrast, 3D deep learning models
can automatically learn complex spatial features from
the entire tumor volume in an end-to-end manner, elimi-
nating the need for handcrafted features and enhancing
consistency, scalability, and predictive accuracy [12, 13].
These models are typically built upon architectures such
as DenseNet, ResNet, or hybrid frameworks incorpo-
rating attention mechanisms or transformers [14]. Such
approaches are capable of capturing both local texture
and global spatial relationships within volumetric data,
providing a richer and more comprehensive representa-
tion of tumor morphology. Furthermore, 3D deep learn-
ing is applicable to a wide range of medical imaging
tasks, including prognosis prediction, tumor segmenta-
tion, detection, and classification, thereby offering strong
potential for integration into clinical decision support
systems [15].

This study aims to compare the performance of
radiomics models and 3D deep learning models in prog-
nostic prediction for pancreatic cancer patients. We pro-
pose a fusion model that combines the predictive results
of radiomics, 3D deep learning, and clinical features to
further enhance the accuracy of prognostic prediction.
Through this study, we hope to provide a more effective
tool for pancreatic cancer risk stratification and clinical
decision-making, ultimately improving patient manage-
ment and outcomes.

Methods

Patients

The study was approved by the Ethics Committee of the
First Affiliated Hospital of Soochow University. A total of
880 patients diagnosed with pancreatic cancer between
January 1, 2013, and December 31, 2023, were retro-
spectively collected from two hospitals, including 520
patients from the First Affiliated Hospital of Soochow
University and 360 patients from the Second Affiliated
Hospital of Soochow University. All patients received
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follow-up treatment in accordance with the CSCO guide-
lines for the diagnosis and treatment of pancreatic cancer
[16]. The inclusion criteria were: (1) Histopathological
diagnosis of pancreatic cancer; (2) Abdominal contrast-
enhanced CT examinations performed at our hospital
before definitive treatment. The exclusion criteria were:
(1) Lack of complete baseline clinical data or follow-up
data; (2) Combined with a history of other malignant
tumors; (3) Poor quality of contrast-enhanced CT imag-
ing, defined as scans with significant motion artifacts,
insufficient contrast enhancement (i.e., poor visualization
of pancreatic parenchyma and vessels during the portal
venous phase), image blurring affecting tumor boundary
visibility, or incomplete coverage of the pancreas within
the scanning range. Patients were divided into a training
set (n=616) and a testing set (n=264) in a 7:3 ratio. The
specific selection process for the study cohort is shown
in Fig. 1. Demographic characteristics such as gender
and age were collected from electronic medical records.
Tumor clinical staging was assessed according to the 8th
edition of the AJCC (American Joint Committee on Can-
cer) staging system. Overall survival (OS) was followed
up through telephone interviews and inpatient medi-
cal records, defined as the time from initial pathological
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diagnosis to death from any cause or the last known date
of survival (Figure S 4). The follow-up was censored on
June 1, 2024. OS was binarized as “survival” or “death”
for machine learning classification. Death within 1-year,
2-year, and 3-year post-diagnosis was labeled as “death,’
while survival at these time points was labeled as “sur-
vival” Patients without follow-up information were
already excluded according to the predefined exclusion
criteria.

Imaging protocol and preprocessing

All patients underwent contrast-enhanced abdominal CT
scans before initiating treatment. Imaging was performed
using a 256-slice CT scanner, the GE Revolution CT from
GE, USA, at the First Affiliated Hospital of Soochow Uni-
versity, and a 64-slice helical CT scanner, the GE Dis-
covery CT 750 HD, at the Second Affiliated Hospital of
Soochow University. Scan parameters were similar at
both hospitals, with a tube voltage of 120 kV and a slice
thickness and interslice gap of 5 mm. The Second Affili-
ated Hospital used automatic milliampere modulation,
while the First Affiliated Hospital set the tube current
between 200 and 450 mAs. Both hospitals used iodixa-
nol 320 as the contrast agent, administered at a dose of

Patients pathologically diagnosed with pancreatic cancer from
January 2013 to December 2023.

Institution 1
n=949

Institution 2
n=1344

Exclusion (n=429)

(1) Did not undergo contrast-enhanced
abdominal CT before treatment (n=193)
(2) Lack complete baseline clinical data
or follow-up data (n=211)

(3) Combined with a history of other
malignant tumors (n=9)

(4) Poor CT image quality (n=16)

Exclusion (n=984)

(1) Did not undergo contrast-enhanced
abdominal CT before treatment (n=288)
(2) Lack complete baseline clinical data
or follow-up data (n=311)

(3) Combined with a history of other
malignant tumors (n=21)

(4) Poor CT image quality (n=4)

| Total Cohort |_
n=880

Training Set
n=616

Validation Set
n=264

Fig. 1 Flowchart diagram shows the patient selection process from two medical centers. A total of 880 patients were included in this study and randomly
divided into a training set (1=616) and a test set (n=264) at a ratio of 7:3. *Institution 1: The First Affiliated Hospital of Soochow University; Institution 2:

The Second Affiliated Hospital of Soochow University
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approximately 1.4 mL per kilogram of body weight at an
injection rate of 3 mL per second. Arterial phase images
were acquired using an automatic triggering method,
with a threshold of 100 Hounsfield units. Venous phase
images were obtained after a 60-second delay.

Portal venous phase contrast-enhanced CT images in
DICOM format were imported into 3D Slicer software
(version 5.6.1). Guided by a senior radiotherapy oncolo-
gist (20 years of experience), a radiotherapy oncologist
and a gastroenterologist (each with 3 years of experi-
ence) independently delineated tumor boundaries to cre-
ate regions of interest (ROIs), carefully avoiding adjacent
vessels, dilated bile ducts, and pancreatic ducts. Both
physicians were blinded to the clinical outcomes prior
to the ROI segmentation. If the two physicians produced
significantly different ROIs for the same patient, a third
radiologist (20 years of experience) reviewed the case
and made the final decision in accordance with NCCN
(National Comprehensive Cancer Network) guidelines.
To assess the reliability and consistency of the ROI delin-
eation, the intraclass correlation coefficient (ICC) was
used for validation.

Radiomic feature extraction

Before feature extraction, the images were resampled
using 3D Slicer software to a voxel size of 3 x 3x 3 mm?® to
ensure isotropy, thereby minimizing variability due to dif-
ferences in scanning equipment and protocols. Radiomic
features were then extracted using the Radiomics plugin
within the 3D Slicer software. A total of 1,037 features
were extracted, including 108 original features and 929
filtered features (LoG and wavelet), which were classified
into seven categories: shape features, first-order (FO) fea-
tures, features based on gray-level co-occurrence matri-
ces (GLCM), gray-level dependence matrix (GLDM)
features, features based on run-length matrices (RLM),
features based on size-zone matrices (SZM), and features
based on neighborhood gray-tone difference matrices
(NGTDM).

The development and evaluation of models

Radiomics based model

To reduce the dimensionality of features and address the
issue of multicollinearity, principal component analysis
(PCA) was applied to the extracted radiomic features. We
selected principal components that together explained
80% of the cumulative variance to minimize redundancy
while retaining the most informative aspects of the origi-
nal feature set. Subsequently, feature selection was fur-
ther refined using the Least Absolute Shrinkage and
Selection Operator (LASSO) regression, with the optimal
X value determined via 10-fold cross-validation. The final
input features were determined by retaining principal
components with non-zero coefficients.
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The Random Survival Forest (RSF) algorithm, an
ensemble tree-based method, is designed to analyze
survival time data and predict individual survival prob-
abilities or risks. RSF constructs models by integrat-
ing multiple survival trees, providing high stability and
robustness while effectively reducing the risk of overfit-
ting. Additionally, it captures complex non-linear rela-
tionships and automatically identifies key features closely
associated with survival outcomes, thereby enhancing
the interpretability of the model [17, 18]. In recent years,
RSF has been widely applied to survival analysis prob-
lems [19]. In this study, the RSF algorithm was utilized
to construct models in the training set for predicting
1-, 2-, and 3-year survival probabilities of patients. The
RSF model was implemented using the randomForest-
SRC package in R. The number of trees (ntree) was set
to 345, and the minimum terminal node size (nodesize)
was optimized using the tune.nodesize() function, which
selects the optimal value based on the out-of-bag (OOB)
prediction error. The number of random splits (nsplit)
was set to 11. The discriminatory ability of the models
was evaluated using the receiver operating characteristic
(ROCQ) curve and its area under the curve (AUC), while
prediction consistency was assessed through accuracy
measurements.

3D-Densenet based model

Given the importance of capturing three-dimensional
structural information in medical imaging, we developed
a deep learning model based on a three-dimensional
densely connected convolutional network (3D-DenseNet)
to predict 1-, 2-, and 3-year survival outcomes in pancre-
atic cancer patients. The 3D-DenseNet model was imple-
mented using the MONAI (Medical Open Network for
Al) framework, which is specifically designed for medical
imaging analysis and provides robust deep learning tools
optimized for healthcare applications.

The previously segmented tumor regions (ROI) were
standardized to a fixed size of 96x 96 x 96 voxels using
linear interpolation to ensure uniform input dimensions
and reduce computational complexity. To address the
limitations of small sample datasets and enhance model
robustness, image preprocessing was performed, includ-
ing pixel intensity normalization, explicit channel dimen-
sion addition, and data type standardization. During the
training phase, data augmentation techniques such as
random 90-degree rotations, axis flipping, and Gaussian
noise injection were applied to improve the model’s gen-
eralization capability.

The 3D-DenseNet architecture consisted of four
densely connected blocks containing 6, 12, 24, and 16
convolutional layers, respectively. By leveraging dense
connectivity, the model reused features from previ-
ous layers, improving feature learning efficiency and
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reducing the number of parameters. To extract both
global and local features, a dual-input design (Dualln-
putDenseNet) was adopted, integrating a whole-image
branch and an ROI branch. The whole-image branch uti-
lized 3D-DenseNet to extract global features, while the
ROI branch employed two 3D convolutional layers, each
followed by a ReLU activation function and max pooling
operation, to progressively downsample and extract high-
level ROI features. The outputs of both branches were
concatenated along the channel dimension and passed
through fully connected layers for feature fusion and final
classification. The model was optimized using the Adam
optimizer and trained for 100 epochs with a learning
rate of 1x10™ In each epoch, a batch loader was used
to retrieve training data in batches. Cross-entropy loss
was employed as the optimization objective, and model
performance was monitored using test accuracy com-
puted on the hold-out test set at each epoch. The model
checkpoint that achieved the highest test set accuracy
was saved for final evaluation. During the testing phase,
data augmentation steps were disabled, and only normal-
ization and resizing were applied to ensure stability and
consistency in the evaluation process.

After training, the optimal 3D-DenseNet model was
used to predict 1-, 2-, and 3-year survival probabilities for
patients in both the training and test sets. AUC was cal-
culated to assess the model’s discriminative ability. Addi-
tionally, accuracy was evaluated to measure classification
consistency.

Fusion model

To further enhance the performance of the prognos-
tic prediction model, this study built a fusion model by
performing decision-level fusion of the radiomics model
and the 3D-DenseNet model. The predictions from both
models were combined with clinical features of patients
(gender, age, T stage, N stage, and M stage) to predict
the 1-, 2-, and 3-year survival outcomes. This approach
aimed to fully leverage the different types of data to
enhance the model’s predictive ability, thereby improving
its generalizability and accuracy. To identify the optimal
fusion model, four different machine learning algorithms
were employed, including Logistic Regression, Random
Forest, Support Vector Machine (SVM), and Decision
Tree. The model performance was evaluated using accu-
racy and AUC.

After determining the optimal fusion model, patients
were stratified based on mortality risk scores predicted
by the model. Specifically, the optimal risk cutoff value
was identified using X-tile software (version 3.6.1), and
all patients were classified into low-risk and high-risk
groups accordingly. Kaplan-Meier (KM) survival curves
for the high-risk and low-risk groups were then plot-
ted separately in both the training and test cohorts. A
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log-rank test was used to evaluate the statistical signifi-
cance of survival differences between the two groups. Fig-
ure 2 provide an overview of the overall study workflow.

Statistical analysis

All statistical analyses were performed using SPSS 26.0,
R software (version 4.3.2), and Python 2.7.5. The demo-
graphic and clinical characteristics between the train-
ing and test sets were compared using SPSS 26.0. For
continuous variables, an independent sample t-test was
applied if the data followed a normal distribution, while
the Mann-Whitney U test was used for non-normally
distributed variables. Categorical variables were com-
pared using the chi-square test. All statistical tests were
two-sided, and a p-value<0.05 was considered statisti-
cally significant. Feature selection, model construction,
and evaluation of radiomics-based predictive models
were performed using R (version 4.3.2). The “glmnet”
package was employed for LASSO regression to select
significant radiomic features. The “randomForestSRC”
and “survival” packages were used to develop survival
prediction models, while the “ggplot2” package was uti-
lized for data visualization. The 3D deep learning model
was constructed and evaluated using Python 2.7.5. The
remaining general statistical analyses were conducted
using R software.

Result

Patient characteristics

A total of 880 patients were included in this study, with
616 patients in the training cohort and 264 patients in the
test cohort. The baseline characteristics of both cohorts
are summarized in Table 1. The median follow-up time
was 36 months for the training cohort and 29 months for
the test cohort. During the follow-up period, 448 patients
(72.7%) in the training cohort and 203 patients (76.9%)
in the test cohort were confirmed deceased. In the train-
ing cohort, there were 354 male and 262 female patients,
while the test cohort included 147 male and 117 female
patients. The mean age of patients in the training cohort
was 68.68 years, whereas the mean age in the test cohort
was 66.39 years. There were no statistically significant
differences in baseline characteristics between the two
cohorts (p>0.05).

Consistency analysis

Contrast-enhanced CT images from 50 randomly
selected pancreatic cancer patients were independently
segmented by two researchers. The interobserver consis-
tency of tumor boundary delineation was quantitatively
assessed using the intraclass correlation coefficient (ICC).
The results showed an ICC value of 0.81 between the two
researchers, indicating good reliability and consistency in
tumor boundary segmentation. As shown in Figure S 1.
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Fig. 2 Workflow diagram for developing a predictive model. Tumor segmentation and region of interest (ROI) delineation were performed by two physi-
cians. Quantitative features, including intensity, shape, and texture, were extracted from the ROI to train the radiomics model, while a deep learning model
was trained based on the 3D-DenseNet framework. On this basis, a fusion model was constructed by integrating the predicted 1-year, 2-year, and 3-year
survival probabilities from the radiomics model and 3D-DenseNet models along with baseline clinical characteristics of the patients. *3D-DenseNet,
three-dimensional densely connected convolutional networks

Table 1 Baseline characteristics of study sets

Group  Training set test set(n=264) p-value
(n=616)
Mean (Median) Mean (Median)
or Count or Count
(Percentage) (Percentage)
Age 68.68 (68) 66.39 (67) 042
Gender
Male 354 (57.50%) 147 (55.70%) 0.66
Female 262 (42.50%) 117 (44.30%)
T Stage 0.29
1 53 (8.6%) 22 (8.3%)
2 290 (47.10%) 127 (48.10%)
3 143 (23.20%) 48 (18.20%)
4 130 (21.1%) 67 (25.40%)
N Stage 0.08
0 267 (43.30%) 93 (35.20%)
1 235 (38.10%) 118 (44.70%)
2 114 (18.50%) 53 (20.10%)
M Stage 0.08
0 456 (75.50%) 184 (69.70%)
1 151 (24.50%) 80 (30.30%)
Follow-up 46.73 (36) 44.71 (29) 0.19
Time

P<0.05 indicates statistical significance

Radiomics feature selection

A total of 1,037 radiomic features were extracted for each
patient. Dimensionality reduction was performed using
PCA, retaining the top 21 principal components that
cumulatively explained 80% of the total variance (Figure
S 2). The 80% threshold was chosen as it is a widely rec-
ognized standard in previous literature [10, 20], ensuring
maximal information retention while effectively eliminat-
ing redundant features. Subsequently, LASSO regression
was applied, identifying nine significant features with
nonzero coefficients. The optimal regularization param-
eter (\) was determined using 10-fold cross-validation
within the training set, selecting the value correspond-
ing to the minimum mean cross-validated error. Figure 3
illustrates the coefficient path and cross-validation curve
for feature selection using LASSO.

Performance of the radiomics model and 3D deep learning
model
Using the nine principal components selected through
PCA and LASSO regression, we developed a survival
prediction model for 1-, 2-, and 3-year survival outcomes
using RSE. Figure 4 presents the ROC curves for predict-
ing 1-, 2-, and 3-year survival, with AUC values of 0.78,
0.85, and 0.91, respectively. The corresponding accuracy
rates were 0.73, 0.77, and 0.77 (Table 2).

In the test cohort, the 3D-DenseNet deep learn-
ing model achieved AUC values of 0.81, 0.79, and 0.75
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Fig. 3 The results of LASSO regression analysis. A LASSO coefficient profiles of the expression of 21 variables. B Selection of the A in the regression analy-
sis via 10-fold cross-validation. The dotted vertical lines are plotted at the optimal values following the minimum criteria (right) and “one standard error”

criteria (left).

for predicting 1-, 2-, and 3-year survival, respectively.
The corresponding accuracy rates were 0.72, 0.76, and
0.77. Tts performance was slightly inferior to that of the
radiomics model (Table 2). Figure 5 presents the ROC
curves of the 3D-DenseNet model for predicting 1-, 2-,
and 3-year survival in both the training and test cohorts.

Performance of the fusion model and feature contribution
Figure 6 presents the ROC curves of fusion models con-
structed using different algorithms, with detailed perfor-
mance metrics summarized in Table 2. Among them, the
fusion model based on logistic regression demonstrated
the best performance in the test cohort, achieving AUC
values of 0.87, 0.92, and 0.94 for predicting 1-, 2-, and
3-year survival, respectively. The corresponding accuracy
rates were 0.84, 0.86, and 0.89, making it the best-per-
forming fusion model.

Finally, Figure 7 compares the ROC curves of the
optimal fusion model based on logistic regression, the
radiomics model, and the 3D-DenseNet model in the test
cohort. The results indicate that the fusion model dem-
onstrated superior predictive performance compared to
the radiomics model and the 3D-DenseNet model for 1-,
2-, and 3-year survival predictions.

By analyzing the contribution of each feature in the
fusion model, we obtained the feature importance rank-
ing (Figure 8). The results showed that the prediction
output from the 3D-DenseNet model contributed the
most to the predictive performance of the fusion model,
with a significantly higher Mean Decrease Gini value
than other features. This was followed by the prediction
output from the radiomics model, which also played a

key role in the fusion model’s risk assessment. Patient age
and T stage ranked third and fourth, respectively, indicat-
ing that clinical characteristics also had a certain impact
on the risk assessment capability of the fusion model.

Patient risk stratification using the optimal fusion model
To assess the clinical applicability of the optimal fusion
model, patients were stratified based on the mortality
risk predicted by the model. Using X-tile software, a risk
score cutoff of 0.8 was determined to maximize the inter-
group difference, classifying all patients into low-risk and
high-risk groups (Figure S 3). KM survival curves were
plotted for both groups in the training and test cohorts,
showing clear separation (Figure 9), indicating a signifi-
cant difference in survival outcomes between the two
groups. The Log-rank test confirmed that the survival
differences were statistically significant in both the train-
ing and test cohorts (p <0.0001).

Discussion
This study developed a multimodal fusion model inte-
grating radiomics and 3D deep learning for progno-
sis prediction in pancreatic cancer patients. The fusion
model demonstrated significantly better performance
compared to the standalone radiomics model and the
3D-DenseNet model. Risk stratification analysis showed
that the model effectively distinguished patients into
high-risk and low-risk groups, with a significant survival
difference between the two.

Radiomics, which extracts high-throughput features
from medical images, provides a novel tool for prognosis
prediction, treatment response evaluation, and biological
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Fig. 4 Performance of survival prediction. The ROC curves of the radiomics model in the training and test sets. a Model predicting 1-year survival; b
Model predicting 2-year survival; ¢ Model predicting 3-year survival. * AUC, the Area Under the Receiver Operating Characteristic Curve

behavior analysis of malignant tumors. In recent years,
radiomics has gained increasing attention in pancreatic
cancer research. Numerous studies [21-23] have dem-
onstrated the significant advantages of radiomics in the
diagnosis and differential diagnosis of pancreatic cancer.
Additionally, Borhani et al. [24] found that texture fea-
tures from CT images could predict early responses to
neoadjuvant chemotherapy in pancreatic cancer patients.
Nasief et al. [25] reported that combining CA19-9 with
radiomic features improved the prediction of treat-
ment outcomes in pancreatic cancer, highlighting the

potential of radiomics in evaluating treatment response.
Parr et al. [26] demonstrated that radiomics-based mod-
els outperformed traditional clinical models in predict-
ing overall survival and recurrence. Similarly, Cen et al.
[27] developed a nomogram model based on radiomic
features from contrast-enhanced CT, achieving high per-
formance in preoperative staging and survival prediction
of pancreatic ductal adenocarcinoma (PDAC). Our study
highlights the clinical utility of radiomics in pancreatic
cancer prognosis, with an RSF-based model accurately
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Table 2 The AUC and accuracy of different models in predicting 1-year, 2-year, and 3-year survival outcomes in the training and test

sets
1 Year 2 Year 3 Year
AUC Accuracy AUC Accuracy AUC Accuracy
Training Set Radiomics Model 0.831 0.739 0.855 0.805 0.862 0.786
(n=616) 3D-DenseNet Model 0.821 0.729 0.837 0.774 0.789 0.779
Fusion Model
Logistic Regression 0916 0.862 0.941 0.877 0.941 0.89
Random Forest 0.965 0.904 0973 0.907 0.979 0.932
SYM 0922 0.867 0.949 0.888 0.953 0.903
Decision Tree 0.901 0877 0.888 0.898 092 0.906
Test Set Radiomics Model 0.782 0.754 0.854 0.765 0.909 0.765
(n=264) 3D-DenseNet Model 0.808 0.716 0.785 0.758 0.749 0.773
Fusion Model
Logistic Regression 0.874 0.841 0.919 0.864 0.944 0.886
Random Forest 0.843 0.822 0.925 0.864 0.938 0.886
SVM 0.852 0.845 0.927 0.867 0.932 0.867
Decision Tree 0.763 0.803 0.791 0.852 0912 0.860

*AUC The Area Under the Receiver Operating Characteristic Curve, SVM Support Vector Machine

predicting 1-, 2-, and 3-year survival, reinforcing its role
in guiding personalized treatment.

Compared with traditional 2D methods, 3D models
can more comprehensively analyze the overall morphol-
ogy of tumors, boundary characteristics, and their spatial
relationships with surrounding tissues. Additionally, they
better align with the inherent three-dimensional struc-
ture of common medical imaging modalities such as CT
and Magnetic Resonance Imaging (MRI). By processing
multiple consecutive slices simultaneously, 3D models
help prevent information loss [28]. Deep learning enables
the automatic extraction of high-level features directly
from raw images, eliminating the subjectivity and limita-
tions associated with manually designed features [29]. As
a result, 3D deep learning has become a research hotspot
in medical image analysis and precision medicine. It has
shown great potential in various areas, including tumor
diagnosis, prognosis prediction, and treatment response
assessment [30, 31]. A retrospective study [32] proposed
a multi-modal deep learning method based on 3D con-
volutional neural network (3D-CNN), which utilizes
multi-channel MRI images combined with support vec-
tor machine (SVM) to predict the survival of high-grade
glioma patients. The method achieved an accuracy of
90.66%, outperforming traditional radiomics-based
approaches. Similarly, Joo S et al. [33] designed a deep
neural network that combined ResNet-50 with 3D-CNN
for MRI analysis, significantly improving the prediction
of pathological complete response (pCR) to neoadjuvant
chemotherapy in breast cancer patients (AUC=0.888).
To our knowledge, systematic research on the application
of 3D deep learning in pancreatic cancer remains lim-
ited. In our study, we developed a prognostic prediction
model based on 3D-DenseNet using contrast-enhanced

abdominal CT images of pancreatic cancer patients.
While the model demonstrated good predictive perfor-
mance, it showed slightly lower AUCs than the radiomics
model for 2- and 3-year survival predictions, though it
performed better for 1-year prediction. Overall, its aver-
age performance was slightly inferior to the radiomics-
based model. A study by Kim H et al. [34] reported
similar findings, employing a 2D-DenseNet to analyze
axial, coronal, and sagittal sections of lung CT scans.
They developed a model termed the “2.5D” model, which
outperformed the 3D-DenseNet in lung cancer classifi-
cation. Several factors may explain this finding. First, 3D
deep learning models require large datasets for optimal
training, and the limited sample size in this study may
have constrained the model’s learning capacity. Second,
radiomics models leverage handcrafted features based
on prior knowledge and clinical experience, enhancing
interpretability and specificity. In contrast, deep learn-
ing models extract features automatically, which, while
capturing complex patterns, may introduce redundancy
or overlook key prognostic factors, potentially affect-
ing predictive accuracy. To address these limitations,
we integrated both models’ predictive outputs, leverag-
ing the interpretability of radiomics with the automated
feature extraction of deep learning. The resulting fusion
model outperformed single-modal models, highlight-
ing its potential for improving pancreatic cancer prog-
nosis. Feature contribution analysis based on the Gini
importance ranking showed that predictions from the
3D-DenseNet and radiomics models had the greatest
influence on the fusion model’s output. This suggests that
imaging-derived features may provide greater prognos-
tic value for pancreatic cancer survival than traditional
clinical variables such as gender, age, or TNM staging. In
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Fig. 5 Performance of survival prediction. The ROC curves of the 3D-DenseNet model in the training and test sets. a Model predicting 1-year survival; b
Model predicting 2-year survival; ¢ Model predicting 3-year survival. *AUC, the area under the receiver operating characteristic curve

future work, we will explore multimodal fusion strategies
incorporating additional imaging modalities (e.g., MRI or
PET-CT), particularly when such modalities offer com-
plementary anatomical or functional information. How-
ever, we acknowledge that incorporating more data types
does not automatically guarantee better performance and
should be supported by specific clinical rationale and val-
idated through comparative studies.

A systematic review compared the performance of
radiomics models, deep learning (DL) models, and

multimodal fusion models in medical imaging. The
results demonstrated that fusion models exhibited
superior performance in 63% of the studies, underper-
formed in 25% of the studies, and showed comparable
performance to other models in 13% of the studies [35].
These variations may be influenced by the different
fusion strategies employed. Feature-level fusion (early
fusion) and decision-level fusion (late fusion) are two
common strategies in multimodal data analysis. Fea-
ture-level fusion integrates multimodal features (such
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Fig. 6 Performance of survival prediction. The ROC curves of the fusion model based on different algorithms in the training and test sets. a Model pre-
dicting 1-year survival; b Model predicting 2-year survival; ¢ Model predicting 3-year survival. *AUC, the area under the receiver operating characteristic

curve; svm: support vector machine.

as radiomics, deep learning, and clinical data) into a
single feature vector for classification, capturing com-
plex interactions but facing challenges like high dimen-
sionality and sensitivity to noise. Decision-level fusion,
on the other hand, combines predictions from different
models, offering flexibility and reducing overfitting risk,
though it may lead to a loss of feature interactions [36].
Given that our study primarily relies on imaging-based
features (radiomics and 3D deep learning), which differ

significantly in nature and dimensionality, we adopted
a decision-level fusion strategy to avoid introducing
feature-level noise and to maintain model interpret-
ability. Moreover, since the radiomics and deep learn-
ing models were already optimized independently, their
outputs were well-suited for decision-level integration.
This strategy is particularly advantageous when the fea-
ture distributions across modalities are heterogeneous,
the feature spaces are high-dimensional, and early fusion
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may lead to overfitting due to increased model complex-
ity. Decision-level fusion also allows for more flexible
model designs and enables each modality to contribute
without being constrained by strict alignment or normal-
ization requirements. Although previous studies in other
disease domains have demonstrated the effectiveness of
decision-level fusion [37, 38], the choice of fusion strat-
egy remains an open research question in machine learn-
ing. Our decision was therefore based on a combination

of theoretical considerations—such as mitigating overfit-
ting risk and preserving modular model structure—and
empirical evidence supporting its feasibility in medical
imaging tasks.

Our study has certain limitations. First, as a retrospec-
tive study, it may be subject to selection bias and diffi-
culty in fully controlling confounding factors. Second,
the sample size is relatively small, particularly the test
cohort, which may affect the model’s generalizability
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Fig. 8 Feature importance ranking in the fusion model. The x-axis represents feature importance, while the y-axis lists the features analyzed. The color
legend distinguishes different feature categories. Features with higher values contribute more to the model’s predictive performance

and clinical applicability. Third, although data were col-
lected from two independent medical centers, we did not
designate one center as an external test set. Preliminary
experiments showed that using one center solely for test-
ing led to a significant performance drop, likely due to
inter-center differences in imaging protocols and popu-
lation characteristics. As a result, we chose to combine
both datasets and perform stratified random sampling to
construct the training and test sets. While this approach
improves stability and robustness, it limits our ability to
assess generalizability across truly independent settings.
Future research should incorporate external datasets
from additional institutions to further validate the model’s
clinical utility. This study integrated CT-based radiomics
features with selected clinical data but did not include
hematological tests, pathological characteristics, or

genomic data. This decision was primarily driven by the
aim of developing an imaging-centered risk stratification
tool to minimize invasive procedures and additional labo-
ratory tests, thereby reducing patient burden and health-
care costs. By focusing on imaging data and basic clinical
characteristics, we aimed to construct a more streamlined
and widely applicable model for clinical practice.

Conclusion

The fusion model based on the logistic regression algo-
rithm, integrating radiomics, 3D deep learning, and
clinical features, demonstrated the best performance in
predicting the prognosis of pancreatic cancer patients,
with the highest prediction accuracy and strong discrimi-
native ability, effectively stratifying patients into low-risk
and high-risk groups.
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Supplementary Material 1. Figure S 1. Scatter Plot of ICC Values for Each
Feature. The scatter plot illustrates the ICC values for radiomic features
extracted from ROIs delineated by two independent researchers. The ICC
values range from 0 to 1, with a mean value of 0.81. ICC values generally
interpreted as follows: ICC < 0.5 indicates poor agreement, 0.5 <ICC<0.75
represents moderate agreement, 0.75 <ICC < 0.9 reflects good agree-
ment, and ICC>0.9 signifies excellent agreement. Figure S 2. Selection of
Principal Components Based on Cumulative Variance Explained. The x-axis
represents the principal components, while the y-axis shows the cumula-
tive proportion of variance explained. A red dashed line indicates the 80%
threshold, marking the number of PCs required to retain at least 80% of
the total variance. This selection ensures a balance between dimensional-
ity reduction and information preservation. Figure S 3. Optimal Cutoff
Determination Using X-tile Analysis. (a) The heatmap generated by X-tile
analysis illustrates different grouping strategies, with the x-axis and y-axis
representing various stratifications. The color gradient from black to red
indicates increasing statistical significance, ultimately identifying 0.8 as the
optimal cutoff value. (b) The plot displays the statistical values computed
by X-tile, where the x-axis represents different cutoff values and the y-axis
indicates the corresponding statistical values. The peak of the curve cor-
responds to the optimal cutoff. (c) The histogram shows the distribution
of predicted probabilities among patients, with the x-axis representing
predicted probability and the y-axis representing the number of patients.
Gray and blue bars correspond to different patient groups, and the cutoff
of 0.8 effectively separates the two distributions. (d) The Kaplan-Meier
survival curves illustrate the survival differences between the two groups
stratified by the cutoff of 0.8. The blue curve, representing the low-risk
group, is distinctly higher than the gray curve (high-risk group). Figure S
4.Patient Survival Follow-up Workflow. This flowchart outlines the method-
ology for collecting patient survival data. Enrolled participants underwent
systematic telephone follow-up with patients or their family members to
verify survival status (alive/deceased). Patients were classified as lost to
follow-up after three unsuccessful contact attempts. Electronic medical
record (EMR) review was performed in parallel to examine hospital records
and confirm survival status, with telephone and EMR data cross-validated
for accuracy. Final survival status determinations were exported as anony-
mized data for analysis. EMR, electronic medical record.

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed to the study conception and design.

Conceptualization, C.X and JZ.Z; methodology, CH.L; software, CH.L; validation,

XN.S and CQ.G; formal analysis, W.X and CH.L; investigation, Z.D; data curation,
XN.S; writing—original draft preparation, Z.D; writing—review and editing,
W.X, C.X and JL.L; visualization, Z.D; supervision, YT.S, SB.Q, and JL.L project
administration, SB.Q; funding acquisition, C.X, JL.L and SB.Q. All the authors
have read and agreed to the published version of the manuscript.

Funding
This research was supported by the Jiangsu Provincial Medical Key Discipline
(grant number: ZDXK202235).

Data availability
The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki and
was approved by the Institutional Ethics Committee of the Affiliated Hospital
of Soochow University (Approval No. 176/2024). The Ethics Committee waived
the requirement for individual patient informed consent for this retrospective

Page 15 of 16

study, as all data were anonymized and no identifiable information was
included.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Author details

'Department of Oncology, Wuxi No.2 People’s Hospital, Jiangnan
University Medical Center, Wuxi 214002, China

Department of Radiation Oncology, The First Affiliated Hospital of
Soochow University, Suzhou 215000, China

Department of Gastroenterology, The First Affiliated Hospital of Soochow
University, Suzhou 215000, China

“Department of Radiology, The First Affiliated Hospital of Soochow
University, Suzhou 215000, China

Department of Radiation Oncology, The Second Affiliated Hospital of
Soochow University, Suzhou 215000, China

Received: 22 March 2025 / Accepted: 19 August 2025
Published online: 20 October 2025

References

1. Cancer Stat Facts. Pancreatic Cancer. Available online: https://seer.cancergov/
statfacts/html/pancreas.html (accessed on.

2. HanB, ZhengR, Zeng H,Wang S, Sun K, Chen R, et al. Cancer incidence and
mortality in china, 2022. J Natl Cancer Cent. 2024,4:47-53. https://doi.org/10.
1016/j.jncc.2024.01.006.

3. Hlavsa J, Cecka F, Zaruba P, Zajak J, Gurlich R, Strnad R, et al. Tumor grade as
significant prognostic factor in pancreatic cancer: validation of a novel TNMG
staging system. Neoplasma. 2018,65:637-43. https://doi.org/10.4149/neo_20
18_171012N650

4. Dell'Aquila E, Fulgenzi CAM, Minelli A, Citarella F, Stellato M, Pantano F,
et al. Prognostic and predictive factors in pancreatic cancer. Oncotarget.
2020;11:924-41. https://doi.org/10.18632/oncotarget.27518.

5. Karamitopoulou E. Emerging prognostic and predictive factors in pancreatic
cancer. Mod Pathol. 2023;36:100328. https://doi.org/10.1016/j.modpat.2023.1
00328.

6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. 2016;278:563-77. https://doi.org/10.1148/radiol.201
5151169.

7. BeraK Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer
outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin
Oncol. 2022;19:132-46. https://doi.org/10.1038/s41571-021-00560-7.

8. ZhuN,Meng X, Wang Z HuY, ZhaoT, Fan H, et al. Radiomics in diagnosis,
grading, and treatment response assessment of soft tissue sarcomas: A
systematic review and Meta-analysis. Acad Radiol. 2024;31:3982-92. https://d
0i.org/10.1016/j.acra.2024.03.029.

9. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton
P, et al. Radiomics: extracting more information from medical images using
advanced feature analysis. Eur J Cancer. 2012,48:441-6. https://doi.org/10.101
6/j.6jca2011.11.036.

10.  Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: the Bridge between medical imaging and personalized
medicine. Nat Rev Clin Oncol. 2017;14:749-62. https://doi.org/10.1038/nrclin
onc.2017.141.

11. Mayerhoefer ME, Materka A, Langs G, Haggstrom |, Szczypinski P, Gibbs P, et
al. Introduction to radiomics. J Nucl Med. 2020;61:488-95. https://doi.org/10.
2967/jnumed.118.222893.

12. Singh SP,Wang L, Gupta S, Goli H, Padmanabhan P, Gulyas. B. 3D deep learn-
ing on medical images: A review. Sens (Basel). 2020;20. https://doi.org/10.339
0/520185097.

13. Yaol, Zhang Z, Keles E, Yazici C, Tirkes T, Bagci U. A review of deep learning
and radiomics approaches for pancreatic cancer diagnosis from medical
imaging. Curr Opin Gastroenterol. 2023;39:436-47. https://doi.org/10.1097/m
0g.0000000000000966.


https://doi.org/10.1186/s12885-025-14889-0
https://doi.org/10.1186/s12885-025-14889-0
https://seer.cancer.gov/statfacts/html/pancreas.html
https://seer.cancer.gov/statfacts/html/pancreas.html
https://doi.org/10.1016/j.jncc.2024.01.006
https://doi.org/10.1016/j.jncc.2024.01.006
https://doi.org/10.4149/neo_2018_171012N650
https://doi.org/10.4149/neo_2018_171012N650
https://doi.org/10.18632/oncotarget.27518
https://doi.org/10.1016/j.modpat.2023.100328
https://doi.org/10.1016/j.modpat.2023.100328
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1038/s41571-021-00560-7
https://doi.org/10.1016/j.acra.2024.03.029
https://doi.org/10.1016/j.acra.2024.03.029
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.3390/s20185097
https://doi.org/10.3390/s20185097
https://doi.org/10.1097/mog.0000000000000966
https://doi.org/10.1097/mog.0000000000000966

Dou et al. BMC Cancer

20.

22

23.

24.

25,

26.

27.

(2025) 25:1612

ChenY, Lu X, Xie Q. Collaborative networks of Transformers and convolutional
neural networks are powerful and versatile learners for accurate 3D medical
image segmentation. Comput Biol Med. 2023;164:107228. https://doi.org/10.
1016/j.compbiomed.2023.107228.

Lao J, Chen, Li ZC, Li Q Zhang J, Liu J, et al. Deep Learning-Based radiomics
model for prediction of survival in glioblastoma multiforme. Sci Rep.
2017;7:10353. https://doi.org/10.1038/541598-017-10649-8.

CuiJ, Jiao F, Li Q Wang Z, Fu D, Liang J, et al. Chinese society of clinical oncol-
ogy (CSCO): clinical guidelines for the diagnosis and treatment of pancreatic
cancer. J Natl Cancer Cent. 2022;2:205-15. https://doi.org/10.1016/j.jncc.2022.
08.006.

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. RANDOM SURVIVAL FOR-
ESTS. Annals Appl Stat. 2008;2:841-60. https://doi.org/10.1214/08-a0as169.
Taylor JM. Random survival forests. J Thorac Oncol. 2011;6:1974-5. https://doi.
0rg/10.1097/JTO.0b013e318233d835.

Ning C, Ouyang H, Shen D, Sun Z, Liu B, Hong X, et al. Prediction of survival in
patients with infected pancreatic necrosis: a prospective cohort study. Int J
Surg. 2024;110:777-87. https://doi.org/10.1097/js9.0000000000000844.
Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, et

al. The image biomarker standardization initiative: standardized quantita-
tive radiomics for High-Throughput image-based phenotyping. Radiology.
2020;295:328-38. https://doi.org/10.1148/radiol.2020191145.

Mukherjee S, Patra A, Khasawneh H, Korfiatis P, Rajamohan N, Suman G, et al.
Radiomics-based Machine-learning models can detect pancreatic cancer on
prediagnostic computed tomography scans at a substantial lead time before
clinical diagnosis. Gastroenterology. 2022;163:1435-e14461433. https://doi.or
9/10.1053/j.gastr0.2022.06.066.

LiuJ, Hu L, Zhou B, Wu C, Cheng Y. Development and validation of a novel
model incorporating MRI-based radiomics signature with clinical biomarkers
for distinguishing pancreatic carcinoma from mass-forming chronic pancreatitis.
Transl Oncol. 2022;18:101357. https://doi.org/10.1016/j.tranon.2022.101357.
LiJ, Liu F, Fang X, Cao K, Meng Y, Zhang H, et al. CT radiomics features in
differentiation of Focal-Type autoimmune pancreatitis from pancreatic ductal
adenocarcinoma: A propensity score analysis. Acad Radiol. 2022;29:358-66.
https://doi.org/10.1016/j.acra.2021.04.014.

Borhani AA, Dewan R, Furlan A, Seiser N, Zureikat AH, Singhi AD, et al.
Assessment of response to neoadjuvant therapy using CT texture analysis in
patients with resectable and borderline resectable pancreatic ductal adeno-
carcinoma. AJR Am J Roentgenol. 2020;214:362-9. https://doi.org/10.2214/ajr
19.21152.

Nasief H, Hall W, Zheng C, Tsai S, Wang L, Erickson B, et al. Improving treat-
ment response prediction for chemoradiation therapy of pancreatic cancer
using a combination of Delta-Radiomics and the clinical biomarker CA19-9.
Front Oncol. 2019;9:1464. https://doi.org/10.3389/fonc.2019.01464.

Parr E, Du Q, Zhang C, Lin C, Kamal A, McAlister J, et al. Radiomics-Based
outcome prediction for pancreatic cancer following stereotactic body radio-
therapy. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12041051.
Cen C,Wang C,Wang S, Wen K, Liu L, Li X, et al. Clinical-radiomics nomogram
using contrast-enhanced CT to predict histological grade and survival in
pancreatic ductal adenocarcinoma. Front Oncol. 2023;13:1218128. https//doi
.0rg/10.3389/fonc.2023.1218128.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

Page 16 of 16

Gruetzemacher R, Gupta A, Paradice. D. 3D deep learning for detecting
pulmonary nodules in CT scans. J Am Med Inf Assoc. 2018;25:1301-10. https/
/doi.org/10.1093/jamia/ocy098.

Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev
Biomed Eng. 2017;19:221-48. https://doi.org/10.1146/annurev-bioeng-07151
6-044442.

Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-modal
imaging-guided survival time prediction of brain tumor patients. In: Unal

G, Ourselin S, Joskowicz L, Sabuncu MR, Wells W, editors. Medical Image
Computing and Computer-Assisted Intervention — MICCAI 2016: 19th Inter-
national Conference, Proceedings. Lecture Notes in Computer Science, vol.
9901. Cham: Springer Verlag; 2016. pp. 212-20. https://doi.org/10.1007/978
-3-319-46723-8_25.

Gruetzemacher R, Gupta A, Paradice. D. 3D deep learning for detecting
pulmonary nodules in CT scans. J Am Med Inform Assoc. 2018;25:1301-10.
https://doi.org/10.1093/jamia/ocy098.

Nie D, Lu J, Zhang H, Adeli E, Wang J, Yu Z, et al. Multi-Channel 3D deep
feature learning for survival time prediction of brain tumor patients using
Multi-Modal neuroimages. Sci Rep. 2019;9:1103. https://doi.org/10.1038/5415
98-018-37387-9.

Joo S, Ko ES, Kwon S, Jeon E, Jung H, Kim JY, et al. Multimodal deep learning
models for the prediction of pathologic response to neoadjuvant chemo-
therapy in breast cancer. Sci Rep. 2021;11:18800. https://doi.org/10.1038/541
598-021-98408-8.

Kim H, Lee D, Cho WS, Lee JC, Goo JM, Kim HC, et al. CT-based deep learning
model to differentiate invasive pulmonary adenocarcinomas appearing as
subsolid nodules among surgical candidates: comparison of the diagnostic
performance with a size-based logistic model and radiologists. Eur Radiol.
2020;30:3295-305. https://doi.org/10.1007/500330-019-06628-4.
Demircioglu A. Are deep models in radiomics performing better than generic
models? A systematic review. Eur Radiol Exp. 2023;7. https://doi.org/10.1186/
s41747-023-00325-0.

Mohsen F, Ali H, El Hajj N, Shah Z. Artificial intelligence-based methods for
fusion of electronic health records and imaging data. Sci Rep. 2022;12:17981.
https://doi.org/10.1038/541598-022-22514-4.

Wang W, Liang H, Zhang Z, Xu C, Wei D, Li W, et al. Comparing three-
dimensional and two-dimensional deep-learning, radiomics, and fusion
models for predicting occult lymph node metastasis in laryngeal squamous
cell carcinoma based on CT imaging: a multicentre, retrospective, diagnostic
study. EClinicalMedicine. 2024;67:102385. https://doi.org/10.1016/j.eclinm.20
23.102385.

Barata C, Emre Celebi M, Marques JS. Melanoma detection algorithm based
on feature fusion. Annu Int Conf IEEE Eng Med Biol Soc 2015, 2015, 2653-2656.
https://doi.org/10.1109/embc.2015.7318937.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://doi.org/10.1016/j.compbiomed.2023.107228
https://doi.org/10.1016/j.compbiomed.2023.107228
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.1016/j.jncc.2022.08.006
https://doi.org/10.1016/j.jncc.2022.08.006
https://doi.org/10.1214/08-aoas169
https://doi.org/10.1097/JTO.0b013e318233d835
https://doi.org/10.1097/JTO.0b013e318233d835
https://doi.org/10.1097/js9.0000000000000844
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1053/j.gastro.2022.06.066
https://doi.org/10.1053/j.gastro.2022.06.066
https://doi.org/10.1016/j.tranon.2022.101357
https://doi.org/10.1016/j.acra.2021.04.014
https://doi.org/10.2214/ajr.19.21152
https://doi.org/10.2214/ajr.19.21152
https://doi.org/10.3389/fonc.2019.01464
https://doi.org/10.3390/cancers12041051
https://doi.org/10.3389/fonc.2023.1218128
https://doi.org/10.3389/fonc.2023.1218128
https://doi.org/10.1093/jamia/ocy098
https://doi.org/10.1093/jamia/ocy098
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1007/978-3-319-46723-8_25
https://doi.org/10.1007/978-3-319-46723-8_25
https://doi.org/10.1093/jamia/ocy098
https://doi.org/10.1038/s41598-018-37387-9
https://doi.org/10.1038/s41598-018-37387-9
https://doi.org/10.1038/s41598-021-98408-8
https://doi.org/10.1038/s41598-021-98408-8
https://doi.org/10.1007/s00330-019-06628-4
https://doi.org/10.1186/s41747-023-00325-0
https://doi.org/10.1186/s41747-023-00325-0
https://doi.org/10.1038/s41598-022-22514-4
https://doi.org/10.1038/s41598-022-22514-4
https://doi.org/10.1016/j.eclinm.2023.102385
https://doi.org/10.1016/j.eclinm.2023.102385
https://doi.org/10.1109/embc.2015.7318937

	﻿Development of a radiomics-3D deep learning fusion model for prognostic prediction in pancreatic cancer
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Patients
	﻿Imaging protocol and preprocessing
	﻿Radiomic feature extraction
	﻿The development and evaluation of models
	﻿Radiomics based model
	﻿3D-Densenet based model
	﻿Fusion model


	﻿Statistical analysis
	﻿Result
	﻿Patient characteristics
	﻿Consistency analysis
	﻿Radiomics feature selection
	﻿Performance of the radiomics model and 3D deep learning model
	﻿Performance of the fusion model and feature contribution
	﻿Patient risk stratification using the optimal fusion model

	﻿Discussion
	﻿Conclusion
	﻿References


