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Abstract: Model selection criteria are widely used to identify the model that best represents the
data among a set of potential candidates. Amidst the different model selection criteria, the Bayesian
information criterion (BIC) and the Akaike information criterion (AIC) are the most popular and
better understood. In the derivation of these indicators, it was assumed that the model’s dependent
variables have already been properly identified and that the entries are not affected by significant
uncertainties. These are issues that can become quite serious when investigating complex systems,
especially when variables are highly correlated and the measurement uncertainties associated with
them are not negligible. More sophisticated versions of this criteria, capable of better detecting
spurious relations between variables when non-negligible noise is present, are proposed in this paper.
Their derivation is obtained starting from a Bayesian statistics framework and adding an a priori
Chi-squared probability distribution function of the model, dependent on a specifically defined
information theoretic quantity that takes into account the redundancy between the dependent
variables. The performances of the proposed versions of these criteria are assessed through a series
of systematic simulations, using synthetic data for various classes of functions and noise levels. The
results show that the upgraded formulation of the criteria clearly outperforms the traditional ones in
most of the cases reported.

Keywords: model selection criteria; Akaike information criterion; Bayesian information criterion;
overfitting; redundancy; variable selection; complexity; information theory; relevance

1. Introduction to Model Selection Criteria Based on Bayesian Statistics and
Information Theory

Model Selection (MS) can be defined as the task of identifying the model best sup-
ported by the data, among a set of potential candidates [1]. In many fields, model selection
is an essential part of scientific enquiry [2]. It can also be argued that this step is often
among the most delicate in statistical inference.

The exact definition of what is meant by the best model is controversial and is probably
application dependent [3]. Indeed, the requirements of models are not the same if the goal
of the study is prediction, explanation, or control. In any case, basically all approaches
to model selection try to find a compromise between goodness of fit and complexity. At
the same level of goodness of fit, simpler models, implementing some form of Occam’s
razor, are preferred. The goodness of fit is assessed with the likelihood or, when this
is not possible, with some metric quantifying the residuals, the distance between the
model predictions, and the data. The complexity of the models is identified with the
number of the model parameters. In the following, attention will be focussed on MSC
derived with the help of Bayesian statistics and information theory, since these are the ones
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explicitly designed to find a trade-off between goodness of fit and complexity. In any case,
similar considerations apply also to frequentist types of techniques. A remark about the
nomenclature is in place at this point. Since the application covered in the present work is
regression, with the term database in the following, it is indicated as a finite ordered list of
entries. Each entry consists of a sequence of elements formed by a dependent variable, v,
and a series of p regressors or predictors, x;.

The most widely accepted and best understood model selection criteria, based on
information theory and Bayesian statistics, are the Akaike Information Criterion (AIC) [4]
and the Bayesian Information Criterion (BIC) [5].

The theoretical derivations of these metrics result in the following unbiased forms of
the criteria:

AIC = —2In(L) + 2k 1)

BIC = —21In(L) + kIn(n) ()

where L is the likelihood of the model given the data, k the number of parameters in
the model, and n the number of entries in the database (also called the sample size).
Both AIC and BIC metrics are basically cost functions, which have to be minimized; they
favour models with a high likelihood but implement a penalty for complexity (the term
proportional to k).

Since in most applications, such as the ones discussed in this work, it is impossible
to calculate the likelihood of the models, the metric adopted for the goodness of fit is the
Euclidean distance of the residuals. Under the traditional assumption, that the data are
identically distributed and independently sampled from a normal distribution, it can be
demonstrated that the AIC can be written (up to an additive constant, which depends only
on the number of entries in the database and not on the model) as follows:

AIC = n-In(MSE) + 2k ®)

where MSE is the mean-squared error of the residuals, n the number of entries in the
database, and k the number of parameters in the model. Similar assumptions allow
expressing the BIC criterion as follows:

BIC = n-In(0(?) +k-In(n) )

where 0(6)2 is the variance of the residuals, # is again the number of entries in the database,
and k the number of parameters in the model. The derivation of these two criteria in the
various approximation is fully covered in [6].

These two indicators, and all the others belonging to the same families, are cost
functions to be minimised, in the sense that the better the model the lower their value.
This can be intuitively appreciated by a simple inspection of their structure. The first
term favours models that are closer to the data. The second addend is the penalty term
for complexity.

In the last years, various upgrades of these criteria have been proposed. They are
mainly meant at improving the goodness of fit, by utilising more sophisticated statistics
than the simple MSE, and at devising more accurate estimates of the penalisation for
complexity [7,8]. All these improvements have proved to be quite significant, but they do
not consider explicitly the problems related to the choice of the regressors and the effects of
the measurement uncertainties. They basically assume that the independent variables have
already been properly identified without any specific provision for this aspect. Some of
them deploy quite sophisticated statistical indicators of the distribution of the residuals,
but they all take the measurements as given without any error bar. These are all issues
which can be quite relevant when investigating complex systems. Typically, in the field of
complexity, various quantities can be spuriously correlated with the dependent one, and
measurements can be affected by significant uncertainties due to the poor accessibility of
many systems. In this situation, as will be shown in the following, the performance of the
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traditional versions of the AIC and BIC are unsatisfactory, both being prone to include
redundant variables in the selected models.

This work aims to provide an upgraded version of the traditional AIC and BIC criteria
to alleviate the problems posed by quantities spuriously correlated with the actual predic-
tors. These quantities tend to mislead the available versions of the indicators, inducing
them to converge on models with an excessive number of non-relevant regressors. The
situation is significantly worsened by the presence of significant levels of noise, which tend
to blur the relations between the dependent quantities and the predictors, as shown in
Section 4, which is devoted to the numerical tests. It should be mentioned that the vast
majority, if not all, of the applications of model selection criteria involve experimental
measurements, which are always affected by some form of noise. The capability of the
proposed improvements of dealing with uncertainties is therefore an important aspect that
needs to be assessed.

The paper is organized as follows. In the next section, the main information theoretic
indicators used in the rest of the paper are reviewed. In Section 3, the derivation of the
upgraded version of the AIC and BIC is covered. In Section 4, the performances of the
upgraded criteria are evaluated through a series of systematic tests. In Section 5, an
application of the derived criteria to a real-life database is reported. The conclusions of the
paper are presented in the final section.

2. Brief Review of the Information Theoretic Indicators Relevant to the Upgrades of
the Model Selection Criteria
The first information theoretic quantity [9], required to understand the improvements
of the MSC proposed in this work, is the Mutual Information (MI) between two random
variables, X and Y [9]:
) ®)
Y

Pxy
MI (X;,Y) ==Y Y Pxy 1n(PXP

where Pxy is the joint probability distribution function (pdf) of the random variables X
and Y. Being fully nonlinear, contrary to the Pearson correlation coefficient, the Ml is well
suited to extract, from a given database, the best features, i.e., the best regressors, X;, to
reproduce the desired dependent variable Y.

The second important information theoretic indicator, used in the rest of the paper, is
the concept of redundancy, RD, between a variable X; and a set, S, of other variables, X

RD(X;,S) = Y MI(X;X;) (6)
XjGS

Mutual information and redundancy allow defining a quantity, called relevance RL,
which quantifies the net contribution of a variable to reducing the uncertainty in a different
one, Y, above what is already contributed by another set of quantities. Relevance is
defined as

X]'GSPS

3. Derivation of the Upgraded Version of the BIC and AIC

In this section, the original versions of the BIC and AIC criteria are reviewed, and
this provides an introduction to the derivation of the upgraded versions of the criteria.
The BIC criterion is discussed first because it allows a more natural introduction of the
proposed improvements.
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3.1. Upgraded Version of the BIC

The Bayesian approach to model selection is based on the maximization of the poste-
rior probability of a model M; given the data Y = y3, ..., y,. From the Bayes theorem, this
posterior probability can be written as follows:

p(Y|M;) - p(M;)
p(Y)

where p(Y|M,;) is the marginal likelihood of the Model M; and can be evaluated as follows:

p(M;|Y) = (8)

p(YIM) = [ L(YIM;,00) - £(0:|M)d0; ©

where 6; is the vector of the parameters of the model M; and f(6;|M;) is the probability
distribution of the parameters.

It can be demonstrated that for high 1, and setting f(6;|M;) = 1 (uninformative prior),
Equation (9) can be approximated with

_lgl

p(Y|M;) ~ L(Y|M;, 6;) - e~ 2 18" (10)

With 0; = argmaxg.co(L(Y|M;, 6;)).
Substituting (10) in (8), we obtain the following;:

16;]

p(Mi]Y) o L(Y|M;, 6;) - e= 7 %87 . p(M) (11)

If we set p(M;) = 1, which implies considering all the models equally probable,
(11) leads to the traditional definition of the BIC. Indeed, after taking the logarithm and
simple mathematical manipulations, (11) becomes the following:

2-log(p(M;|Y)) ~ 2 -log(L(Y|M;,6;)) — |6;] - logn (12)

The right-hand side of Equation (12) can be recognized as the BIC criterion estimate for
the model M; with an inverted sign. Indeed maximizing (12) is equivalent to minimizing:

BIC ~ —2-log(L(Y|M;,6;)) + |6;| - logn (13)

In situations for which the relevant assumptions are valid, the likelihood can be re-
placed with the standard deviation of the residuals, with | é,-| as the number k of parameters
in the model, allowing to recover Equation (4).

As shown in the following sections, when the redundancy between the regressors is
not negligible, the traditional BIC criterion can fail to identify the right model, showing a
tendency to include redundant variables in the selected solutions. To address this problem,
a modified version of the BIC criterion is proposed, which, instead of assuming that
the models have all the same probability, includes a penalty term for models with high
redundancy in the predictor variables.

The proposed a priori probability distribution of the models depends on an overall
quantity that we will indicate as WMRR (Weighted Mutual Regressor Relevance). Given a
set of regressors Xj, X, ... Xy and a dependent variable Y, MRPxy is defined as

N N
WMRR =n-Y_ Y MI(X; X;) - (1—-RLN(X;,Y)), fori#j; (14)
i=1j=1
where MI(X;, X;) is the mutual information estimate between the i-th and j-th predictor

variables and RLy(X;,Y) = % is the relevance between the i-th predictor and
j !

the predicted variable normalized to the maximum value.
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This quantity is higher for models which make use of predictors highly correlated
between them and that at the same time have low relevance to the dependent variable.
Note that since MI(X;, Xj) > 0V X;, Xj, WMRR is also positively define.
The proposed a priori models’ probability density function is a Chi-squared distribu-
tion function that can then be written as
-1 _wmrr
pvy = My €2 k=2 (15)
22T <§)

where I (%) = (1 - %) I. In this way, Models with WMRR = 0 have the highest probability

of being chosen, while models with greater WMRR are penalised.
Plugging (15) into (11) one obtains the following:

A _ WMRR
p(Y|M;) ~ L(Y|M;, 6;) e~ logn . € 22 (16)
Which can be rewritten as
2-log(p(Y|M;)) ~ 2 -log(L(Y|M;, 6;)) — |6;] - logn — WMRR (17)
Maximizing (17) is equivalent to minimizing
MIBIC = —2-log(L(Y|M;,6;)) + |6;| - logn + WMRR (18)

If, as it is often the case, the likelihood is difficult or impossible to calculate, and the
variables are identically distributed and independently sampled from a normal distribution,
the MIBIC can be written in the practical form:

MIBIC = n - 1n(a(e)2) +k-logn + WMRR (19)

where as usual k indicates the number of the model’s parameters.

The choice of the prior, which is a delicate point in any Bayesian statistical treatment,
deserves a comment. Since WMRR is positive definite, its probability distribution function
should also be supported on semi-infinite intervals [0, 00). Moreover, since the main idea
behind the proposed improvement of the criterion hinges on penalizing models with
strongly correlated variables, this pdf should reach its maximum value when WMRR = 0
and decrease as WMRR increases. There are several pdf that satisfy these conditions,
but the Chi-squared distribution with k = 2 is the most uninformative in the exponential
family. Indeed, its implementation implies the simplest WMRR linear correction term in
the upgraded BIC.

3.2. Upgraded Version of the AIC

The derivation of the AIC criteria is based on the concept of minimizing the Kullbach—
Leibler divergence between the model generating the data and the fitted candidate model.
Given the different derivation approach compared to the BIC, the formal addition of an a
priori probability distribution function of the models is not possible. Nevertheless, since
the AIC is also based on the assumption that the independent variables have already been
properly identified and that the effects of the measurement uncertainties are negligible,
it is reasonable to include a correction term also in the AIC, which can help in the model
selection process when these assumptions are not met. As a consequence, in analogy with
the already described MIBIC, the following upgraded version of the AIC, called MIAIC,
is proposed:

MIAIC = n - ln<U(e)2) +2|6;| + WMRR (20)
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It is worth mentioning that the same argument, leading to the same upgrade, is equally
valid for the other indicators belonging to the AIC family, such as the c-AIC and the QAIC.
Indeed, for the types of applications that are the subject of this work, these indicators
can be expressed as the original AIC plus an additive term [6]. Consequently, perfectly
analogue versions including the WMRR can be easily calculated and have proved to be at
least equally effective.

4. Results of Systematic Tests with Synthetic Data

To evaluate the performance of the upgraded versions of the indicators developed in
this work, a series of systematic tests have been performed. The main families of functions
have been investigated: power laws, polynomials, exponentials, and combinations thereof.

Given the importance of the functional dependence and of the fact that the experi-
mental case studied in the following belongs to this family, power laws are discussed first,
which illustrates the methodology of the test in detail.

A synthetic dependent variable is generated from a set of predictor variables in the
power-law form reported below:

Y = XS X5 XN (21)

The predicted variable Y is generated with Equation (21) using 3 uncorrelated random
predictor variables, X, X,, X3, from the N(u = 10,0n = 1) distribution. The coefficients
in (21) are all set equal to 1, and the number of data points generated is n = 5000.

A fourth correlated predictor variable is added to the set of possible regressors of i in
the form reported below:

Xy = X1+ N((g=0,0y =03-std(X))) (22)

noise%

Then, a normally distributed noise N(y =0,on = "5 std(X1)>; fori=1,...,4
is added to all predictors. The parameter noise% is the percentage of noise with respect to
the standard deviation of the regressor and is varied between 1% and 30%. A noise of the
same type N(y = 0,0n = 0.1 -std(Y)) is added to the independent variable Y.

After generating the variables and adding the noise, two models of the predicted
variable fitting (20) to the noised values of Y have been obtained: The first using all the
four noised predictors available, X1, X5, X3, X4, and the second using only the noised
predictors X, X», X3, used to build y.

The two obtained models are compared using both the standard and the modified
version of the AIC and BIC.

The results of the comparison varying the parameter noise% are reported in Figure 1.
Each result reported in these plots is an average of over 5 repetitions of the calculations.

As can be noted from inspection of Figure 1, apart from the cases with very low noise,
the model obtained, including the redundant variable, would always be chosen over the
right model by the traditional AIC/BIC. Instead, the modified versions always succeed in
identifying the right model.

The analysis has then been performed for other two types of correlation functions for
the redundant variables:

X4:X1+X2+N(‘u:0,0':‘7N20'3'Std(Xl+X2)) (23)

X4=X1-Xo+ N ((p=0,0=0ny=03-std(X1 - Xp)) (24)

The results of the analysis are also reported in Figure 1.
The same analysis has been repeated for polynomial and exponential types of func-
tions. The functions used to generate the data are the following, respectively:

Y =X, + Xo+ X3+ X5+ X3+ X3 (25)
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Y =X; Xy X3 eX1tX2tXs

Power law generative function; Xy = X, + N(0,0.3 - std(X)))
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models using the redundant regressors.

While the functions used to fit the data are respectively of the form

Y = ag+m Xq + 0 Xy + - A anxn + a1x3 a3 -+ anak

(26)

Figure 1. BIC, BICred, MIBIC, and MIBICred for the power-law generative function and different
correlations as a function of the percentage of noise in the predictors. The subscript red indicates the

(27)
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Y = oy - X1 . Xz P XN . ea1X1+4x2X2+--~+aNXN (28)

Fitting (27) and (28) to the noised values of Y with and without the redundant predictor
and evaluating the traditional and the modified version of AIC and BIC, provides the results
reported in Figures 2 and 3. All the results shown have been obtained using n = 5000
data points.

Polynomial generative function; Xy = X, + N(0,0.3 - std(X,))

x10* x10°*

AICT]
N,

BIC[]

il / AlC
4 24 g F 2 AlC
red / v red
. MIBIC / MIAIC
251/ MTRIC il A MIAIG

/ / red red

BIC

5 10 15 20 25 30 Y 10 15 20 25 30
noise % noise %

Polynomial generative function; Xy = X, + Xo + N(0,0.3 - std(X, + X»))

x10° x10*

AIC ()

BIC[]

24} / AIC
3 AIC
/ nxl
25} / - - - = MIAIC
/ ——— MIAIC_,

5 10 15 20 25 30
noisc % noisc %

Polynomial generative function; Xy = X, - Xo + N(0,0.3 - std( X, - X3))

x10° x10°

-19 1

AIC ]
ol

=, 231
8}
=
M RIC 24} S AIC 1
BIC, P // AIC,,
- - - = MIBIC 25 - = - = MIAIC
MIBIC, / // MIAIC
26 / 7 4
27 ///
-2.8 i
<3 10 15 20 25 30 3 10 15 20 25 30
noisc % noisc %

Figure 2. BIC, BICred, MIBIC, and MIBICred for the polynomial generative function and different
correlations as a function of the percentage of noise in the predictors. The subscript red indicates the
models using the redundant regressors.
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Exponential generative function; Xy = X + N(0,0.3 - std(X,))
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Figure 3. BIC, BICred, MIBIC, and MIBICred for the exponential generative function and different
correlations as a function of the percentage of noise in the predictors. The subscript red indicates the
models using the redundant regressors.

One important thing to notice in order to interpret the next figures is that without the
redundant regressors, MIBIC and MIAIC provide exactly the same results as the traditional
AIC and BIC, proving the consistency of the devised new indicators. On the other hand, if
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the redundant variables are added to the inputs, the traditional versions of the indicators
would always select the wrong model (they assume a lower value), whereas the upgraded
versions are not misled (the new indicators assume always higher values than when the
redundant quantities are not considered).

In all the reported cases, except for small percentages of noise in the predictors, the
traditional version of AIC and BIC are not able to identify the correct model, showing a
tendency to select the models including redundant regressors. On the contrary, a significant
improvement in the ability to detect the right model is achieved by the MIBIC as well as by
MIAIC, which fails only in some cases when the noise percentage is significant.

The effect of the noise in the dependent variable has also been evaluated, but the
results of the analysis are not significantly different and the conclusions are the same as for
the examples reported.

5. Application to a Real-Life Database

In this section, to prove the generality of the results obtained with the upgraded
criteria described in the previous sections, an application to a real-life database has been
considered. The analysed database is called the ITPA database, which is the most advanced
Multi-machine database built to support studies of plasma confinement in Tokamaks [10].
A description of this database is given in the next subsection. The results obtained ap-
plying the criteria developed in the present work to this database are reported in the
following subsection.

5.1. The ITPA Database of the Energy Confinement Time for the H Mode

One of the most crucial quantities to assess the relevance of a nuclear fusion reactor is
the so-called energy confinement time TE, which quantifies how fast the internal energy of
the plasma is lost [11-13]. Unfortunately, the transport mechanisms affecting the energy
confinement in high-temperature plasmas are very complex and nonlinear, including
effects at many scales. So, even if the understanding of the instabilities and turbulence
effects influencing transport has progressed a lot in the last years, a theoretical or numerical
solution for the proper estimation of the energy confinement time, 7¢, remains unfeasible.
As a consequence, this problem has been approached empirically with the extraction of
robust scaling laws for TE from experimental data. This led to the construction of several
multi-machine databases for the plasma confinement time, including the ITPA database
analysed in this paper. In particular, the DB3v13f version of the ITPA with the same
selection rules reported in [10] is the one used in the following analysis.

The variables that are known to be relevant for the estimation of the confinement time
and that will be taken into consideration in this work are Ip, BT, PLTH, nel, Meff, RGEO,
€, and ka, where Ip is the plasma current, BT is the toroidal magnetic field, PLTH is the
power loss across the last closed surface, nel is the line average electron density, Meff is
the plasma isotopic composition, RGEO is the plasma major radius, € = 1 C‘;IEO where a is
the plasma minor radius, and ka is the volume measure of elongation [10]. Indeed, these
variables are the ones used in the most widely accepted scaling law for the Tokamak energy
confinement time in H mode, called the IPB98(y,2):

T =5.62-102- 12‘93 _BTO15. ;041 p-069 Q197 (078 058 Mgflfg (29)

Due to the physical constraints and the fact that each machine is optimized to work
within specific parameter ranges, the degree of correlation of the mentioned regressors is
quite high, as shown in Table 1.

Moreover, the regressors, as well as the confinement time, are affected by significant
uncertainties, as shown in Table 2.
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Table 1. Person correlation coefficient matrix for the eight regressors used to model the energy
confinement time.

€ Mg Rgeo ka Br Ip 1, Prta

€ 1.00 0.29 0.11 0.41 —0.02 0.41 0.10 0.26
MEff 0.29 1.00 0.30 0.42 0.17 0.38 0.16 0.36
Rero 0.11 0.30 1.00 0.30 0.09 073  —036 067
ka 0.41 0.42 0.30 1.00 —0.07 0.48 0.15 0.42
Bt —0.02 0.17 0.09 —0.07 1.00 0.43 0.52 0.34
Ip 0.41 0.38 0.73 0.48 0.43 1.00 0.00 0.76
Ne 0.10 0.16 —0.36 0.15 0.52 0.00 1.00 0.03
Pty 0.26 0.36 0.67 0.42 0.34 0.76 0.03 1.00

Table 2. Lower bounds of the uncertainties for the entries of the ITPA database.

€ My Rgro ka Br Ip fe Prry TE
Rel. err. 1% 8% 1% 10% 1% 1% 5% 14% 10%

5.2. Results

Employing the upgraded model selection criteria proposed in this work, the main
objective of the analysis consists of identifying, within all the possible power-law models
obtained combining the predictor variables included in Equation (29), the one which best
represents the 1¢ data.

In order to do this, the following iterative procedure has been adopted:

The first step consists of evaluating the MIAIC and MIBIC for the power-law model
with all the eight regressors included. Then, removing one variable at a time from the list
of regressors, eight more models are obtained and their MIAIC and MIBIC evaluated.

The model with the lowest MIAIC /MIBIC is identified, and the regressors included
in the model will form the new list of possible regressors. The process is then iterated
eliminating one variable at the time, until removing any of the variables included in the list
does not produce any benefit in terms of MIAIC and MIBIC. At this point, the algorithm is
topped and the best model is retained

Applying this procedure, the model which shows itself to be the best in terms of both
MIAIC and MIBIC is

Tp =g - Ip' - P*2- R - gt - €% - Mj; y (30)

Instead, using the traditional AIC and BIC criteria, the resultant models are, respectively,

TE = &g - [gl -BT* . 3% . P% . R% . |56 . %7 . M8

off (31)

T =g - Ip' - BT* - mg® - P% - R - kg® - € (32)

The first obvious advantage of the upgraded versions of the criteria is that they provide
coherent results, whereas the traditional versions of the indicators do not seem to agree on a
single model, rendering the choice of the most appropriate scaling law very difficult. More
importantly, the model obtained with MIAIC and MIBIC is more parsimonious, and indeed,
it utilises fewer quantities than the ones derived by the AIC and IC. It retains the plasma
current but considers redundant magnetic field and plasma density. This is coherent with
the statistical analysis of the database, which presents very strong collinearities between
these three quantities, as reported in Table 1. The obtained results are also in harmony with
the everyday experience of the device operators, since the experiments are indeed typically
designed with strong correlations between plasma parameters.
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6. Conclusions

In applications to regression, the most widely used versions of the model selection
criteria AIC and BIC are vulnerable to the presence of variables correlated to the actual
predictors, particularly when the percentage of noise in the regressors is not negligible,
as it is in most practical applications. To address this problem, an upgraded version
of these criteria is proposed, adding an a priori Chi-squared probability distribution
function of the models. This function depends on a quantity that penalizes the model
with highly correlated predictors, which bring little new information about the dependent
variable. The performance of the proposed criteria has been assessed with different types
of generative functions, correlation functions and percentage of noise in the predictors.
The results indicate that, in most cases, the newly defined criteria possess an improved
capability of detecting redundancy in the predictors and thus of selecting the correct
model. The improved performances are not substantially affected by the sample size as
reported in Appendix A. To show the generality of the obtained results, an application
to an international database built by the thermonuclear fusion community has also been
reported in the final section.

With regard to future developments, from a methodological standpoint, it would
be interesting to improve the treatment of the uncertainties in both the dependent and
independent variables, implementing techniques inspired by the error in the variable
approach [10]. Moreover, the introduction of metric alternatives to the Euclidean, such
as the geodesic distance [14-16], has the potential to provide significant added value. An
additional interesting activity would be the systematic analysis of possible prior alternatives
to the one chosen for the present version of MIBIC and MIAIC. In terms of applications,
the scaling laws of the more recent metallic Tokamaks, and particularly JET with the new
ITER-like wall [17], are nowadays a topic of great interest in the fusion community. The
new versions of the indicators could become quite useful in the investigation of scaling
laws in non-power law monomial form [18-21].

Author Contributions: Conceptualization, L.S. and A.M.; methodology, L.S. and A.M.; software,
L.S.; validation, A.M. and R.R; formal analysis, L.S.; writing—original draft preparation, L.S. and
AM.; writing—review and editing, R.R. and M.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
and in the decision to publish the results.

Appendix A. MIBIC and MIAC Performance with Sample Size

The Appendix A contains the analysis of the effect of the number of samples on the
performance of the proposed upgraded criteria. In particular, the same tests reported in
Section 4 have been repeated for two different sample sizes n = 500 and n = 50,000. The
results of the analysis for the different generative functions and number of entries are
reported in Figures A1 and A2. For simplicity, only the results for the correlation function
reported in (24) have been included in the figures. As it can be noted by visual inseecion of
the plots reported in this Appendix A, the performance’s improvement associated with
the proposed criteria is not affected by the sample size. This is a general result: the MIBIC
and MIAIC perform better than the traditional versions independently from the number of
entries in the datbases. These results can be also extended to the other correlation functions
considered in Section 4, even though the related figures have not been explicitly reported
in the paper.
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Figure A1. BIC, BICred, MIBIC, MIBICred for # = 500 and different generative functions vs. the percent-
age of noise in the predictors. The subscript red indicates the models using the redundant regressors.
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