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A B S T R A C T   

In this study, cobalt nanoparticles (CoNPs) were synthesized and cobalt nanoparticles modified glassy carbon 
electrode (CoNPs/GCE) was prepared by drop coating the nanoparticles on glassy carbon electrode. After pre
paring polypyrrole modified glassy carbon electrode (PPy/GCE) using electropolymerization of pyrrole in LiClO4 
solution, cobalt nanoparticles-polypyrrole composite modified glassy carbon electrode (CoNPs/PPy/GCE) was 
fabricated by drop coating the CoNPs on the PPy/GCE. Different characterization techniques such as scanning 
electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, FTIR spectroscopy, 
electrochemical impedance spectroscopy and cyclic voltammetry were used to study the morphological structure 
and electrochemical behavior of the sensors. The results demonstrated that PPy chains interacted with CoNPs 
through donor-acceptor bonds. Among all the electrodes, CoNPs/PPy/GCE exhibited highest electroactive sur
face area and lowest electron transfer resistance towards phoxim. Under the optimal conditions, the sensor 
showed linear relationship between the reduction peak current and the concentration of phoxim in the range of 
0.025 μM–12 μM with the detection limit as 4.5 nM. Besides, the composite electrode demonstrated excellent 
reproducibility, good stability and selectivity towards the possible interfering substances. All of these properties 
made CoNPs/PPy/GCE a suitable electrochemical sensor for the electrochemical determination of phoxim in 
water samples using square wave voltammetry.   

1. Introduction 

Organophosphate (OP) pesticides are the most extensively used 
pesticides across the world in agriculture [1]. Due to highly persistence 
and toxicity, even trace contamination of organophosphorus pesticides 
in the environment and food chain creates a lot of pollution problems [2, 
3]. Their toxicities are caused by inhibiting the activity of acetylcho
linesterase (an enzyme in the central nervous system), often leading to 
perturbation of nerve conduction system and paralysis the functions of 
living systems and finally leads to death [4,5]. 

Phoxim (phenylgloxylonitrile-oxime-o,odiethyl-phosphorothionate) 
is an organothiophosphate insecticide that is widely used to control a 
wide range of insect pests in fruits, vegetables and commercial crops [6]. 
High-performance liquid chromatography and high-performance liquid 
chromatography-mass spectrometry methods have been reported for the 
determination of phoxim residues [7,8]. However, these methods are 

expensive and require complicated instruments and qualified personnel. 
Recently, electrochemical methods have gained more interest for 
determination of pesticides due to various advantageous such as 
compact nature, easy to handle in field trials, low cost, higher sensitivity 
and selectivity [9,10]. 

Phoxim was determined electrochemically at the surface of gold 
nanoparticles and silk fibroin composite modified platinum electrodes 
[11], graphene–modified glassy carbon electrode [12], graphene oxi
de–gold nanocomposite modified glassy carbon electrode [13], poly 
(3-methylthiophene)–nitrogen doped graphene-modified glassy carbon 
electrode [14], molecular imprinting graphene modified glassy carbon 
electrode [15] and multiwalled carbon nanotube grafted acryloyloxy 
ferrocene carboxylates modified glassy carbon electrode [16]. 

Conducting polymers such as polyaniline, polypyrrole and poly
thiophene have been studied intensively during the last decades due to 
their high electrical conductivity, environmental stability and low cost. 
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Besides high flexibility in preparation and good mechanical properties, 
polypyrrole has gained special interest in various applications [17,18]. 
Owing to promising high surface to volume ratio and structural prop
erty; good conductivity and excellent catalytic activity of nanomaterials, 
nanomaterials are widely applicable to enhance physical and mechani
cal properties of polymers [19]. Composite of nanomaterials and poly
mers exhibited much higher sensitivity and better selectivity than the 
pure inorganic and organic materials [20–22]. 

To the best of our knowledge, no literature reports on voltammetric 
determination of phoxim at CoNPs/PPy/GCE have been published. In 
this work, electrochemical sensors based on CoNPs/GCE, PPy/GCE and 
CoNPs/PPy/GCE were prepared and characterized using FTIR, high 
resolution scanning electron microscope (HRSEM), high resolution 
transmission electron microscope (HRTEM), electrochemical impedance 
spectroscopy and electrochemical methods. The experimental parame
ters were optimized in order to enhance the performance of CoNPs/PPy/ 
GCE and it was applied for the determination of phoxim in water 
samples. 

2. Experimental 

2.1. Reagents 

Cobalt chloride hexahydrate (Sigma Aldrich, 202185, 98%), pyrrole 
(Sigma Aldrich, 131709, 98%), phoxim (98%), sodium borohydride 
(98%), dichlorvos (98.8%), phenothrin (94.4%), magnesium sulphate 
(99.5%), ferric chloride hexahydrate (97%) and zinc nitrate hexahy
drate (99%) were purchased from Sigma–Aldrich (Germany) and used as 
received. All other reagents were of analytical grade. A 0.1 M phosphate 
buffer solution (PBS) which was prepared using a mixture of KH2PO4 
(99%) and K2HPO4 (98%) was employed as a supporting electrolyte. 
Pyrrole monomer was distilled under reduced pressure and stored in a 
refrigerator. Double distilled water was used throughout the experi
ment. The phoxim standard solution was dissolved in ethanol and was 
stored in a refrigerator. The working solutions of phoxim were prepared 
by diluting the stock solution with PBS. 

2.2. Apparatus and instrumentation 

All voltammetric measurements were carried out using PalmSens 
Trace (Palm Instruments BV, Utrecht, Netherlands) connected to a 
personal computer. The measurements were performed by employing 
three electrode system with GCE (3.0 mm diameter, Sigma Aldrich, 
Germany), CoNPs/GCE, PPy/GCE and CoNPs/PPy/GCE working elec
trodes, silver-silver chloride electrode (3 M NaCl) reference and plat
inum wire (1.0 mm diameter) counter electrode. Electrochemical 
impedance spectroscopic measurements (EIS) were performed on a 
CHI604D electrochemical workstation (CH Instruments, Inc., Austin, 
Texas, USA). FTIR spectra were recorded on a PerkinElmer Spectrum 
100-FTIR spectrometer (Waltham, USA). 

The morphology and elemental compositions of PPy, CoNPs and 
CoNPs/PPy composite were examined using high resolution scanning 
electron microscopy (AURIGA, Field Emission Gun High Resolution 
Scanning Electron Microscope (FEG HRSEM, Zeiss), high resolution 
transmission electron microscopy (HRTEM, FEI Tecnai G2 F20 X-Twin 
200 kV field-emission gun) and energy dispersive spectroscopy. 

For HRSEM measurement, screen printed carbon electrodes were 
used for electrodeposition of PPy, CoNPs and CoNPs/PPy composite. 
However, HRTEM measurements the samples were prepared by drop 
coating one drop of specimen solution onto a holey carbon coated 
copper grid. Then, it was dried under a Xenon lamp for about 10 min, 
where after, the coated grids were analyzed under the microscope. 

2.3. Synthesis of cobalt nanoparticles 

Synthesis of cobalt nanoparticles was performed according to the 

procedure proposed by Phelane et al. [23]. Briefly, 0.5 M solution of 
CoCl2⋅6H2O solution was prepared by dissolved it in ethanol. To this 
solution, a mixture of 1.0 M NaBH4 and 0.2 M NaOH was added. The 
resulting solution was allowed to stay for 24 h until the reaction was 
completed. Then after, the solution was centrifuged for 20 min and the 
precipitate was washed completely with double distilled water and 
ethanol. Finally, the precipitate was dried in an oven for 24 h and 
ground with a pestle and mortar. 

2.4. Preparation of CoNPs/PPy/GCE electrode 

Before modification, the bare glassy carbon electrode was polished 
with different sizes (1.0, 0.3 and 0.05 μm) of alumina slurry in sequence 
until a mirror like surface was obtained and then it was washed with 
double distilled water. Finally, it was sonicated with ethanol and double 
distilled water successively in order to remove adsorbed particles, and 
then dried at room temperature. A 0.25 M solution of pyrrole in 0.10 M 
LiClO4 was electropolymerized on GCE by cycling in the potential range 
− 1.1 V–0.7 V at a scan rate of 0.05 V s− 1 for 15 cycles for preparing PPy/ 
GCE. Thereafter, CoNPs/PPy/GCE was prepared by drop coating 5 μL of 
CoNPs in dimethylformamide solution onto PPy/GCE surface and dried 
in air prior to analysis. 

2.5. Sample preparation 

For analytical application, water samples were collected from Kuils 
River, Cape Town, South Africa. In order to remove particulate matter, 
the water samples were filtered and stored in refrigerator for a week 
until analysis. To the water samples, ethanol was added and the pH 
value of water samples (2 mL) was adjusted with 5 mL of 0.1 M PBS of 
pH 6.0. The spiked sample solutions were prepared with the addition of 
various concentrations of phoxim standard solutions. 

All electrochemical cells were purged with nitrogen gas for at least 
10 min prior to all electrochemical measurements. All measurements 
were also performed at room temperature. 

3. Results and discussion 

3.1. Morphological and structural characterization CoNPs/PPy composite 

During electropolymerization process, an oxidation peak was 
observed around 0.1 V in the forward scan, which corresponds to the 
formation of pyrrole radical cations (PPy+). In the reverse scan, a 
reduction peak was appeared around − 0.15 V due to the reduction of the 
pyrrole radical cations [24]. The increased in the intensity of the peak 
currents with increasing scanning cycles confirmed the formation of 
polypyrrole films on the surface of GCE (Fig. 1A). Therefore, the thick
ness of the polymer on the electrode could be controlled by the number 
of scans. Furthermore, the electrochemical behavior of the bare GCE and 
PPy/GCE were studied in a monomer free supporting electrolyte. As can 
be seen (Fig. 1B curve a), peaks were not observed at GCE. However, 
oxidation and reduction peaks appeared at 0.25 V and − 0.32 V at 
PPy/GCE, respectively, indicating that the polypyrrole film was formed 
at the surface of the GCE (Fig. 1B curve b). Finally, CoNPs solution drop 
coated on the surface of the polymer film in order to produce 
CoNPs/PPy/GCE. 

The interactions between CoNPs and PPy particles in the composite 
were investigated and supported by FTIR spectroscopy. Fig. 2 displays 
the FTIR spectra of PPy and CoNPs/PPy. For pure PPy, an absorption 
band at 3150 cm− 1 was attributed to the N–H stretching vibration, ab
sorption peaks at 1500 cm− 1 and 1400 cm− 1 were due to C––C and C–N 
stretching of pyrrole ring, respectively. The broad band around 1210 
cm− 1 was caused by the C–N stretching and = C–H in-plane deformation 
vibrations of the aromatic ring, while the two absorption peaks that 
appeared at 850 cm− 1 and 620 cm− 1 were due to C–H out-of-plane 
bending [25,26]. However, the FTIR spectrum of CoNPs/PPy shows 
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the characteristics peaks of PPy, with a shift of peak positions toward 
lower wave number (1400 cm− 1 to 1390 cm− 1 and 1200 cm− 1 to 1108 
cm− 1), indicating the dispersion of the electron density of PPy as a 
function of the incorporation of the nanoparticles [27]. 

From the spectral changes of FTIR, a strong coordination bond was 
formed between cobalt and the negatively charged (deprotonated) 
pyrrolic nitrogen (Scheme 1), which is in agreement with the structure 
proposed by Shi et al. [28]. 

The surface morphology of CoNPs, PPy and CoNPs/PPy was char
acterized using HRSEM and HRTEM analyses. The HRSEM spectra are 
presented in Fig. 3. The image of PPy showed non-uniform distribution 
of PPy particles. In CoNPs, the shape of grain particle is spherical and 
distributed uniformly. However, the HRSEM image at CoNPs/PPy 
showed the size of nanocomposites to be larger than CoNPs which 
reinforced the successful encapsulation of CoNPs within the PPy. 

The inner structures of PPy, CoNPs and CoNPs/PPy composite were 
studied using high resolution transmission electron microscope 
(HRTEM). It can be seen that the sizes of the particles in CoNPs/PPy 
were bigger than in CoNPs particles (Fig. 4). This size differences 

confirms the incorporation of CoNPs into the PPy in forming the com
posite. The increased particle sizes in the composite compared with the 
free CoNPs were due to the interaction of the nanoparticles with the 
polymer during the growth into larger crystals. 

The chemical compositions of CoNPs and CoNPs/PPy were analyzed 
using EDS (Fig. 5). The EDS peaks of CoNPs showed the presence of Co, 
Cl, C and O. The Cl atom observed is from the starting material 
CoCl2⋅6H2O, C and O were from ethanol used to disperse powder sam
ples for HRTEM analysis. CoNPs/PPy composite is composed of C, O and 
Co, which confirms that the composite is formed from cobalt nano
particle and polypyrrole. The absorption peak of copper is attributed to 
the copper grid used for the characterization of nanoparticles [29]. 

3.2. Electrochemical characterization 

The electrochemical behavior of the electrodes was studied using 
cyclic voltammetry. The electroactive surface area of the modified 
electrodes, PPy/GCE, CoNPs/GCE and CoNPs/PPy/GCE were deter
mined in 1.0 mM [Fe(CN)6]3-/4- in 0.1 M KCl solution at different scan 
rates. For a reversible process, the Randles-Sevcik formula can be 
expressed (eqn. (1)):  

Ip = (2.69 × 105)n3/2ACD1/2v1/2                                                         (1) 

Where, Ip is the peak current, n is the number of electrons transferred (n 

Fig. 1. Cyclic voltammograms of (A) electropolymerization of 0.25 M pyrrole in 0.10 M LiClO4 and (B) a monomer free 0.10 M LiClO4 on GCE (a) and PPy/GCE (b).  

Fig. 2. FTIR spectra of PPy and CoNPs/PPy.  

Scheme 1. Proposed active-site structure of CoNPs/PPy.  
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= 1), A is the surface area of the electrode (in cm2), D is the diffusion 
coefficient (6.2 × 10− 6 cm2 s− 1), v is the scan rate (in V s− 1) and C is the 
concentration of [Fe(CN)6]3-/4- (in mol cm− 3). 

The electroactive surface areas of the electrodes were calculated 
from the slope of the plot of current vs the square root of scan rate. The 
results showed that the surface area of CoNPs/PPy/GCE was 2.6 and 2.1 
times greater than the surface areas of PPy/GCE and CoNPs/GCE, 
respectively (Table 1). A significant increase in electroactive surface 
area of CoNPs/PPy/GCE can enhance the sensitivity of the electrode 
when used for electroanalysis. 

3.3. Electrochemical behavior of phoxim 

The electrochemical behavior of phoxim was investigated at GCE, 
PPy/GCE, CoNPs/GCE and CoNPs/PPy/GCE using cyclic volatmmetry. 
As shown in Fig. 6, a well-defined reduction peak was observed in the 
absence of any oxidation counterpart, indicating that the electro
chemical behavior of phoxim is irreversible. Compared with the bare 
GCE, increased in the reduction peak current with shift of potential to
wards positive direction was observed at the surface of PPy/GCE, 
CoNPs/GCE and CoNPs/PPy/GCE. Furthermore, the decreased in over
potential and increased in the peak current were significant at the sur
face of CoNPs/PPy/GCE. These remarkable changes indicated that 
cobalt nanoparticles and polypyrrole have synergistic electrocatalytic 
effect for the electrochemical reduction of phoxim as a result of their 
high electroactive surface areas. 

Electrochemical impedance spectroscopy (EIS) is an important 

technique for studying the interfacial properties of the electrode [30]. 
The electron transfer resistance (Rct) at the surface of the electrode may 
be related to the diameter of a semicircle and can be used to quantita
tively describe the interfacial properties of the electrode [31]. The 
Nyquist plots consist of a semicircular portion and a linear portion, 
which correspond to the electron transfer limited process and the 
diffusion limited process, respectively [32]. Fig. 7 shows the Nyquist 
plots for bare GCE (a), PPy/GCE (b), CoNPs/GCE (c) and CoN
Ps/PPy/GCE (d) in 20 μM phoxim solution. It is clearly seen that a bare 
GCE exhibits large-diameter semicircle, which is the characteristic of a 
diffusion-limited electrochemical process. Upon modifying the glassy 
carbon electrode with polypyrrole (PPy/GCE), the diameter (Rct) of 
Nyquist plot decreased, which is an indication of the increased in the 
surface roughness and enhanced electron transfer rate which occurred 
between the electrode and the phoxim. At CoNPs/GCE, the Rct value 
decreased implying the deposition of highly conductive nanoparticles 
with high surface area that acted as electron transfer channels. Sur
prisingly, CoNPs/PPy/GCE, exhibited the smallest electron transfer 
resistance as compared with the CoNPs/GCE and PPy/GCE. These re
sults support the combined effect of increased surface area and good 
electrical conductivity of CoNPs/PPy/GCE. The significant change of Rct 
as a result of modification of GCE indicated that both CoNPs and PPy 
films have been successfully attached to GCE surface. Thus, the EIS re
sults strongly corroborated the results obtained from the CV study. 

Furthermore, the effects of various concentrations of phoxim on the 
value of charge transfer resistance, Rct, were also studied at the surface 
of CoNPs/PPy/GCE. The Nyquist plots (Fig. S1A) shows that with 

Fig. 3. HRSEM images of PPy (A) CoNPs (B) and CoNPs/PPy (C).  
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increasing phoxim concentration, the shape of the semicircle began to 
change and its diameter was gradually decreased. The plot of the 
reciprocal of charge transfer resistance against the phoxim concentra
tion showed that Rct decreased with increasing phoxim concentration, 
which indicates that the rate of charge transfer was not hampered with 
the adsorption of various species on the surface of CoNPs/PPy/GCE. 

3.4. Effects of pH 

The effect of solution pH on the reduction of phoxim at CoNPs/PPy/ 
GCE was investigated in 0.1 M PBS. From Fig. 8A, it can be observed that 
the peak current increased as the pH changes from pH 4 to 6 and 
decreased, then after. As a result, pH 6.0 was selected as the optimum 
value for subsequent studies. As shown in Equation (2), the peak po
tential was shifted towards more negative values as the pH increased 
(Fig. 8B) with a regression equation:  

Ep(V) = − 0.054 pH + -0.42, R2 = 0.9995                                          (2) 

The slope 0.054 V/pH was close to the theoretical value given by the 
Nernst equation [33], suggesting that the reduction of phoxim involves 
the transfer of equal number of protons and electrons according to 
Scheme 2 electrode [12]. 

3.5. Effects of scan rate 

The reaction kinetics of phoxim reduction was investigated by 
studying the effects of scan rate on the peak current and potential using 
cyclic voltammetry (Fig. 9A). It can be seen that the reduction peak 
current increased linearly with an increase in the scan rate in the range 
0.05 V s− 1 - 0.11 V s− 1 (Fig. 9B) with a regression equation:  

Ipc(μA) = − 126.1v(V s− 1) + 1.53, R2 = 0.9970                                   (3) 

This indicates that the reduction of phoxim at CoNPs/PPy/GCE is an 
adsorption-controlled process. Furthermore, the peak potential shifted 
to more negative values as the scan rate was increased, which further 
confirming the irreversibility of electrochemical reduction of phoxim 
[34]. 

3.6. Effect of accumulation potential and time 

In an adsorption controlled process, both accumulation potential and 
time affect the amount of the adsorbed analyte on the surface of the 
electrode. The influence of accumulation potential was studied at 
various applied potentials (− 0.2 V to − 0.8 V) for a fixed period of time 
(40 s). The results indicated that the peak current increased from − 0.2 V 
to − 0.5 V and decreased when the potential increased beyond − 0.5 V 
(Fig. S2A). Therefore, deposition potential of − 0.5 V was taken as the 
optimum value. The effect of the deposition time on the peak current for 
phoxim was also studied in the range from 20 s to 70 s. Fig. S2B shows 
that the peak current increased up to 50 s and then it gradually 
decreased due to the saturation of the electrode surface. Thus, 50 s was 
chosen as the optimal accumulation time for further analysis. 

3.7. Calibration 

Under the optimal conditions, the relationship between peak current 
and concentration of phoxim was examined using SWV. Fig. 10A shows 
the SWV responses of the CoNPs/PPy/GCE for various concentrations of 
phoxim. The peak current increased upon increasing phoxim concen
tration and a linear response (Fig. 10B) was obtained in the concentra
tion range 0.025 μM–12 μM according to equation (4):  

Ipc(μM) = − 2.1[phoxim]/μM + − 5.9, R2 = 0.9984                              (4) 

The limit of detection of the sensor was calculated to be 4.5 nM (S/N 
= 3). 

Fig. 4. HRTEM images of PPy (A) CoNPs (B) and CoNPs/PPy (C).  
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The performance of this sensor was compared with other reported 
sensors. The linear range and detection limit of the prepared sensor are 
comparable with or even better than many of previously reported sen
sors (Table 2). This better performance can be ascribed to the faster 
electron transfer and high electrocatalytic performance of the sensor as a 
result of large surface area and good conductivity. Therefore, CoNPs/ 

PPy/GCE could provide a good platform for the effective detection of 
phoxim. 

3.8. Repeatability, reproducibility and stability of sensor 

The repeatability of the CoNPs/PPy/GCE was evaluated with 
repeated current responses (n = 6) with the same modified electrode for 
5 μM phoxim in PBS pH 6 solution and the relative standard deviation 
(RSD) of the peak current was calculated to be 4.1%. Similarly, the 
reproducibility of the CoNPs/PPy/GCE was examined by measuring the 
peak current of phoxim with three different electrodes prepared under 
the same conditions (n = 5). The relative standard deviation (RSD) of the 
measurements for the three electrodes was 2.0%, which suggests that 
the precision and reproducibility of sensor were quite good. 

The stability of the sensor was examined after storing it in a refrig
erator at 4 ◦C for 5 days and the peak current was retained 91% of its 
initial value. This might be the absorption of reduction products which 
decreases the specific sites. This indicates that the modified electrode 
has good stability. 

Fig. 5. EDS images of PPy (A) CoNPs (B) and CoNPs/PPy (C).  

Table 1 
Surface area of the modified electrodes.  

Electrode Surface Area (cm2) 

PPy/GCE 0.125 
CoNPs/GCE 0.16 
CoNPs/PPy/GCE 0.34  

Fig. 6. Cyclic voltammograms of 5 μM phoxim in 0.1 M PBS (pH 7) at GCE (a), 
PPy/GCE (b), CoNPs/GCE (c) and CoNPs/PPy/GCE (d). 

Fig. 7. Nyquist plots of 20 μM phoxim in ethanol for the GCE (a), PPy/GCE (b), 
CoNPs/GCE (c) and CoNPs/PPy/GCE (d). 

M. Tefera et al.                                                                                                                                                                                                                                  



Analytica Chimica Acta: X 9 (2021) 100077

7

3.9. Interferences 

To apply the proposed method for analytical application, the effects 
of some common interfering substances such as inorganic ions (Fe3+, 
Mg2+, Zn2+ and Cl− ) and pesticides (dichlorvos and phenothrin) in the 
determination of phoxim were examined by SWV under the optimized 
conditions. The tolerance limit was defined as the maximum concen
tration of the interfering substance that caused an error less than 5% in 
the determination of phoxim [35]. 

The response of 10 μM phoxim was compared to the response ob
tained in the presence of these species at various concentrations. The 
results in Table 3 indicates that 1000-fold of Fe3+, Mg2+, Zn2+ and Cl−

did not interfere with the determination of phoxim. 10-fold of dichlorvos 
and phenothrin did not influence the current responses of phoxim. 
Change of ±5% in the phoxim peak current in the presence of interfer
ents proved the sensor had good selectivity. 

3.10. Analytical application 

Under the optimum conditions, CoNPs/PPy/GCE was applied for the 
determination of phoxim in water samples. After the pH of the water 
sample was adjusted with 0.1 M PBS of pH 6.0, the water sample was 
analyzed first without addition of phoxim standard. As can be seen in 
Fig. S3, no voltammeteric response which corresponds to phoxim was 
observed when the water samples were analyzed. Subsequently, the 
water samples were spiked with various concentrations of phoxim (0.75, 
2, 4 and 6 μM). The recovery of the water samples were ranged from 
94.6% to 100.2% (Table 4), indicating that the sensor could be suc
cessfully applied for phoxim determination in real samples with good 
recovery. 

4. Conclusion 

We have developed a simple and sensitive electrochemical sensor 
based on CoNPs/PPy/GCE. Due to the combination of the unique 
properties of nanoparticles and the polymer, the CoNPs/PPy/GCE 

Fig. 8. Effect of pH of PBS on the peak current for 5 μM phoxim at CoNPs/PPy/ 
GCE (A) and plot of peak potential vs pH (B). 

Scheme 2. Mechanism of phoxim reduction.  

Fig. 9. Cyclic voltammograms for 5.0 μM phoxim in 0.1 M PBS pH 6.0 at the 
CoNPs/PPy/GCE at various scan rates (A) and plot of the peak current vs scan 
rates (B). 
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electrode showed peak currents enhancement and decrease in the peak 
potentials. The sensor exhibited excellent reproducibility and good 
stability. Furthermore, the selectivity of CoNPs/PPy/GCE towards 
phoxim was investigated in the presence of different interfering species 
and no significant interference was noted. Lastly, the proposed method 
showed satisfactory results when applied for the determination of 
phoxim using square wave voltammetry in river water samples with 
good precision and recoveries. 
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