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Abstract
Objective  With pancreatic cancer’s dismal prognosis, developing accurate predictive tools is crucial for personalized 
treatment. This study aims to develop and evaluate a radiomics-3D deep learning fusion model to enhance survival 
prediction accuracy and explore its potential for clinical risk stratification in pancreatic cancer patients.

Methods  This study retrospectively analyzed from pancreatic cancer patients treated at two hospitals between 
2013 and 2023. Patients were split into training and test cohorts (7:3). Baseline clinical data and portal venous phase 
contrast-enhanced CT images were collected. Two physicians independently delineated tumor regions of interest 
(ROIs), and 1,037 radiomic features were extracted. After dimensionality reduction via Principal component analysis 
(PCA) and feature selection with LASSO regression, a radiomics model was developed using the random survival 
forest (RSF) algorithm to predict overall survival, accounting for censored data. A separate 3D-DenseNet model was 
trained using ROI-based image inputs to extract deep features. For fusion models, we adopted a binary classification 
approach to predict survival status at 1-, 2-, and 3-year time points. Radiomics features, 3D-DenseNet outputs, and 
clinical variables were integrated using logistic regression, random forest, support vector machine, and decision tree 
classifiers. Model performance was evaluated using receiver operating characteristic (ROC) curves, area under the 
curve (AUC), and accuracy. The best-performing fusion model was selected for clinical risk stratification. Kaplan-Meier 
curves and Log-rank tests were used to assess survival differences between risk groups.

Result  A total of 880 eligible patients were included in this study. In the test cohort, the performance of each model 
in predicting 1-year, 2-year, and 3-year survival was evaluated. The radiomics model achieved AUC values of 0.78, 0.85, 
and 0.91, with corresponding accuracies of 0.75, 0.77, and 0.77. The 3D-DenseNet model demonstrated AUC values 
of 0.81, 0.79, and 0.75, with accuracies of 0.72, 0.76, and 0.77. The fusion model, developed using logistic regression, 
exhibited superior predictive performance with AUC values of 0.87, 0.92, and 0.94, and accuracies of 0.84, 0.86, and 
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Introduction
Pancreatic cancer is one of the most aggressive and lethal 
malignancies globally, with a 5-year relative survival 
rate of only 12.8% [1]. In 2022, it ranked 9th in cancer-
related mortality in China, with the 7th highest number 
of deaths [2]. The asymptomatic nature of the disease 
in its early stages often leads to late diagnosis, typically 
when the tumor is already in advanced stages. Therefore, 
timely prognostic prediction after diagnosis is crucial for 
improving survival rates in pancreatic cancer patients. 
Stratifying patients based on mortality risk before treat-
ment can assist physicians in developing personalized 
treatment plans and provide important guidance for sub-
sequent relapse monitoring and follow-up. Developing 
accurate and reliable prognostic prediction methods for 
pancreatic cancer remains an urgent challenge.

Tumor staging and differentiation play a critical role in 
determining the prognosis of pancreatic cancer patients. 
However, the prognostic factors for pancreatic cancer 
are multifactorial, and even among patients with the 
same stage of disease, there can be significant variation 
in recurrence rates and survival outcomes [3]. Recent 
studies have identified numerous histopathological fea-
tures, clinical factors, and biological fluid biomarkers that 
could serve as prognostic predictors for pancreatic can-
cer [4, 5]. However, many of these factors require invasive 
procedures or are expensive, which limits their clinical 
utility. Moreover, common prognostic factors may be 
affected by interobserver variability, and their sensitiv-
ity and specificity can vary significantly. In this context, 
radiomics, as a technique for extracting quantitative fea-
tures from medical imaging [6], has shown potential in 
prognostic prediction of tumors [7, 8].

The concept of radiomics was first formally introduced 
by Lambin et al. in 2012, and later further refined and 
expanded in 2017 [9, 10]. Radiomics utilizes computa-
tional algorithms to extract a wide range of high-dimen-
sional, quantifiable features from medical imaging, such 
as shape, texture, intensity distribution, and contrast, 
which can reflect the tumor’s microstructure and biologi-
cal behavior, and subsequently assist in disease diagnosis 
and treatment [11].

In recent years, the development of 3D deep learning 
technology has further advanced this field. Traditional 
radiomics methods typically rely on two-dimensional 
imaging data and predefined feature extraction tech-
niques, which may overlook the full spatial heterogene-
ity of the tumor. In contrast, 3D deep learning models 
can automatically learn complex spatial features from 
the entire tumor volume in an end-to-end manner, elimi-
nating the need for handcrafted features and enhancing 
consistency, scalability, and predictive accuracy [12, 13]. 
These models are typically built upon architectures such 
as DenseNet, ResNet, or hybrid frameworks incorpo-
rating attention mechanisms or transformers [14]. Such 
approaches are capable of capturing both local texture 
and global spatial relationships within volumetric data, 
providing a richer and more comprehensive representa-
tion of tumor morphology. Furthermore, 3D deep learn-
ing is applicable to a wide range of medical imaging 
tasks, including prognosis prediction, tumor segmenta-
tion, detection, and classification, thereby offering strong 
potential for integration into clinical decision support 
systems [15].

This study aims to compare the performance of 
radiomics models and 3D deep learning models in prog-
nostic prediction for pancreatic cancer patients. We pro-
pose a fusion model that combines the predictive results 
of radiomics, 3D deep learning, and clinical features to 
further enhance the accuracy of prognostic prediction. 
Through this study, we hope to provide a more effective 
tool for pancreatic cancer risk stratification and clinical 
decision-making, ultimately improving patient manage-
ment and outcomes.

Methods
Patients
The study was approved by the Ethics Committee of the 
First Affiliated Hospital of Soochow University. A total of 
880 patients diagnosed with pancreatic cancer between 
January 1, 2013, and December 31, 2023, were retro-
spectively collected from two hospitals, including 520 
patients from the First Affiliated Hospital of Soochow 
University and 360 patients from the Second Affiliated 
Hospital of Soochow University. All patients received 

0.89, outperforming the individual unimodal models. Risk stratification based on the fusion model categorized 
patients into high-risk and low-risk groups, revealing a statistically significant difference in OS between the two 
groups (P < 0.001). Feature contribution analysis indicated that the 3D-DenseNet model had the greatest influence on 
the predictions of the fusion model, followed by the radiomics model.

Conclusion  This study developed a fusion model incorporating radiomics features, deep learning-derived features, 
and clinical data, which outperformed unimodal models in predicting survival outcomes in pancreatic cancer and 
demonstrated potential utility in patient risk stratification.

Keywords  Pancreatic cancer, Radiomics, Deep learning, 3D-DenseNet, Prognostic prediction
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follow-up treatment in accordance with the CSCO guide-
lines for the diagnosis and treatment of pancreatic cancer 
[16]. The inclusion criteria were: (1) Histopathological 
diagnosis of pancreatic cancer; (2) Abdominal contrast-
enhanced CT examinations performed at our hospital 
before definitive treatment. The exclusion criteria were: 
(1) Lack of complete baseline clinical data or follow-up 
data; (2) Combined with a history of other malignant 
tumors; (3) Poor quality of contrast-enhanced CT imag-
ing, defined as scans with significant motion artifacts, 
insufficient contrast enhancement (i.e., poor visualization 
of pancreatic parenchyma and vessels during the portal 
venous phase), image blurring affecting tumor boundary 
visibility, or incomplete coverage of the pancreas within 
the scanning range. Patients were divided into a training 
set (n = 616) and a testing set (n = 264) in a 7:3 ratio. The 
specific selection process for the study cohort is shown 
in Fig. 1. Demographic characteristics such as gender 
and age were collected from electronic medical records. 
Tumor clinical staging was assessed according to the 8th 
edition of the AJCC (American Joint Committee on Can-
cer) staging system. Overall survival (OS) was followed 
up through telephone interviews and inpatient medi-
cal records, defined as the time from initial pathological 

diagnosis to death from any cause or the last known date 
of survival (Figure S 4). The follow-up was censored on 
June 1, 2024. OS was binarized as “survival” or “death” 
for machine learning classification. Death within 1-year, 
2-year, and 3-year post-diagnosis was labeled as “death,” 
while survival at these time points was labeled as “sur-
vival.” Patients without follow-up information were 
already excluded according to the predefined exclusion 
criteria.

Imaging protocol and preprocessing
All patients underwent contrast-enhanced abdominal CT 
scans before initiating treatment. Imaging was performed 
using a 256-slice CT scanner, the GE Revolution CT from 
GE, USA, at the First Affiliated Hospital of Soochow Uni-
versity, and a 64-slice helical CT scanner, the GE Dis-
covery CT 750 HD, at the Second Affiliated Hospital of 
Soochow University. Scan parameters were similar at 
both hospitals, with a tube voltage of 120 kV and a slice 
thickness and interslice gap of 5 mm. The Second Affili-
ated Hospital used automatic milliampere modulation, 
while the First Affiliated Hospital set the tube current 
between 200 and 450 mAs. Both hospitals used iodixa-
nol 320 as the contrast agent, administered at a dose of 

Fig. 1  Flowchart diagram shows the patient selection process from two medical centers. A total of 880 patients were included in this study and randomly 
divided into a training set (n = 616) and a test set (n = 264) at a ratio of 7:3. *Institution 1: The First Affiliated Hospital of Soochow University; Institution 2: 
The Second Affiliated Hospital of Soochow University
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approximately 1.4 mL per kilogram of body weight at an 
injection rate of 3 mL per second. Arterial phase images 
were acquired using an automatic triggering method, 
with a threshold of 100 Hounsfield units. Venous phase 
images were obtained after a 60-second delay.

Portal venous phase contrast-enhanced CT images in 
DICOM format were imported into 3D Slicer software 
(version 5.6.1). Guided by a senior radiotherapy oncolo-
gist (20 years of experience), a radiotherapy oncologist 
and a gastroenterologist (each with 3 years of experi-
ence) independently delineated tumor boundaries to cre-
ate regions of interest (ROIs), carefully avoiding adjacent 
vessels, dilated bile ducts, and pancreatic ducts. Both 
physicians were blinded to the clinical outcomes prior 
to the ROI segmentation. If the two physicians produced 
significantly different ROIs for the same patient, a third 
radiologist (20 years of experience) reviewed the case 
and made the final decision in accordance with NCCN 
(National Comprehensive Cancer Network) guidelines. 
To assess the reliability and consistency of the ROI delin-
eation, the intraclass correlation coefficient (ICC) was 
used for validation.

Radiomic feature extraction
Before feature extraction, the images were resampled 
using 3D Slicer software to a voxel size of 3 × 3 × 3 mm³ to 
ensure isotropy, thereby minimizing variability due to dif-
ferences in scanning equipment and protocols. Radiomic 
features were then extracted using the Radiomics plugin 
within the 3D Slicer software. A total of 1,037 features 
were extracted, including 108 original features and 929 
filtered features (LoG and wavelet), which were classified 
into seven categories: shape features, first-order (FO) fea-
tures, features based on gray-level co-occurrence matri-
ces (GLCM), gray-level dependence matrix (GLDM) 
features, features based on run-length matrices (RLM), 
features based on size-zone matrices (SZM), and features 
based on neighborhood gray-tone difference matrices 
(NGTDM).

The development and evaluation of models
Radiomics based model
To reduce the dimensionality of features and address the 
issue of multicollinearity, principal component analysis 
(PCA) was applied to the extracted radiomic features. We 
selected principal components that together explained 
80% of the cumulative variance to minimize redundancy 
while retaining the most informative aspects of the origi-
nal feature set. Subsequently, feature selection was fur-
ther refined using the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression, with the optimal 
λ value determined via 10-fold cross-validation. The final 
input features were determined by retaining principal 
components with non-zero coefficients.

The Random Survival Forest (RSF) algorithm, an 
ensemble tree-based method, is designed to analyze 
survival time data and predict individual survival prob-
abilities or risks. RSF constructs models by integrat-
ing multiple survival trees, providing high stability and 
robustness while effectively reducing the risk of overfit-
ting. Additionally, it captures complex non-linear rela-
tionships and automatically identifies key features closely 
associated with survival outcomes, thereby enhancing 
the interpretability of the model [17, 18]. In recent years, 
RSF has been widely applied to survival analysis prob-
lems [19]. In this study, the RSF algorithm was utilized 
to construct models in the training set for predicting 
1-, 2-, and 3-year survival probabilities of patients. The 
RSF model was implemented using the randomForest-
SRC package in R. The number of trees (ntree) was set 
to 345, and the minimum terminal node size (nodesize) 
was optimized using the tune.nodesize() function, which 
selects the optimal value based on the out-of-bag (OOB) 
prediction error. The number of random splits (nsplit) 
was set to 11. The discriminatory ability of the models 
was evaluated using the receiver operating characteristic 
(ROC) curve and its area under the curve (AUC), while 
prediction consistency was assessed through accuracy 
measurements.

3D-Densenet based model
Given the importance of capturing three-dimensional 
structural information in medical imaging, we developed 
a deep learning model based on a three-dimensional 
densely connected convolutional network (3D-DenseNet) 
to predict 1-, 2-, and 3-year survival outcomes in pancre-
atic cancer patients. The 3D-DenseNet model was imple-
mented using the MONAI (Medical Open Network for 
AI) framework, which is specifically designed for medical 
imaging analysis and provides robust deep learning tools 
optimized for healthcare applications.

The previously segmented tumor regions (ROI) were 
standardized to a fixed size of 96 × 96 × 96 voxels using 
linear interpolation to ensure uniform input dimensions 
and reduce computational complexity. To address the 
limitations of small sample datasets and enhance model 
robustness, image preprocessing was performed, includ-
ing pixel intensity normalization, explicit channel dimen-
sion addition, and data type standardization. During the 
training phase, data augmentation techniques such as 
random 90-degree rotations, axis flipping, and Gaussian 
noise injection were applied to improve the model’s gen-
eralization capability.

The 3D-DenseNet architecture consisted of four 
densely connected blocks containing 6, 12, 24, and 16 
convolutional layers, respectively. By leveraging dense 
connectivity, the model reused features from previ-
ous layers, improving feature learning efficiency and 
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reducing the number of parameters. To extract both 
global and local features, a dual-input design (DualIn-
putDenseNet) was adopted, integrating a whole-image 
branch and an ROI branch. The whole-image branch uti-
lized 3D-DenseNet to extract global features, while the 
ROI branch employed two 3D convolutional layers, each 
followed by a ReLU activation function and max pooling 
operation, to progressively downsample and extract high-
level ROI features. The outputs of both branches were 
concatenated along the channel dimension and passed 
through fully connected layers for feature fusion and final 
classification. The model was optimized using the Adam 
optimizer and trained for 100 epochs with a learning 
rate of 1 × 10⁻⁴. In each epoch, a batch loader was used 
to retrieve training data in batches. Cross-entropy loss 
was employed as the optimization objective, and model 
performance was monitored using test accuracy com-
puted on the hold-out test set at each epoch. The model 
checkpoint that achieved the highest test set accuracy 
was saved for final evaluation. During the testing phase, 
data augmentation steps were disabled, and only normal-
ization and resizing were applied to ensure stability and 
consistency in the evaluation process.

After training, the optimal 3D-DenseNet model was 
used to predict 1-, 2-, and 3-year survival probabilities for 
patients in both the training and test sets. AUC was cal-
culated to assess the model’s discriminative ability. Addi-
tionally, accuracy was evaluated to measure classification 
consistency.

Fusion model
To further enhance the performance of the prognos-
tic prediction model, this study built a fusion model by 
performing decision-level fusion of the radiomics model 
and the 3D-DenseNet model. The predictions from both 
models were combined with clinical features of patients 
(gender, age, T stage, N stage, and M stage) to predict 
the 1-, 2-, and 3-year survival outcomes. This approach 
aimed to fully leverage the different types of data to 
enhance the model’s predictive ability, thereby improving 
its generalizability and accuracy. To identify the optimal 
fusion model, four different machine learning algorithms 
were employed, including Logistic Regression, Random 
Forest, Support Vector Machine (SVM), and Decision 
Tree. The model performance was evaluated using accu-
racy and AUC.

After determining the optimal fusion model, patients 
were stratified based on mortality risk scores predicted 
by the model. Specifically, the optimal risk cutoff value 
was identified using X-tile software (version 3.6.1), and 
all patients were classified into low-risk and high-risk 
groups accordingly. Kaplan-Meier (KM) survival curves 
for the high-risk and low-risk groups were then plot-
ted separately in both the training and test cohorts. A 

log-rank test was used to evaluate the statistical signifi-
cance of survival differences between the two groups. Fig-
ure 2 provide an overview of the overall study workflow.

Statistical analysis
All statistical analyses were performed using SPSS 26.0, 
R software (version 4.3.2), and Python 2.7.5. The demo-
graphic and clinical characteristics between the train-
ing and test sets were compared using SPSS 26.0. For 
continuous variables, an independent sample t-test was 
applied if the data followed a normal distribution, while 
the Mann-Whitney U test was used for non-normally 
distributed variables. Categorical variables were com-
pared using the chi-square test. All statistical tests were 
two-sided, and a p-value < 0.05 was considered statisti-
cally significant. Feature selection, model construction, 
and evaluation of radiomics-based predictive models 
were performed using R (version 4.3.2). The “glmnet” 
package was employed for LASSO regression to select 
significant radiomic features. The “randomForestSRC” 
and “survival” packages were used to develop survival 
prediction models, while the “ggplot2” package was uti-
lized for data visualization. The 3D deep learning model 
was constructed and evaluated using Python 2.7.5. The 
remaining general statistical analyses were conducted 
using R software.

Result
Patient characteristics
A total of 880 patients were included in this study, with 
616 patients in the training cohort and 264 patients in the 
test cohort. The baseline characteristics of both cohorts 
are summarized in Table 1. The median follow-up time 
was 36 months for the training cohort and 29 months for 
the test cohort. During the follow-up period, 448 patients 
(72.7%) in the training cohort and 203 patients (76.9%) 
in the test cohort were confirmed deceased. In the train-
ing cohort, there were 354 male and 262 female patients, 
while the test cohort included 147 male and 117 female 
patients. The mean age of patients in the training cohort 
was 68.68 years, whereas the mean age in the test cohort 
was 66.39 years. There were no statistically significant 
differences in baseline characteristics between the two 
cohorts (p > 0.05).

Consistency analysis
Contrast-enhanced CT images from 50 randomly 
selected pancreatic cancer patients were independently 
segmented by two researchers. The interobserver consis-
tency of tumor boundary delineation was quantitatively 
assessed using the intraclass correlation coefficient (ICC). 
The results showed an ICC value of 0.81 between the two 
researchers, indicating good reliability and consistency in 
tumor boundary segmentation. As shown in Figure S 1.
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Radiomics feature selection
A total of 1,037 radiomic features were extracted for each 
patient. Dimensionality reduction was performed using 
PCA, retaining the top 21 principal components that 
cumulatively explained 80% of the total variance (Figure 
S 2). The 80% threshold was chosen as it is a widely rec-
ognized standard in previous literature [10, 20], ensuring 
maximal information retention while effectively eliminat-
ing redundant features. Subsequently, LASSO regression 
was applied, identifying nine significant features with 
nonzero coefficients. The optimal regularization param-
eter (λ) was determined using 10-fold cross-validation 
within the training set, selecting the value correspond-
ing to the minimum mean cross-validated error. Figure 3 
illustrates the coefficient path and cross-validation curve 
for feature selection using LASSO.

Performance of the radiomics model and 3D deep learning 
model
Using the nine principal components selected through 
PCA and LASSO regression, we developed a survival 
prediction model for 1-, 2-, and 3-year survival outcomes 
using RSF. Figure 4 presents the ROC curves for predict-
ing 1-, 2-, and 3-year survival, with AUC values of 0.78, 
0.85, and 0.91, respectively. The corresponding accuracy 
rates were 0.73, 0.77, and 0.77 (Table 2).

In the test cohort, the 3D-DenseNet deep learn-
ing model achieved AUC values of 0.81, 0.79, and 0.75 

Table 1  Baseline characteristics of study sets
Group Training set 

(n = 616)
test set(n = 264) p-value

Mean (Median)  
or Count 
(Percentage)

Mean (Median)  
or Count 
(Percentage)

Age 68.68 (68) 66.39 (67) 0.42
Gender

Male 354 (57.50%) 147 (55.70%) 0.66
Female 262 (42.50%) 117 (44.30%)

T Stage 0.29
1 53 (8.6%) 22 (8.3%)
2 290 (47.10%) 127 (48.10%)
3 143 (23.20%) 48 (18.20%)
4 130 (21.1%) 67 (25.40%)

N Stage 0.08
0 267 (43.30%) 93 (35.20%)
1 235 (38.10%) 118 (44.70%)
2 114 (18.50%) 53 (20.10%)

M Stage 0.08
0 456 (75.50%) 184 (69.70%)
1 151 (24.50%) 80 (30.30%)

Follow-up 
Time

46.73 (36) 44.71 (29) 0.19

P < 0.05 indicates statistical significance

Fig. 2  Workflow diagram for developing a predictive model. Tumor segmentation and region of interest (ROI) delineation were performed by two physi-
cians. Quantitative features, including intensity, shape, and texture, were extracted from the ROI to train the radiomics model, while a deep learning model 
was trained based on the 3D-DenseNet framework. On this basis, a fusion model was constructed by integrating the predicted 1-year, 2-year, and 3-year 
survival probabilities from the radiomics model and 3D-DenseNet models along with baseline clinical characteristics of the patients. *3D-DenseNet, 
three-dimensional densely connected convolutional networks
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for predicting 1-, 2-, and 3-year survival, respectively. 
The corresponding accuracy rates were 0.72, 0.76, and 
0.77. Its performance was slightly inferior to that of the 
radiomics model (Table 2). Figure 5 presents the ROC 
curves of the 3D-DenseNet model for predicting 1-, 2-, 
and 3-year survival in both the training and test cohorts.

Performance of the fusion model and feature contribution
Figure 6 presents the ROC curves of fusion models con-
structed using different algorithms, with detailed perfor-
mance metrics summarized in Table 2. Among them, the 
fusion model based on logistic regression demonstrated 
the best performance in the test cohort, achieving AUC 
values of 0.87, 0.92, and 0.94 for predicting 1-, 2-, and 
3-year survival, respectively. The corresponding accuracy 
rates were 0.84, 0.86, and 0.89, making it the best-per-
forming fusion model.

Finally, Figure  7 compares the ROC curves of the 
optimal fusion model based on logistic regression, the 
radiomics model, and the 3D-DenseNet model in the test 
cohort. The results indicate that the fusion model dem-
onstrated superior predictive performance compared to 
the radiomics model and the 3D-DenseNet model for 1-, 
2-, and 3-year survival predictions.

By analyzing the contribution of each feature in the 
fusion model, we obtained the feature importance rank-
ing (Figure  8). The results showed that the prediction 
output from the 3D-DenseNet model contributed the 
most to the predictive performance of the fusion model, 
with a significantly higher Mean Decrease Gini value 
than other features. This was followed by the prediction 
output from the radiomics model, which also played a 

key role in the fusion model’s risk assessment. Patient age 
and T stage ranked third and fourth, respectively, indicat-
ing that clinical characteristics also had a certain impact 
on the risk assessment capability of the fusion model.

Patient risk stratification using the optimal fusion model
To assess the clinical applicability of the optimal fusion 
model, patients were stratified based on the mortality 
risk predicted by the model. Using X-tile software, a risk 
score cutoff of 0.8 was determined to maximize the inter-
group difference, classifying all patients into low-risk and 
high-risk groups (Figure S 3). KM survival curves were 
plotted for both groups in the training and test cohorts, 
showing clear separation (Figure 9), indicating a signifi-
cant difference in survival outcomes between the two 
groups. The Log-rank test confirmed that the survival 
differences were statistically significant in both the train-
ing and test cohorts (p < 0.0001).

Discussion
This study developed a multimodal fusion model inte-
grating radiomics and 3D deep learning for progno-
sis prediction in pancreatic cancer patients. The fusion 
model demonstrated significantly better performance 
compared to the standalone radiomics model and the 
3D-DenseNet model. Risk stratification analysis showed 
that the model effectively distinguished patients into 
high-risk and low-risk groups, with a significant survival 
difference between the two.

Radiomics, which extracts high-throughput features 
from medical images, provides a novel tool for prognosis 
prediction, treatment response evaluation, and biological 

Fig. 3  The results of LASSO regression analysis. A LASSO coefficient profiles of the expression of 21 variables. B Selection of the λ in the regression analy-
sis via 10-fold cross-validation. The dotted vertical lines are plotted at the optimal values following the minimum criteria (right) and “one standard error” 
criteria (left).
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behavior analysis of malignant tumors. In recent years, 
radiomics has gained increasing attention in pancreatic 
cancer research. Numerous studies [21–23] have dem-
onstrated the significant advantages of radiomics in the 
diagnosis and differential diagnosis of pancreatic cancer. 
Additionally, Borhani et al. [24] found that texture fea-
tures from CT images could predict early responses to 
neoadjuvant chemotherapy in pancreatic cancer patients. 
Nasief et al. [25] reported that combining CA19-9 with 
radiomic features improved the prediction of treat-
ment outcomes in pancreatic cancer, highlighting the 

potential of radiomics in evaluating treatment response. 
Parr et al. [26] demonstrated that radiomics-based mod-
els outperformed traditional clinical models in predict-
ing overall survival and recurrence. Similarly, Cen et al. 
[27] developed a nomogram model based on radiomic 
features from contrast-enhanced CT, achieving high per-
formance in preoperative staging and survival prediction 
of pancreatic ductal adenocarcinoma (PDAC). Our study 
highlights the clinical utility of radiomics in pancreatic 
cancer prognosis, with an RSF-based model accurately 

Fig. 4  Performance of survival prediction. The ROC curves of the radiomics model in the training and test sets. a Model predicting 1-year survival; b 
Model predicting 2-year survival; c Model predicting 3-year survival. * AUC, the Area Under the Receiver Operating Characteristic Curve
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predicting 1-, 2-, and 3-year survival, reinforcing its role 
in guiding personalized treatment.

Compared with traditional 2D methods, 3D models 
can more comprehensively analyze the overall morphol-
ogy of tumors, boundary characteristics, and their spatial 
relationships with surrounding tissues. Additionally, they 
better align with the inherent three-dimensional struc-
ture of common medical imaging modalities such as CT 
and Magnetic Resonance Imaging (MRI). By processing 
multiple consecutive slices simultaneously, 3D models 
help prevent information loss [28]. Deep learning enables 
the automatic extraction of high-level features directly 
from raw images, eliminating the subjectivity and limita-
tions associated with manually designed features [29]. As 
a result, 3D deep learning has become a research hotspot 
in medical image analysis and precision medicine. It has 
shown great potential in various areas, including tumor 
diagnosis, prognosis prediction, and treatment response 
assessment [30, 31]. A retrospective study [32] proposed 
a multi-modal deep learning method based on 3D con-
volutional neural network (3D-CNN), which utilizes 
multi-channel MRI images combined with support vec-
tor machine (SVM) to predict the survival of high-grade 
glioma patients. The method achieved an accuracy of 
90.66%, outperforming traditional radiomics-based 
approaches. Similarly, Joo S et al. [33] designed a deep 
neural network that combined ResNet-50 with 3D-CNN 
for MRI analysis, significantly improving the prediction 
of pathological complete response (pCR) to neoadjuvant 
chemotherapy in breast cancer patients (AUC = 0.888). 
To our knowledge, systematic research on the application 
of 3D deep learning in pancreatic cancer remains lim-
ited. In our study, we developed a prognostic prediction 
model based on 3D-DenseNet using contrast-enhanced 

abdominal CT images of pancreatic cancer patients. 
While the model demonstrated good predictive perfor-
mance, it showed slightly lower AUCs than the radiomics 
model for 2- and 3-year survival predictions, though it 
performed better for 1-year prediction. Overall, its aver-
age performance was slightly inferior to the radiomics-
based model. A study by Kim H et al. [34] reported 
similar findings, employing a 2D-DenseNet to analyze 
axial, coronal, and sagittal sections of lung CT scans. 
They developed a model termed the “2.5D” model, which 
outperformed the 3D-DenseNet in lung cancer classifi-
cation. Several factors may explain this finding. First, 3D 
deep learning models require large datasets for optimal 
training, and the limited sample size in this study may 
have constrained the model’s learning capacity. Second, 
radiomics models leverage handcrafted features based 
on prior knowledge and clinical experience, enhancing 
interpretability and specificity. In contrast, deep learn-
ing models extract features automatically, which, while 
capturing complex patterns, may introduce redundancy 
or overlook key prognostic factors, potentially affect-
ing predictive accuracy. To address these limitations, 
we integrated both models’ predictive outputs, leverag-
ing the interpretability of radiomics with the automated 
feature extraction of deep learning. The resulting fusion 
model outperformed single-modal models, highlight-
ing its potential for improving pancreatic cancer prog-
nosis. Feature contribution analysis based on the Gini 
importance ranking showed that predictions from the 
3D-DenseNet and radiomics models had the greatest 
influence on the fusion model’s output. This suggests that 
imaging-derived features may provide greater prognos-
tic value for pancreatic cancer survival than traditional 
clinical variables such as gender, age, or TNM staging. In 

Table 2  The AUC and accuracy of different models in predicting 1-year, 2-year, and 3-year survival outcomes in the training and test 
sets

1 Year 2 Year 3 Year
AUC Accuracy AUC Accuracy AUC Accuracy

Training Set Radiomics Model 0.831 0.739 0.855 0.805 0.862 0.786
(n = 616) 3D-DenseNet Model 0.821 0.729 0.837 0.774 0.789 0.779

Fusion Model
Logistic Regression 0.916 0.862 0.941 0.877 0.941 0.89
Random Forest 0.965 0.904 0.973 0.907 0.979 0.932
SVM 0.922 0.867 0.949 0.888 0.953 0.903
Decision Tree 0.901 0.877 0.888 0.898 0.92 0.906

Test Set Radiomics Model 0.782 0.754 0.854 0.765 0.909 0.765
(n = 264) 3D-DenseNet Model 0.808 0.716 0.785 0.758 0.749 0.773

Fusion Model
Logistic Regression 0.874 0.841 0.919 0.864 0.944 0.886
Random Forest 0.843 0.822 0.925 0.864 0.938 0.886
SVM 0.852 0.845 0.927 0.867 0.932 0.867
Decision Tree 0.763 0.803 0.791 0.852 0.912 0.860

*AUC The Area Under the Receiver Operating Characteristic Curve, SVM Support Vector Machine
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future work, we will explore multimodal fusion strategies 
incorporating additional imaging modalities (e.g., MRI or 
PET-CT), particularly when such modalities offer com-
plementary anatomical or functional information. How-
ever, we acknowledge that incorporating more data types 
does not automatically guarantee better performance and 
should be supported by specific clinical rationale and val-
idated through comparative studies.

A systematic review compared the performance of 
radiomics models, deep learning (DL) models, and 

multimodal fusion models in medical imaging. The 
results demonstrated that fusion models exhibited 
superior performance in 63% of the studies, underper-
formed in 25% of the studies, and showed comparable 
performance to other models in 13% of the studies [35]. 
These variations may be influenced by the different 
fusion strategies employed. Feature-level fusion (early 
fusion) and decision-level fusion (late fusion) are two 
common strategies in multimodal data analysis. Fea-
ture-level fusion integrates multimodal features (such 

Fig. 5  Performance of survival prediction. The ROC curves of the 3D-DenseNet model in the training and test sets. a Model predicting 1-year survival; b 
Model predicting 2-year survival; c Model predicting 3-year survival. *AUC, the area under the receiver operating characteristic curve
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as radiomics, deep learning, and clinical data) into a 
single feature vector for classification, capturing com-
plex interactions but facing challenges like high dimen-
sionality and sensitivity to noise. Decision-level fusion, 
on the other hand, combines predictions from different 
models, offering flexibility and reducing overfitting risk, 
though it may lead to a loss of feature interactions [36]. 
Given that our study primarily relies on imaging-based 
features (radiomics and 3D deep learning), which differ 

significantly in nature and dimensionality, we adopted 
a decision-level fusion strategy to avoid introducing 
feature-level noise and to maintain model interpret-
ability. Moreover, since the radiomics and deep learn-
ing models were already optimized independently, their 
outputs were well-suited for decision-level integration. 
This strategy is particularly advantageous when the fea-
ture distributions across modalities are heterogeneous, 
the feature spaces are high-dimensional, and early fusion 

Fig. 6  Performance of survival prediction. The ROC curves of the fusion model based on different algorithms in the training and test sets. a Model pre-
dicting 1-year survival; b Model predicting 2-year survival; c Model predicting 3-year survival. *AUC, the area under the receiver operating characteristic 
curve; svm: support vector machine.
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may lead to overfitting due to increased model complex-
ity. Decision-level fusion also allows for more flexible 
model designs and enables each modality to contribute 
without being constrained by strict alignment or normal-
ization requirements. Although previous studies in other 
disease domains have demonstrated the effectiveness of 
decision-level fusion [37, 38], the choice of fusion strat-
egy remains an open research question in machine learn-
ing. Our decision was therefore based on a combination 

of theoretical considerations—such as mitigating overfit-
ting risk and preserving modular model structure—and 
empirical evidence supporting its feasibility in medical 
imaging tasks.

Our study has certain limitations. First, as a retrospec-
tive study, it may be subject to selection bias and diffi-
culty in fully controlling confounding factors. Second, 
the sample size is relatively small, particularly the test 
cohort, which may affect the model’s generalizability 

Fig. 7  Performance of survival prediction. The ROC curves of the radiomics model, 3D-DenseNet model, and fusion model in the test set. a Model 
predicting one-year survival; b Model predicting two-year survival; c Model predicting three-year survival. *AUC, the area under the receiver operating 
characteristic curve
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and clinical applicability. Third, although data were col-
lected from two independent medical centers, we did not 
designate one center as an external test set. Preliminary 
experiments showed that using one center solely for test-
ing led to a significant performance drop, likely due to 
inter-center differences in imaging protocols and popu-
lation characteristics. As a result, we chose to combine 
both datasets and perform stratified random sampling to 
construct the training and test sets. While this approach  
improves stability and robustness, it limits our ability to 
assess generalizability across truly independent settings. 
Future research should incorporate external datasets 
from additional institutions to further validate the model’s 
clinical utility. This study integrated CT-based radiomics 
features with selected clinical data but did not include 
hematological tests, pathological characteristics, or 

genomic data. This decision was primarily driven by the 
aim of developing an imaging-centered risk stratification 
tool to minimize invasive procedures and additional labo-
ratory tests, thereby reducing patient burden and health-
care costs. By focusing on imaging data and basic clinical 
characteristics, we aimed to construct a more streamlined 
and widely applicable model for clinical practice.

Conclusion
The fusion model based on the logistic regression algo-
rithm, integrating radiomics, 3D deep learning, and 
clinical features, demonstrated the best performance in 
predicting the prognosis of pancreatic cancer patients, 
with the highest prediction accuracy and strong discrimi-
native ability, effectively stratifying patients into low-risk 
and high-risk groups.

Fig. 8  Feature importance ranking in the fusion model. The x-axis represents feature importance, while the y-axis lists the features analyzed. The color 
legend distinguishes different feature categories. Features with higher values contribute more to the model’s predictive performance
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Fig. 9  The Kaplan-Meier survival curves for patients in the high-risk and low-risk groups. a Training set; b Test set
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The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​8​8​5​-​0​2​5​-​1​4​8​8​9​-​0.

Supplementary Material 1. Figure S 1. Scatter Plot of ICC Values for Each 
Feature. The scatter plot illustrates the ICC values for radiomic features 
extracted from ROIs delineated by two independent researchers. The ICC 
values range from 0 to 1, with a mean value of 0.81. ICC values generally 
interpreted as follows: ICC < 0.5 indicates poor agreement, 0.5 ≤ ICC < 0.75 
represents moderate agreement, 0.75 ≤ ICC < 0.9 reflects good agree-
ment, and ICC ≥ 0.9 signifies excellent agreement. Figure S 2. Selection of 
Principal Components Based on Cumulative Variance Explained. The x-axis 
represents the principal components, while the y-axis shows the cumula-
tive proportion of variance explained. A red dashed line indicates the 80% 
threshold, marking the number of PCs required to retain at least 80% of 
the total variance. This selection ensures a balance between dimensional-
ity reduction and information preservation. Figure S 3. Optimal Cutoff 
Determination Using X-tile Analysis. (a) The heatmap generated by X-tile 
analysis illustrates different grouping strategies, with the x-axis and y-axis 
representing various stratifications. The color gradient from black to red 
indicates increasing statistical significance, ultimately identifying 0.8 as the 
optimal cutoff value. (b) The plot displays the statistical values computed 
by X-tile, where the x-axis represents different cutoff values and the y-axis 
indicates the corresponding statistical values. The peak of the curve cor-
responds to the optimal cutoff. (c) The histogram shows the distribution 
of predicted probabilities among patients, with the x-axis representing 
predicted probability and the y-axis representing the number of patients. 
Gray and blue bars correspond to different patient groups, and the cutoff 
of 0.8 effectively separates the two distributions. (d) The Kaplan-Meier 
survival curves illustrate the survival differences between the two groups 
stratified by the cutoff of 0.8. The blue curve, representing the low-risk 
group, is distinctly higher than the gray curve (high-risk group). Figure S 
4.Patient Survival Follow-up Workflow. This flowchart outlines the method-
ology for collecting patient survival data. Enrolled participants underwent 
systematic telephone follow-up with patients or their family members to 
verify survival status (alive/deceased). Patients were classified as lost to 
follow-up after three unsuccessful contact attempts. Electronic medical 
record (EMR) review was performed in parallel to examine hospital records 
and confirm survival status, with telephone and EMR data cross-validated 
for accuracy. Final survival status determinations were exported as anony-
mized data for analysis. EMR, electronic medical record.
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