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1 Abstract

15 Navigating uncertainty is crucial for survival, with the location and availability of reward varying in
16 different and unsignalled ways. Hippocampal place cell populations over-represent salient locations
17 in an animal’s environment, including those associated with rewards; however, how the spatial uncer-
18 tainties impact the cognitive map is unclear. We report a virtual spatial navigation task designed to
19 test the impact of different levels and types of uncertainty about reward on place cell populations.
20 When the reward location changed on a trial-by-trial basis, inducing expected uncertainty, a greater
21 proportion of place cells followed along, and the reward and the track end became anchors of a warped
2 spatial metric. When the reward location then unexpectedly moved, the fraction of reward place
23 cells that followed was greater when starting from a state of expected, compared to low, uncertainty.
24 Overall, we show that different forms of potentially interacting uncertainty generate remapping in
2 parallel, task-relevant, reference frames.

26 Keywords: expected uncertainty, unexpected uncertainty, hippocampus, remapping, reward place cells
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» Introduction

2 Animals, including humans, thrive according to their ability to adapt to tasks, situations, and environ-
20 ments which vary in their regularity and associated uncertainties. For instance, while driving, minor
s unpredictable delays are common, would not prompt a route change and may even be unnoticed. They
a  can thus be considered a form of expected uncertainty (often associated with aleatoric uncertainty or risk;
» Hiillermeier and Waegeman, 2021), in which precise outcomes are not fully forseeable. However, a traffic
;3 jam can seem very surprising for someone used to a clear commute, a form of unexpected uncertainty
s (Soltani and Izquierdo, 2019; Yu and Dayan, 2005). This can indicate a significant contextual change that
3 might necessitate significant adaptation, for instance, the need to use another route. Importantly, the
3 threshold to consider an outcome as unexpected differs depending on expected uncertainty, for example,
s sporadic traffic jams might be customary to someone living in a busy capital, but prompting unexpected
3 uncertainty in a small countryside town. For the brain to process and interpret these interacting forms
3 of uncertainty is critical for adaptive behavior.

w0 Most research on neural correlates of uncertainties has concentrated on aspects of decision-making,
o related to rewards and punishments (Behrens et al, 2007; Cohen et al, 2015; Dayan, 2012; Hsu et al,
22 2005; McGuire et al, 2014; Nassar et al, 2019; Preuschoff et al, 2011; Soltani and Izquierdo, 2019; Yu
»» and Dayan, 2005). By contrast, it has rarely been applied to spatial contexts such as the location-specific
w« traffic example above. In particular, the concept of uncertainty has not previously been applied to the
s description and understanding of spatial representations in the hippocampus and related structures,
s such as the well-studied place cells (Bast et al, 2009; Best et al, 2001; Burgess et al, 1995; Dombeck
a et al, 2010; Kleinknecht et al, 2012; Morris et al, 1990; Moser et al, 2008; Muller, 1996; O’Keefe and
s Dostrovsky, 1971; Radvansky et al, 2021; Sosa and Giocomo, 2021; Tessereau et al, 2021)(O’Keefe and
s Dostrovsky, 1971), even though many previous results might fit into such a general framework. For
so example, whether the hippocampal place cell population (i.e. the cognitive map) changes gradually or
st suddenly during a progressive change to the features (e.g. shape) of an animal’s environment depends
52 on the amount of experience the animal has had with the intermediate features (Leutgeb et al, 2005a;
53 Plitt and Giocomo, 2021; Wills et al, 2005): the more experience, the more expected uncertainty and the
s« more gradually the place cell population changes; the less experience, the less expected uncertainty and
ss  the more suddenly the place cell population changes. Though previous hippocampal research did not
s explicitly describe results in terms of uncertainty, insights for understanding how place cell populations
57 might map environments with different levels of uncertainty can still be deduced.

ss  In the case of expected uncertainty, for example, varying the spatial environment on a trial-by-trial basis
s (i.e., expected uncertainty in the spatial reference frame) caused hippocampal activity to reflect the
o statistics of the episodic environment (Plitt and Giocomo, 2021). Perhaps similarly, switching a stable
s reward location by block (e.g. expected uncertainty in reward location on a timescale of tens of minutes
& timescale) induces the progressive recruitment of reward-centred place cells (Gauthier and Tank, 2018;
e Issa et al, 2024; Sosa et al, 2023). However, reward foraging behaviors in nature often involve rapid, non-
e random, changes in reward locations in a stable spatial environment, a condition of expected uncertainty
e that has not been explored in prior studies. Therefore, it is unclear how the hippocampal place cell
e population encodes expected uncertainty in reward location on a trial by trial basis, independent of
e changes to the spatial reference frame.

6 In the case of unexpected uncertainty, numerous prior studies provide insights into how place cell popula-
6 tions change their encoding when animals are exposed to large, unexpected changes to their environments.
7o This is typically induced by switching the animals to a novel arena or track which bears little resemblance
7n  to previously experienced spaces. These manipulations often result in a phenomenon known as remap-
2 ping (Anderson and Jeffery, 2003; Bostock et al, 1991; Kentros et al, 1998; Leutgeb et al, 2005b; Muller
7 and Kubie, 1987; Sanders et al, 2020), where place fields change their activity patterns between the two
7« environments (Frank et al, 2004; Hill, 1978; Michon et al, 2021; Sheffield et al, 2017; Wills et al, 2005).
75 While such "remapping” experiments are typically performed by changing aspects of space, prior studies
7 have not looked at unexpected uncertainty in reward location, independent of changes to the spatial ref-
77 erence frame, without prior experience for such a move. Furthermore, in prior ”remapping” experiments,
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7 the level of uncertainty between the familiar and novel experiences has not been systematically varied.
7o Thus, not only is it not clear how changes to hippocampal representations in the light of unexpected and
s expected uncertainty compare, but it is also unknown whether the encoding changes to place cells that
a1 are induced by unexpected uncertainty depend on the initial level of expected uncertainty—that is, how
& uncertainty interactions influence place cell mapping of environments.

s To examine the consequences of uncertainties, we built a virtual reality spatial navigation task to test
s explicitly the impact of different levels, types, and interactions of variability on the cognitive map. As
s reward has been observed to be a particularly significant aspect of experience, potentially acting as an
s anchor for cognitive maps (Burgess and O’Keefe, 1996; Dupret et al, 2010; Gauthier and Tank, 2018;
e Jarzebowski et al, 2022; Sarel et al, 2017), we designed our task around uncertainty in the location
s of reward. Mice were trained, in a stable spatial reference frame, to lick for a water reward whose
s precise location on any trial was more or less certain (a form of expected uncertainty), and whose
o location distribution might also translate without warning (unexpected uncertainty). During the task,
o we imaged dorsal CA1 in the hippocampus using 2-photon calcium imaging (2P) (Dombeck et al, 2010)
o of pyramidal cells expressing the calcium indicator jGCaMP8m (Zhang et al, 2023). We found that
o3 expected uncertainty in reward location enhanced the proportion of place cells that tracked the reward
o on a trial-by-trial basis compared to what we refer to as low uncertainty. Additionally, the reward and
os the track end became anchors of a warped metric for space. Unexpected uncertainty caused substantial
os remapping of place cells but, when we varied the initial level of expected uncertainty, we did not find a
or difference in the overall proportion of place cells that remapped in the spatial reference frame. Instead,
s starting from a state of high versus low expected uncertainty increased the proportion of reward and
o warped place cells that moved to follow the reward after the unexpected change in reward location, a
1o condition that we termed uncertainty interaction. Starting from a state of low expected uncertainty, by
1w contrast, led to a less flexible representation in which reward location encoding place cells tended to
102 remain at the location of the initial reward, even after the unexpected change in reward location. Hence,
w3 by inducing different forms of uncertainty in reward location and looking at their interaction, we show
14 that uncertainty generates remapping in parallel, task-relevant, reference frames.
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«» Results

ws  Mice adapt their behaviour to the degree of uncertainty of the task.

Fig. 1: Training protocol and imaging procedure
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17 a) Training protocol: head-fixed mice on a wheel ran in 1d virtual reality (VR) environments in which water
10s reward was delivered at specific potential locations once per traversal of a 3m long linear track (and could subse-
100 quently be consumed anywhere by licking). In the low uncertainty condition (LU), the location could take one of
1o two positions at the edges of a 10cm reward zone (left). In the expected uncertainty condition (EU), there were 10
11 potential locations evenly spaced within a 90cm wide zone that were selected uniformly at random on every run
12 (right). Mice were trained on one session per day (on average 88.8 trials +15 std) until their behaviour was stable.
us  b) After training, mice experienced a switch session. Initial trials (on average 40.8 +-3.5 std) in the session
14 had the same location contingencies as those experienced during training. Without prior notice, the locations
s at which reward might be provided switched to one of two positions at the edges of a more distal 10cm zone,
ue thus creating unexpected uncertainty (UU, left) in mice originally trained in LU, and a form of uncertainty
w7 interaction (UI, right) for mice originally trained in EU.
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us c¢) Schematic of the VR apparatus: the licking behavior of mice was recorded as they ran on a wheel whose
119 turning determined the velocity of the visual flow on screens. When the mice reached the end of the track, the
120 screen went black for 3 seconds and mice were teleported to the start of the virtual track.

121 d) Visualization of the track used for VR in this paper. Top: 3D view of the track, showing the relative perspec-
122 tive with distal cues. Bottom: front view of the track.

123 e) Schematic of two photon calcium imaging of mouse CAl neurons (green colors) expressing jGCaMP8m.

124

125

126 To study how different forms of reward location uncertainty affect the place cell code, we trained seven
127 male, water-scheduled mice to lick for a water reward as they ran on a 3m linear virtual reality (VR)
s track, and simultaneously recorded place cell activity with 2-photon calcium imaging (Dombeck et al,
1o 2010). At the end of the track, the screen switched off for 3 seconds and mice were teleported to the start
130 of the track for the next trial. On each trial, the reward location lay at discrete sites within a designated
1 reward zone of the track, with the width of this zone inducing varying degrees of predictability. In one
132 subgroup (3 mice, low uncertainty; LU), the reward was made available at one of two adjacent locations
133 10 cm apart, generating low (but, to avoid potential anomalies, not zero) uncertainty about the reward
13 location in each trial (Figure la:i). In the second group (4 mice, expected uncertainty; EU), the reward
135 was made available at one of ten potential locations within a 1-meter zone, creating a condition in which
136 mice could come to expect the resulting high aleatoric uncertainty (Figure la:ii). Importantly, the visual
17 environments were the same between the two groups, and contained extra-track cues, as well as a more
133 marked cue indicating the end of the track (Figure 1d). Once the mice were accustomed to the reward
139 contingencies in low or expected uncertainty conditions, they all experienced a switch in reward location
1o to a new, distal, 10 cm reward zone (Figure 1b). In the mice trained under LU, this switch induced a
w1 form of unexpected uncertainty (UU, Figure 1b:i). In the mice trained under EU, this switch induced a
12 form of uncertainty interaction (UI, Figure 1b:ii).

13 Mice were first trained until they were accustomed to the specific reward contingencies of LU and EU.
s Mice experiencing LU displayed licking and velocity patterns characteristic of high predictability: the
s lick rate increased shortly before the reward zone, peaked within it, and then decreased, stopping until
us  the next trial (Figure 2a). These mice also slowed down as they approached the reward zone, stopped to
w7 consume the reward, and then resumed running at a faster velocity until the end of the track (Figure 2a).

us  Mice trained in EU began licking and slowing down shortly before the start of the wider reward zone
1o (Figure 2b) and therefore appeared to treat the reward as occurring anywhere across the broad zone,
10 as expected for mice experiencing EU. To assess if the behavior in EU varied when the reward was
11 consumed at different locations in the reward zone, we averaged the licking and velocity profiles over
152 trials according to where the reward was consumed (see Methods) in the first third (proximal reward
153 trials; 146 in total), middle third (115 middle reward trials), and last third (111 distal reward trials) of
152 the reward zone. We found that mice licked persistently until they received the reward (Figure 2b). Once
155 they received the reward, mice ceased licking and began running in a stereotypical manner (similar to
156 LU; Figure 2b), demonstrating their understanding of the single-reward trial structure.

v Hippocampal place cells organise into position, reward-centred, and warped
s reference frames to reflect uncertainty

19 In order to investigate the population of place cells under these various conditions, we performed 2-
w0 photon calcium imaging of dorsal CAl pyramidal cells while mice performed the task. We extracted
11 place cells using an information theoretic criterion (see Methods), resulting in 1108 place cells for LU
12 and 1192 place cells for EU. We first confirmed that the LU condition of our task produced results that
13 were consistent with existing literature on place cell activity in reward navigation tasks by averaging
1« place cell activity (DF/F) over the recording session post-training in an external, position, reference
s frame (Figure 2d:i). In the LU condition, we observed a higher density of place cells in the vicinity of the
s reward zone (Figure ?77:1), with on average 0.65% of cells per cm peaking in the vicinity of the reward
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17 zone defined as being between 15 cm before, and 20 cm after, it (see Methods) -, against 0.26% elsewhere
s (comparison in/out proportion z-test: p-value= 1.5 x 10~7°, comparison in>out 1-sided proportion z-
w0 test: p-value< 7.3 x 10776). Place cells peaking in the vicinity of the reward zone had narrower place
o fields (Figure ?7:ii; comparison in/out t-test: p-value= 1.8 x 10728, comparison in<out 1-sided t-test:
i p-value= 8.9 x 10729).

12 In the EU condition, we found only minor over-representation of the broad reward zone, with 0.35% of
73 place cells per cm peaking in the region between —15cm of the start, and +20cm of the end, of the zone
1 (see Methods), against 0.32% elsewhere (Figure ??:i, comparison in/out proportion z-test: p = 1.3x 1071,
s EU comparison in>out 1-sided proportion z-test: p = 6.6 x 1072). Place cells peaking in the vicinity
s of the reward zone were also narrower in EU (Figure ?7iii ; comparison in/out t-test: p = 1 x 1077,
77 comparison in>out 1-sided t-test: p = 5.18 x 107%).

s In this position reference frame, a higher proportion of cells was found to peak in the vicinity of the reward
e zone in LU than EU (Figure ??i; comparison LU/EU proportion z-test: p = 7.9 x 10727, comparison
1w LU>EU 1-sided proportion z-test: p = 4 x 10727).

11 To explore further the impact of a dynamically changing reward location on the place cell population
12 on a trial-by-trial basis, we compared the positions of peak activity for each cell between trials in which
13 the reward was collected near the start (proximal) or the end (distal) of the reward zone (scatter plots
18« in Figure 2f:i; quantification of stable neurons in Figure 2g, whose peaks are within the bounds shown
s in Figure 2f:i). In the LU condition (Figure 2f:i; g:blue bar), in which these positions are very close,
185 73.10% of place cells maintained their peak activity location across the two groups of trials, compared
w7 to only 41.19% under EU (Figure 2f:i; g:purple bar; proportion z-test between the percentages in LU
w in BEU: p = 1 x 10793, 1-sided proportion z-test LUSEU p = 5.26 x 107°%). We also examined the
19 locations of the peaks of the place fields of these cells and found that position-stable cells are evenly
o distributed, with 38.3% of those cells located before the reward zone for LU (c.f. 31.9% for EU), 27.9%
w1 (c.f. 32.22% for EU) in the vicinity of the reward zone, and 33.8% (c.f. 35.93% for EU) after the reward
102 zone (Figure 2j). Although the total percentages are similar, the reward zone area is wider, and starts
103 earlier in the track, in EU, resulting in a higher relative proportion of cells per cm before the reward zone
e (Figure 2k:i; comparison proportion z-test LU/EU p = 3.47 x 10728, 1-sided proportion z-test LU<EU
s p=4.41 x 10728) and lower in the vicinity of the reward zone compared to LU (Figure 2k:ii; comparison
s proportion z-test LU/EU p = 8.82 x 10728 1-sided comparison z-test LUSEU p = 4.41 x 1072%).

17 Given that the reward changes location on a trial-by-trial basis, particularly in the EU condition, and
s that place cells can become organised within different task-relevant reference frames with experience
1o (Anderson and Jeffery, 2003; Aoki et al, 2019; Gauthier and Tank, 2018; Markus et al, 1995; Muzzio
20 et al; 2009; Plitt and Giocomo, 2021; Radvansky et al, 2021; Sosa and Giocomo, 2021; Sosa et al, 2023),
a1 specifically reward (Burgess and O’Keefe, 1996; Gauthier and Tank, 2018; Jarzebowski et al, 2022; Sosa
22 and Giocomo, 2021; Sosa et al, 2023), we asked whether the EU condition might reinforce the reward
203 reference frame, possibly reflected in an increased population representing the changing variable. We
s therefore considered whether cells code for position relative to the reward location on a trial rather than
205 in spatial position associated with the track. To examine this we averaged cell activity relative to reward
25 position (Figures 2d:ii; e:ii, see Methods). In contrast to the position reference frame, in the reward
207 reference frame, there was an equal accumulation of cells aligned in the vicinity of the reward in both
2 LU and EU conditions (Figure ?7?ii), with 4.8% of cells per cm in the vicinity of the reward (with a
20 peak of activity between —15cm and +20cm of the reward), against only 0.2% of cells per cm outside
20 these bounds, in LU (comparison in/out proportion z-test: p-value< 0.2 x 1073% comparison in>out
o 1-sided proportion z-test: p-value< 2.2 x 1073%8) and 3.4% per cm in the vicinity of the reward, against
22 1.25% per cm elsewhere in EU (comparison in/out proportion z-test: p-value< 2.2 x 1073% comparison
23 in>out 1-sided proportion z-test: p-value< 2.2 x 1073%8; Figure ?7?ii). Averaging in a reward-centered
as  reference frame also reduced the widths of place fields peaking in the vicinity of the reward compared to
25 elsewhere, for both LU (comparison in/out proportion z-test: p-value= 3.2 x 10~2%, comparison in<out
26 1-sided proportion z-test: p-value< 1.61 x 10728) and EU (comparison in/out proportion z-test: p-
27 value= 1.6 x 10712, comparison in<out 1-sided proportion z-test: p-value< 8.11x10~*?; Figure ??iv). The
as  difference in accumulation of reward place cells between position and reward reference frames revealed a
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20 population of cells that stably followed the reward on every trial (termed reward cells) and was confirmed
20 by single-cell activity profiles across all trials (Figure ?7?), highlighting populations of cells with stable
o fields relative to position and also reward. These reward cells generalize previous findings (Gauthier and
22 Tank, 2018) to our task in which the reward changes location on every trial.

23 To investigate the effect of a dynamically changing reward location on the place map in this reward
24 reference frame, we compared the locations of peak activity with respect to reward location between
25 proximal and distal reward trials. We found that 70.21% of the place cells maintained their peak activity
26 relative to the reward location across the two groups of trials in LU, compared with 14.85% in EU (Figure
a7 2f:ii, with the stable neurons shown in the boxes quantified in Figure 2h; proportion z-test LU/EU:
2 p=1x10"19 1-sided proportion z-test LU>EU p = 5.51 x 107169). Examining the distribution of these
20 cells along the track (Figure 21), we found that 36.25% of the reward-stable cells were before the reward
» in LU, compared to 14.69% in EU (Figure 2l:i; comparison proportion z-test p = 3.06 x 1078, 1-sided
»n  proportion LUSEU z-test p = 1.53 x 1078). Stability of encoding at the reward was most enhanced in
2 EU, with 38.98% of reward-stable cells being located in its vicinity, compared to 22.87% of reward-stable
2 cells in LU (Figure 2l:ii; comparison LU/EU proportion z-test p = 5.02 x 107, 1-sided proportion z-test
2 LU<EU p = 5.02 x 107%). After the reward, less stability was reported in LU, with 36.24% of reward-
25 stable cells compared to EU, with 46.33% of reward-stable cells (Figure 2l:iii; comparison proportion
2 z-test p = 1.27 x 1072, 1-sided proportion z-test LU<EU p = 6.34 x 1073).

257 While the reward location cannot be predicted, the part of each run from the reward to the end of the
23 track is predictable, and is characterized by a stereotypical behavioral routine. Hippocampal activities
20 have been shown to reflect the statistics of the episodic environments animals experience (Plitt and
20 Giocomo, 2021), for example reflecting stereotypical behavioural sequences (Skaggs and McNaughton,
a1 1998), and organising along warped metrics that homogenise similar episodes (Gothard et al, 1996). We
a2 therefore asked whether the hippocampus might similarly represent these post-reward events regardless
23 of reward location, reflecting stereotypical changes. Consistent with this idea, we qualitatively observed
s a group of cells that seemed to span the range from the reward location to the end of the track in a
x5 flexible manner (Figure 2f:i). To quantify this, we considered a third, warped, metric for space in which
xus  we compressed and expanded it so that there were two segments of 20 bins each — one linking the start
27 of the track to the reward location and the other from the reward location to the end of the track (Figure
us  2d:iii; e:dii). We found that 75.4% of cells kept their position of peak activity in the warped reference
u0  frame between proximal and distal reward trials in LU, and 41.1% in EU (Figure 2i). Examining the
0 relative distributions of warped-stable cells around the reward location in this reference frame, we found
s a balanced distribution in LU: 31.01% of warped-stable cells before the reward, 32.0% in the vicinity of
2 the reward, and 36.8% after the reward (Figure 2m). As the reward location cannot be predicted in EU,
»3  this analysis is provided here for completeness with respect to other reference frames. In contrast, the
x4 warped metric highlighted a post-reward alignment of cells after the reward in EU, with 28.51% of the
5 warped-stable cells before the reward, 20.7% in the vicinity of the reward, and 50.7% after the reward.
6 We found a significantly lower degree of post-reward warping in LU compared to EU (Figure 2mu:iii;
257 comparison proportion z-test p = 8.40 x 1077, 1-sided proportion z-test LUEU p = 4.2 x 10~7).

s Note that the higher percentages of stability between proximal and distal reward trials reported in Figures
9 2g hii in low uncertainty simply reflect the task design, in which reward, position and warped reference
%0 frames are more similar in LU than in EU due to its far narrower reward zone. We provide the statistical
s comparisons for the sake of completeness. Our finding of excess stability in reward (Figure 21) and warped
%2 reference frames (Figure 2m) in EU confirm our conclusion that expected uncertainty highlights enhanced
%3 reward and warped reference frames as an adaptation to reflect the statistics of change in the task
s design. Overall, our findings show that expected uncertainty in reward location enhanced the proportion
x5 of place cells that tracked the reward on a trial-by-trial basis (reward-referenced cells) compared to low
6 uncertainty, and the reward and the track end became anchors of a warped metric for space.
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Fig. 2: Expected uncertainty reveals dual spatial and reward reference frames for behaviour and
place cell activity, and a warped metric that combines both
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a) i: Average lick rate (number of lick events per 10cm position bin) after training in the LU condition.
ii: Average velocity trace in the same condition. For both: Thick line shows the mean across sessions
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%0 (n = 12 sessions, m = 3 mice) normalised to the maximum per session, shaded region represents the
a0 standard deviation across sessions; shaded lines show each session trace. iiijiv: The same plots as for
o1 LU, but under EU, for laps of trials separated as shown in b): yellow: proximal, grey: middle and orange
a2 distal reward trials. For both top and bottom: Thick line showing the mean across sessions (n = 16
23 sessions, m = 4 mice) normalised to the maximum per session, shaded region represents the std across
o sessions, shaded lines show each session trace. Green thick lines show the reward zone.

25 b) Diagram of the division between the laps according to the location at which the reward was consumed
a  for the analysis in EU.

o ¢) i Cross validated place map in a position reference frame for one session of LU for one animal, show-
as  ing the average place cell activities (IV = 437 place cells out of 518 total cells) on even trials normalised
a9 to their maximum value, ordered by their position of peak activity on odd trials, after training in low
20 uncertainty. ii: The same activity, but averaged according to a reward reference frame (aligning the
2 position to the reward location at every trial — see Methods). iii: The same activity averaged according
2 to a warped/interpolated position-reward reference frame (a warped metric vector is created by two
23 uniform interpolations linking the start of the track - reward - end of the track — see Methods).

2 d) The same (c), but for an animal experiencing EU (N = 369 place cells out of 475 total cells).

25 €) 1: Scatter plot showing the positions of peak activity on trials on which the reward is at the proximal
26 (x-axis) versus distal (y-axis) end of the reward zone for LU (left; 1118 place cells) and EU (right; 1192
27 place cells). Each white dot is a single place cell; the heatmaps show a probability density function esti-
s mate of the data (see Methods, normalised to 1). Yellow lines show the reward zone on proximal trials,
20 orange lines on distal trials. Blue lines (left) and purple lines (right) delineate the diagonal used in the
20 quantification for statistics in f). Scatter plots include a jitter proportional to cell density, enhancing
21 visualization of overlapping data points. ii: Similar to (i), but in a reward-centered reference frame. The
22 yellow line shows the reward location on proximal trials, the orange line on distal trials (both at 0, by
203 definition of the reward reference frame). Blue square (left) and purple square (right) delineate the area
24 used in the quantification for statistics in g). iii: similar to (i) in a warped metric (see Methods). Blue
205 lines (left) and purple lines (right) delineate the post-reward diagonal used in the quantification for
26 statistics in h).

27 f) Percentages of cells that have a similar (£15cm) position of peak activity in ‘proximal’ and ‘dis-
28 tal’ reward trials in LU (blue region) and EU (purple region). comparison proportion z-test LU/EU
20 p=1x107%3, 1-sided proportion z-test LUSEU p = 5.26 x 1074,

30 g) Same than f) in a reward reference frame. Comparison proportion z-test LU/EU p = 1.1 x 107159,
sn  1-sided proportion z-test EUSLU p = 5.51 x 107160,

52 h) Same than g) in a warped reference frame (+£3warped units). Comparison proportion z-test LU/EU
s p=1.2x 10751, 1-sided proportion z-test EUSLU p = 5.6 x 10762,

s 1) Percentages of cells that are stable in a position reference frame (with a maximum displacement
w05 of +15cm; within the diagonal lines in e:i): i: before the reward zone, comparison proportion z-test
s p = 1.77 x 1072, 1-sided proportion z-test LU<EU p = 8.86 x 1072; ii: in the vicinity of the reward
w7 zone (-15 +20cm), comparison proportion z-test p = 8.82 x 10728, 1-sided proportion z-test LU>EU
e p = 4.41 x 10728, iii: after the reward zone, comparison proportion z-test p = 3.17 x 1072, I-sided
20 proportion z-test LUKEU p = 1.59 x 1072, for LU (blue) and EU (purple).

a0 j) Same as (i) but divided by the total area covered by every zone. left: comparison proportion z-test
sn p = 3.47 x 10728, 1-sided proportion z-test LU<EU p = 1.73 x 10~2% middle: comparison proportion
s z-test p = 1.96 x 10719, 1-sided LU>EU comparison test p = 5.31 x 107!, right: comparison proportion
sz z-test p=2 x 1071,

s k) Percentages of cells with stable peaks in a reward reference frame (+15cm; within the boxes in e:ii):
us it before the reward, comparison proportion z-test LU/EU p = 3.06 x 10~8, 1-sided proportion LU>EU
se  z-test p = 1.53 x 1078, ii: in the vicinity of the reward zone ([—15,+20]cm), comparison LU/EU propor-
a7 tion z-test p = 1 x 107°, 1-sided proportion z-test LU<EU p = 5.02 x 107°. iii: after the reward zone,
ss  comparison proportion z-test p = 1.27 x 1072, 1-sided proportion z-test LU<EU p = 6.34 x 1073, for
a0 LU (blue) and EU (purple).

a0 1) Percentages of cells with stable peaks in a warped reference frame (with a maximum dis-
2 placement of 3 warped units, representing between 20cm and 40cm, depending on the position
22 of the reward; within the diagonal lines in e:ii): i: before the reward, comparison proportion
»s z-test LU/EU p = 3.37 x 107!, non significant. ii:: in the vicinity of the reward zone (-2 +3
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24 warped units), comparison proportion z-test p = 9.06 x 1076 1-sided proportion LU>EU z-
»s test p = 4.53 x 1076, iii: after the reward zone, for LU (blue) and EU (purple), comparison
»s  proportion z-test LU/EU p = 84 x 1077, l-sided proportion LU<EU z-test p = 4.2 x 1077.

327

328

» Expected uncertainty leads to enhanced flexibility of the reward and warped
s  populations towards a surprisingly new reward location.

s We have so far shown that expected uncertainty leads to an enhanced reward and warped reference
s»  frame by contrasting with a condition of low uncertainty. To complement the collection of uncertainties,
a3 and investigate their interaction, we performed a larger, unpredictable, change in reward location meant
su  to induce a sudden surprise and a condition of unexpected uncertainty. After familiarising the animals
35 to the LU and EU conditions, we imaged CA1 place cells while changing the reward location during a
36 session, without prior notice or experience, to a narrow reward zone further down the track (Figure 1b).
s This unannounced change generates unexpected uncertainty (UU) in LU mice and a form of uncertainty
18 interaction (UI) in EU mice. As drastic changes in context can lead to very abrupt shifts in place field
a0 locations (Michon et al, 2021; Sheffield et al, 2017; Wills et al, 2005), we asked whether UU would
uo induce a higher degree of change in the place map compared to UI, due to a higher level of surprise.
s Comparison between LU and EU highlighted a difference with respect to the anchor of the reward on
w2 the place map, but it was unclear if or how these differences would change the response to unexpected
w3 uncertainty. Specifically, noting that the reward location variability in the EU mice led them to have a
s greater proportion of place cells stably tied to reward and warped reference frames rather than position,
us  we tested whether this would generalize to the farther move of the reward, which would be exemplified
us by greater stability in these reference frames for UI than UU in the face of an unexpected change.

a7 We first verified that the behavior after the switch stabilizes to a pattern reflecting the new task statistics.
us  The licking and velocity patterns aligned with prior observations (compare Figures 2a;b and 3a;b). Note
s that the two subjects in UI had different patterns of post-switch behavior (Figure ??); thus, as well as
0 analyzing them together we report in the Supplement (Figures S?? and S?7?) the statistical comparisons
1 presented in this section for each of these animals separately.

s Next, we examined how the place map was impacted by the unexpected change. Although we expected
33 more global remapping in UU than UT (since they should have been more surprised), a qualitative
3¢ assessment of the place map after the switch (Figure 3c;d) highlighted similar, moderate, degrees of
s remapping in both conditions, primarily affecting place cells peaking between the previous and new
s reward zones. Comparing post-switch maps, we found that reward over-representation was marginally
7 less in the new location under UU than UL Indeed, after UU we found 0.38% of cells per cm in the
s vicinity of the reward zone, 0.32% of cells per cm elsewhere, versus 0.56% of cells per cm in the vicinity
s of the reward after Ul and 0.28% of cells per cm elsewhere (proportion z-test UU/UI p = 1.13 x 1072,
50 1-sided z-test UU<UI p = 5.6 x 1072, Figure 77).

1 1o quantify the impact of the sudden reward location change on each place cell’s activity, we compared
2 the location of peak activity before and after the switch for cells that remained place cells after the
w3 switch (455 place cells out of 1872 total cells for UU, 246 out of 970 for UI). Surprisingly and contrarily
¢ to our expectations, we found that similar percentages of cells maintained their peak activity location
s after the switch in UU (24.4% of cells) and UI (21.5% of cells) in a position reference frame (Figure 3e;h;
s comparison proportion z-test UU/UI p = 4 x 1071). Thus, unexpected uncertainty caused substantial
7 remapping of place cells but, when we varied the initial level of expected uncertainty, we did not find a
s difference in the overall proportion of place cells that remapped in the spatial reference frame.

w0 However, building on the observation of a slightly lower reward over-representation after UU compared
s to Ul we turned to analyse the cells that moved with the reward across the switch in a reward reference
sn frame. We found that a significantly lower percentage of cells stably peaked in the vicinity of the reward
sz in a reward-reference frame across the switch in UU (7% of cells) than in UI (18.2% of cells) (Figure 3f;i;

10
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w13 comparison proportion z-test UU/UI p = 1.73 x 10~¢, 1-sided proportion z-test UU<UI p = 8.65x 10~7),
s excluding those place cells that were stable in the position reference frame (i.e., those quantified in Figure
w5 3h). Thus, expected uncertainty leads to a more flexible reward reference frame.

s We then wondered whether the enhanced flexibility of the reward anchor in UI would also translate
asr to the warped reference frame. Indeed, we found that fewer cells maintained their peak activity in UU
s (6% of cells) compared to UT (14% of cells) in the warped reference frame (Figures 3g;j; comparison
s proportion z-test UU/UI p = 2.94 x 103, 1-sided proportion z-test UU<UI p = 1.47 x 10~3), excluding
w0 any position-stable or reward-peaking cells quantified in Figures 3h;i. Therefore, expected uncertainty
s leads to hippocampal representations that are more stable in both the reward and warped reference
s frames in subsequent adaptations to unexpected changes.
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Fig. 3: Expected uncertainty in reward location enhances flexible reward and warped reference

frames
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3 a) UU: Top: normalized lick rate averaged over all sessions. i: before the switch, ii: after the switch.
s Bottom: similar to Top) for normalized velocity. Green thick lines show the full reward zone. Shaded
35 areas show standard deviations and individual lines show individual sessions averages.

s b) UL Top: normalized lick rate on proximal (Yellow), middle (Grey) and distal (Orange) reward trials.
sr 1t before the switch, ii: after the switch. Bottom: similar to Top) but for normalized velocity. Green thick
s lines show the full reward zone before the switch, pink lines the reward zone after the switch. Shaded
0 areas show standard deviations and individual lines show individual sessions averages. See Figure 77 for
a0 results for separate mice.

sn ¢) i: Place map before the switch (N place cells=304) in UU, showing the average activity for one ani-
sz mal, ordered according to their cross-validated position of peak activity before the switch, and shown in
33 a position reference frame. Green lines mark the reward zone. ii: activities of the same cells ordered as
s in (i), after the switch. Turquoise lines mark the previous reward zone, pink lines show the new reward
35 zone. iii: New place map after the switch (N after=322).

s d) The same as (c¢), but for UI (N before=283, N after=328).

s e) 1: Scatter plot showing the positions in a position reference frame of peak activity before (x-axis)
38 versus after the switch (y-axis) in UU (left) and UT (right). Each white dot is a cell and heatmap shows
30 & probability density function estimate (see Methods). Turquoise lines delineate the diagonal used for
wo statistics in f). Scatter plots include a jitter proportional to cell density, enhancing visualization of
w1 overlapping data points. ii: Similar to i: but in a reward reference frame. Turquoise squares delineate
w2 the area used for statistics in g). iii: Similar to (i:,ii:) but in a warped reference frame. Turquoise lines
w3 delineate the post-reward diagonal used for statistics in g).

wi  f) Percentages of cells with stable peaks in a position reference frame (with a maximum displacement
ws of +15cm; shown by the lines in the heatmap in e)i:) : for UU (turquoise) and UI (red). The black dots
ws show individual session percentages. Comparison proportion z-test UU/UI p = 5.14 x 10~ 1.

wr g) Percentages of cells with stable peaks in a reward reference frame (between —15cm and +20cm of
ws the reward; shown by the lines in the heatmap in e)ii:), excluding position-stable cells. Proportion z-test
wo UI/UU p=1.73 x 1075, 1-sided comparison UU<UI 1-sided proportion z-test p = 8.65 x 10~ 7.

a0 h) Percentages of cells with stable peaks in a warped reference frame (with a maximum displacement
a1 of 3 warped units, representing between 20cm and 40cm, depending on the position of the reward,
a2 shown by the lines on the heatmaps in e)iii:), excluding position- and reward-stable cells. Proportion
a3 z-test UU/UI p = 2.94 x 1073, 1-sided comparison UU<UI 1-sided proportion z-test p = 1.47 x 1073.

414

415

as Place cells over-represent previous rewards in UU, generalize in Ul

a7 Surpised by the finding that the proportion of cells maintaining their peak activity location before
ss  and after the switch was similar in UU and UI conditions in a position reference frame, we decided to
a0 investigate further the relative stability in position reference frame, and looked at how the peaks of these
a0 position-stable cells were distributed along the track. The distributions of percentage of cells per position
a1 bin did not show any significant overall difference between the two conditions (Kolmogorov-Smirnov test
w2 p=0.872, non significant; figure 4a).

223 However, minor differences were apparent when dividing the track up into three areas: ahead of the reward
«2¢  zone before the switch, at the previous reward zone, and the remainder (zones marked with bars in the
w5 insert in Figure 4a). In UU, a slightly greater position-stability was observed before the previous reward
ws  zone, with 11.87% of cells (50.5% of total position-stable cells) located before the previous reward zone
w7 in UU, compared to 7.72% of cells (35.8% of total position-stable cells) in UI (Figure 4b:ii; comparison
2 UU/UI proportions z-test p = 6 x 1072, 1-sided proportion z-test UU>UI p = 2.27x 1071). In the vicinity
x90 of the previous reward zone, no significant difference was found, with 4.4% of cells (18% of position-
a0 stable cells) in UU and 6.5% of cells (30% of position-stable cells) in UT (Figure 4b:iii; comparison UU/UI
@ proportions z-test p = 2.2 x 10~!, non significant). After the previous reward zone, a similar proportion
2 of cells was position-stable, with 7.7% of cells (31.5% of position-stable cells) in UU and 7.3% of cells
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s (34% of position-stable cells) in UI (Figure 4b:iv; comparison UU/UI proportions z-test p = 8.6 x 1071,
a4 non significant).

15 Consistent with our results so far, this picture changed considerably in a reward reference frame (Figure
16 4c¢). Here, we found greater overall reward-stability in UI, with only 13.6% of cells maintaining their
w7 peak activity location relative to the reward after the switch in UU, compared to 28% of cells in UI
s (Figure 4c:i; comparison UU/UI proportions z-test p = 3 x 1076, comparison UU<UI 1-sided proportion
m  z-test p = 2.7 x 107%). Specifically, 5.4% of cells (40.3% of reward-stable cells) were located before the
wo  reward in UU, versus 7.3% of cells (26% of reward-stable cells) in UI (Figure 4c:ii; comparison UU/UI
w1 proportions z-test p = 3.4 x 1071, non significant). In the vicinity of the reward, we found 7% of cells
w2 (51.1% of reward-stable cells) in UU, and 18.3% of cells (65.2% of reward-stable cells) in UI (Figure
w3 4c:iii; comparison UU/UI proportions z-test p = 3.4 x 1075, comparison UU<UTI 1-sided proportion z-
ws test p = 2.7 x 1079). Post-reward, similar percentages of reward-stable cells were found, with 4.8% of
ws  cells (35.5% of reward-stable cells) in UU, and 5.3% of cells (18.8% of reward-stable cells) in UT (Figure
ws  4c:iv; comparison UU/UI proportions z-test p = 7.9 x 10~1, non significant).

w7 Given the over-representation of reward locations in both LU and EU, and our discovery that expected
ws uncertainty leads to an enhanced flexibility of this population, we sought to understand where the
we  previously reward-peaking cells moved to after the unexpected switch in UU and UL For this, we explored
w0 the post-switch peak locations of cells that peaked in the vicinity of the reward pre-switch. These differed
1 significantly between UU and Ul (Figure 4e; distribution comparison using a Kolmogorov-Smirnov test
s p-value< 2.2x107398). The bimodal distribution for UU indicates a peak at the previous reward location;
»s3 by contrast, more reward-cells moved to the new reward location in UI. Quantifying whether the previous
4 reward location in UU is indeed over-represented, we found 0.9% of previously reward-peaking cells per
w5 cm at the current reward location after the switch (comparison current>elsewhere 1-sided proportion z-
ws  test p< 2.2x107398) and 0.88% of those cells per cm peaking at the previous reward location (comparison
w7 previousgelsewhere 1-sided proportion z-test < 2.2 x 1073%8) while only 0.14% of previously reward
w8 stable cells remapped elsewhere in the track after the switch (See figure 4f), confirming persistence of
w0 the previous reward location in UU.

w0 Building on the observation of an enhanced post-reward warped metric after Ul compared to UU, we
w1 turned to look into whether there was a difference between UU and UI in how the warped stability is
w2 organized with respect to the reward. Investigation of the stability with respect to the warped reference
w3 frame confirmed our earlier results, showing overall lower warped-stability in UU, with 26.2% of cells,
we compared to Ul with 41% of cells (Figure 4d:i; comparison UU/UI proportions z-test p = 6.51 x
ws 107°, comparison UU<UI 1-sided proportion z-test p = 3.26 x 107°). Similarly consistent with our
wo earlier results, no difference in warped-stability was found before the reward, with 10.1% (38.7% of all
w7 warped-stable cells) in UU and 10.2% (24.8% of warped-stable) in UI (Figure 4d:ii; comparison UU/UI
ws proportions z-test p = 9.8 x 10~!, non-significant). In the vicinity of the reward, fewer cells were warped-
wo aligned in UU (7.4% of cells, 28.6% of warped-stable cells), compared to UI (17.9% of cells, 43.6% of
m  warped-stable cells) (Figure 4d:iii; comparison UU/UI proportions z-test p = 2.9 x 107>, comparison
m  UU<UI 1-sided proportion z-test p = 1.4 x 107%). Post-reward warped-stability was slightly different,
w2 with only 8.6% of cells (32.8% of warped-stable cells) in UU, and 13% (31.7% of warped-stable cells) in
ws Ul (Figure 4d:iv; comparison UU<UI 1-sided proportion z-test p = 6.02 x 10~2).

an Overall, these results establish that starting from a state of high versus low expected uncertainty increased
a5 the proportion of reward and warped place cells that moved to follow the reward after the unexpected
as  change in reward location. Starting from a state of low uncertainty, by contrast, led to a less flexible
ar representation in which reward location encoding place cells tended to remain at the location of the
as  initial reward, even after the unexpected change in reward location.
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Fig. 4: Unexpected uncertainty in reward location highlights persistence of the previous reward
location, EU features generalisation of reward encoding
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a9 a) Distribution of the locations of the peak activity of position-stable cells. The x-axis shows position
w0 along the track in cm. Bars show the percentage of position-stable cells having their peak activity in
w1 a position reference frame in the respective position-bin for UI (red) and UU (turquoise). Right insets
2 show repeat of 3e) illustrating the cells counted in the histogram plot. Distribution comparison using a
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w3 Kolmogorov-Smirnov test p = 0.47, non significant.

w2 b) Percentages of cells with stable peaks in a position reference frame: i: across the whole track (with a
ws  maximum displacement of £15c¢m; similar to 3h) comparison UU/UI proportions z-test p = 5.14 x 1071,
s non significant; ii: before the reward zone (<—15cm) before and after the switch (horizontal bar zone
@ in the insert); comparison UU/UI proportions z-test p = 8.64 x 1072, comparison UU>UI 1-sided
ws proportion z-test p = 4.32 x 1072; iii: in the vicinity of the reward zone (—15cm/+20cm) before and
@ after the switch (tilted bar zone in the insert); comparison UU/UI proportions z-test p = 2.27 x 1071,
w0 non significant; iv) after the reward zone (>+20cm) both before and after the switch (vertical bar zone
w1 in the insert); comparison UU/UI proportions z-test p = 9.52 x 10~!, non significant.

w2 c) Percentages of cells with stable peaks in a reward reference frame: i: across the whole track; com-
w3 parison UU/UI proportions z-test p = 1.26 x 107%, comparison UU<UI 1-sided proportion z-test
we p = 8.65x 1077; ii: before the reward zone (<—15cm) before and after the switch; comparison UU/UI
ws proportions z-test p = 4.04 x 107!, non significant; iii: in the vicinity of the reward (—15cm/+20cm)
ws  before and after the switch; comparison UU/UI proportions z-test p = 1.73 x 107, comparison UU<UI
w7 1-sided proportion z-test p = 8.65 x 10~7; iv) after the reward (>+20cm) before and after the switch;
ws  comparison UU/UI proportions z-test p = 4.14 x 10~!, non significant.

w0 d) Percentages of cells with stable peaks in a warped reference frame: i: across the whole track; UU/UI
s0  proportions z-test p = 6.51 x 1075, comparison UU<UI 1-sided proportion z-test p = 3.26 x 1077; ii:
sn  before the reward (<-2 warped units) before and after the switch; comparison UU/UI proportions z-test
so p = 8.35 x 1071, non-significant; iii: in the vicinity of the reward (—2/+ 3 warped units) before and after
sos  the switch, comparison UU/UI proportions z-test p = 2.9 x 10~°, comparison UU<UI 1-sided proportion
s z-test p = 1.4 x 1075; iv: after the reward (>+3 warped units) before and after the switch; comparison
s UU/UI proportions z-test p = 1.2 x 10~!, comparison UU<UI 1-sided proportion z-test p = 6.2 x 1072.
s €) Distribution of the peak location relative to post-switch reward of the cells that peaked in the vicinity
sor - of ([—15,+420]cm) the reward before the switch for UI (red) and UU (turquoise). The x-axis shows
ss  bins of position along the track relative to post-switch reward. Cells peaking at Ocm follow the reward
so0  through the switch. Right insets repeat figure 3e), illustrating the cells counted in the histogram plot
so with vertical bars. Distribution comparison using a Kolmogorov-Smirnov test p-value< 2.2 x 107308,

su f) Percentages per cm of previously reward peaking cells after the switch, that stay reward
sz peaking (current, rightward tilt), that stay peaking at the previous reward (previous, leftward
si3 tilt), or that move elsewhere (else, plain bar) for UU. Comparison current>else 1-sided propor-
su tions z-test < 2.2 x 1073%%) comparison previous>else 1-sided proportions z-test < 2.2 x 107308,

515

516

« 1iscussion

sis We imaged dorsal CA1 while mice navigated in a virtual reality corridor in which reward became avail-
sio  able according to one of a number of distributions of spatial location. These induced different forms
s0 of uncertainty that we studied across three positional reference frames: environment-centered, reward-
s centered, and a combined metric where the reward and the end of the track anchored experience, with
s the hippocampus generating what amounts to a warped spatial metric. We found that reward-dedicated
53 place cells adapted flexibly to trial-by-trial changes in reward location, with this adaptability extending
su  to larger, unexpected reward shifts, especially in reward-based and warped reference frames. This was
55 not observed in animals conditioned to low uncertainty. Initial stability in reward location did not lead
s to more global remapping in a position reference frame when the reward subsequently moved, but led to
so7  persistence of previous reward location. These results contribute to our understanding of the structure
s of cognitive maps.

s0  Our results expand on previous findings about reward-dedicated place cells(Dupret et al, 2010; Gau-
s thier and Tank, 2018; Hollup et al, 2001; Jarzebowski et al, 2022; Sosa and Giocomo, 2021), showing
s their ability to adapt to single-trial changes in reward location. This is consistent with previous electro-
s2 physiological results highlighting abstract goal populations in the hippocampus (McKenzie et al, 2013;
s3. McNaughton and Bannerman, 2024; Zeithamova et al, 2018), and behavioral results showing that the
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s hippocampus is required for single-shot learning of new goal locations (Bast et al, 2009; Kleinknecht
s et al, 2012; Morris et al, 1990; Sosa and Giocomo, 2021; Steele and Morris, 1999; Tessereau et al, 2021).
s Such cells have been suggested in models (Burgess and O’Keefe, 1996; Foster et al, 2000; Tessereau et al,
s 2021) as serving flexible behavioural adaptation, for example acting as a reference point for vector-based
s navigation (Burgess et al, 1995; Foster et al, 2000; Tessereau et al, 2021), or uncertainty resolution, to
s guide prediction (Burgess et al, 1995). Our results converge with a recent paper investigating the effect
se0  Of multiple similar changes in reward location on the reward population codes of the hippocampus. By
sa  changing the reward location between multiple phase of stable reward locations, (Sosa et al, 2023) found
se2 that place cells can organise within reward-centered sequences which recruit more cells as the reward loca-
s3 tion changes day-by-day. Although the authors focus on reward population codes, we can now interpret
s their results in terms of expected uncertainty, induced by block-by-block changes in reward. The extra
ss  recruitment of reward cells would then be an instance of the excess of reward-following cells apparent in
s our Ul condition. Similar findings suggest that reward-induced behavioral changes create a landmark-
s based reference frame in the hippocampus (Vaidya et al, 2023), with over-representation of salient cues
s extending beyond rewards (Tanni et al, 2022; Vaidya et al, 2023). This over-representation likely arises
0 from distinct mechanisms for landmarks and rewards (Sato et al, 2020).

s0  In conditions of EU, we observed a warped spatial metric consistent with past studies(Gothard et al,
ssi 1996), where the track segment following the reward and preceding the teleportation zone was renor-
ss2 malized. Whether the warped metric is the reflection of stereotypical behavioural sequences induced by
53 having to stop to consume the reward, and running until the end of the track, or whether the reward
ssa  itself is a sufficient anchor to induce such a warped metric, remains unclear. Comparable place map
sss - warping has been seen when mice were exposed to gradually changing visual patterns Plitt and Gio-
56 como (2021) or visual boundaries (Leutgeb et al, 2005a), creating continuous place cell activity profiles.
sz In contrast, abrupt remapping occurred when mice were only familiar with extreme conditions, parallel-
s ing the response to unexpected uncertainty in the reward reference frame in our study. The integration
ss0  of homogeneous episodes within continuous, possibly warped, metrics is also consistent with suggested
so  roles of the hippocampus as a comparator (Kumaran and Maguire, 2007; Vinogradova, 2001) — perhaps
s responding to the conflict between external cues and internal, self-motion cues (Gothard et al, 1996),
sz or intrinsic reward encoding. Indeed, warped metrics provide an efficient way to associate discontiguous
s3  events (Wallenstein et al, 1998), and may promote one-shot decision making by enhancing state-space
s« separability (McKenzie et al, 2014; Muzzio et al, 2009; Nitz, 2009; Sun et al, 2023).

ss  Our finding that unexpected uncertainty did not induce greater position remapping than expected uncer-
ses  tainty contradicts our initial hypothesis, which anticipated more extensive remapping under surprise.
ss7 By contrast, previous work has suggested that greater surprise is associated with greater remapping
s (Sanders et al, 2020), and indeed drastic changes in context, such as the visual environment (Anderson
seo  and Jeffery, 2003; Bostock et al, 1991; Kentros et al, 1998; Leutgeb et al, 2005b; Muller and Kubie, 1987;
s Sanders et al, 2020; Sheffield and Dombeck, 2019) can lead to substantial degrees of remapping. It may be
sn that surprising reward locations and sensory mispredictions (Sanders et al, 2020) are treated somewhat
sz independently. This would be consistent with the greater degree of reward-related and warped-metric
53 remapping in UU compared to Ul, suggesting that remapping can occur independently in different ref-
s erence frames, and building on existing results shedding light on overlapping reference frames in spatial
s5 navigation tasks (Zinyuk et al, 2000).

s In UU, we found that the population of place cells previously peaking at the reward became bimodally
sz distributed around the previous and new reward location. This suggests that repeated experience of a
s specific episode could lead to cells becoming specific to single episodes, akin to splitter cells (Wood et al,
so 2000), but in reward reference-frames, similar to the finding in (McKenzie et al, 2013). In contrast, in
ssoo Ul reward-aligned cells and warped-aligned cells moved flexibly to the new goal location. This confirms
s a previous result suggesting independence of reward and position reference frames in rats (Aoki et al,
s22 2019). We might interpret this difference in terms of generalization: context-specific representations are
ss3 probably well suited for efficient decision making when environments distinctly differ, as in the transition
sss in UU. However, under EU, the multiple reward locations are tied under a common, moderately compact,
sss  distribution. Rather than exhausting capacity by representing each separately, the hippocampal solution
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s appears to be to have similar events share representations, by adopting metrics that encapsulate shared
ss7  aspects of experience. This then generalizes when the reward location shifts yet further in UI.

sss  We focused our analyses on peak place cell activity, but future work could explore subtleties in firing
s0  rates (Sanders et al, 2019), and the relationship with theta rhythms (Chadwick et al, 2015). We only
s considered stable place cells before and after transitions; examining population turnover could yield
s further insights. To ensure robustness, we emphasized average spatial receptive fields, but tracking fast
so  reward location changes remains essential. Finally, repeated switches, like those in UU, may eventually
s3  become expected, highlighting the need to understand how unknown unknowns transition to known
se  unknowns in stochastic environments.

s Future work should focus on deciphering the implementation processes underlying our findings. Plateau
s6  potentials generated by synchronized inputs from the entorhinal cortex and CA3 can lead to the formation
sov  of new feature-selective cells (Bittner et al, 2015). Furthermore, recent studies have highlighted enhanced
ss reward-reference frame coding in the lateral entorhinal cortex (LEC) (Issa et al, 2024), and medial
s0 entorhinal cells are also attracted to goals (Boccara et al, 2019). Given that grid cells provide different
o0 spatial metrics and can anchor to task-relevant features (Peng et al, 2023), it would be natural to explore
eor  grid cell activity in the various conditions of our study. This might shed light on the structured diversity
ez of CAl place cells selectivity.

w3 Task-relevant place cells selectivity could be driven by neuromodulatory inputs (Kaufman et al, 2020;
os Palacios-Filardo and Mellor, 2019; Palacios-Filardo et al, 2021). Evidence shows that acetylcholine,
ss dopamine, noradrenaline and serotonin neuromodulatory systems provide signals associated with expec-
s tation, error and uncertainty, with their release reconfiguring hippocampal (and wider cortical) neuronal
7 circuits to enable the update of estimates and memories (Dayan, 2012). Under this framework, the release
ss of specific combinations of neuromodulators potentially codes for different types of uncertainty and could
60 thereby influence the degree and type of place cell reorganisation. Indeed, dopaminergic and noradren-
s ergic projections to CAl from ventral tegmental area and locus coeruleus convey information about
su reward prediction errors (Cohen et al, 2012; Fiorillo et al, 2003; Schultz et al, 1997) and surprise (Fiorillo
sz et al, 2003; Heer and Mark, 2023; Kaufman et al, 2020; McNamara et al, 2014) and can causally shape
a3 reward-related CA1l reorganisation (Kaufman et al, 2020; Krishnan et al, 2022), specifically in response
s« to high reward prediction errors (Michon et al, 2021). Synaptic plasticity is the mechanism for place
a5 cell reorganisation and is regulated by neuromodulators in multiple ways (Palacios-Filardo and Mellor,
sis  2019). For example, acetylcholine reprioritises entorhinal and CA3 inputs to CAl reducing the inter-
siv  mal representations from CA3 and enhancing external sensory input from entorhinal cortex (Hasselmo,
sis  2006; Hasselmo and McGaughy, 2004; Palacios-Filardo et al, 2021) whilst also reconfiguring inhibitory
s networks (Haam et al, 2018; Ledo et al, 2012) and enhancing dendritic excitability and synaptic plastic-
e20 ity (Buchanan et al, 2010; Dennis et al, 2016; Gu and Yakel, 2011; Teles-Grilo Ruivo and Mellor, 2013;
en Williams and Fletcher, 2019) in response to surprising events (Mineur et al, 2022; Ruivo et al, 2017).
62 Thus, neuromodulators are an attractive mechanism linking detection of uncertainty to the update of
63 hippocampal representations with new information.

es In conclusion, we exploited the relative transparency of the spatial activity of hippocampal place cells in
e order to examine the effects of different forms of uncertainty about the location of reward, and, equally,
e used these different forms of uncertainty to enrich our understanding of the hippocampal code for space.
67 Place cells exhibited impressive adaptation to the diverse statistical contingencies, with sub-populations
es adopting what we can see as different relevant reference frames. This sharpens the hippocampus’s role
&0 as not only a spatial navigator but also a flexible processor of uncertainty. By offering multiple reference
e frames depending on task-relevant features like reward, the hippocampus provides a robust framework
e for adapting to both expected and unexpected uncertainty. This flexibility suggests a novel mechanism
62 by which the brain supports rapid decision-making under uncertainty —- crucial for survival in changing
633 environments — and provides downstream circuits with a computationally sophisticated representation
e which can afford an attractive combination of specialization and generalization.
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o Methods

s Mouse surgery

e All experiments were approved and conducted in accordance with the Northwestern University Animal
s Care and Use Committee. Seven male P56-P63 mice (C57BL/6J, Jackson Laboratory, stock no.000664)
6 were used in the experiments. To induce the expression of a calcium indicator, mice were first injected
s0  with AAV virus expressing jGCaMP8m (AAV1-syn-FLEX-jGCaMP8m-WPRE) (Zhang et al, 2023) into
s dorsal CAl region of the right hippocampus (1.8mm lateral, 2.3mm caudal of Bregma, 1.25mm below the
s2 dura surface). After the injection, mice first recovered with ad libitum water for 1-2 days and then were
s3 subject to water restriction (0.8-1.2ml per day) until the end of all experiments. The weight of all mice
a4 was monitored and kept between 75%-80% of the original weight. After 3-5 days under water restriction,
&s hippocampal cannula implant surgeries were performed above the injection site to allow optical access to
s dorsal CAl of the hippocampus, as previously described (Dombeck et al, 2010). Briefly, cortex above the
s7 dorsal hippocampus was aspirated until the white matter of the external capsule was exposed. Phosphate
ws  buffer solution (PBS) was repeatedly applied until the bleeding stopped and a small drop of Kwik-Sil
a9 was applied to the tissue surface before the cannula was inserted. A head-plate and a ring were cemented
e0o on the skull using Meta-bond. Proper analgesic and anesthetic procedures were carried out according to
1 the animal protocol. All mice were allowed to recover for 5-7 days before the start of behavioral training.

s Virtual reality and behavior task

63 Seven male mice were first separated into two groups, three and four mice for each group respectively.
s« All mice were first habituated in the head-fixed VR setup (Sheffield et al, 2017) (with screen off) for one
5 session (45 minutes), during which a couple of water rewards were delivered to the mice randomly to
e familiarize them with the lick port. Beginning from the second session, VR screens were turned on and
67 both groups of mice were first trained in one visual environment to perform the URTask. Each training
es  session lasted 45min to 1hr depending on how many laps the mice had run. Mice were considered well-
6o trained if they satisfied both criteria: 1. They had to run at least 1 2 laps per minute; 2. They had to
s0 have anticipatory licking before the reward (anticipatory licking) for at least 50% of the laps; 3. Their
61 behaviour is stable for three consecutive sessions, as measured by the average correlation coefficient of
s2 velocity and licking patterns across all laps. All mice reached this performance level after 8-10 session of
663 training.

e 1Two-photon imaging

es Two-photon calcium imaging of dorsal CA1 neurons was performed using a custom-built moveable objec-
6 tive microscope, with a 40x /0.8NA water immersion objective (LUMPlanFL N 3 40/0.8 W, Olympus),
sr  as described previously (Dombeck et al, 2010; Sheffield et al, 2017). The control software for two-photon
s scanning was Scanlmage 5.1(Vidrio Technologies). Average laser power after the objective was around
e0 60 100mW. Time-series movies of 12000 24000 frames, 512 x 256 pixels were acquired at 30Hz frame-
s rate. A Digidatal440A (Molecular Device) data acquisition system (Clampex 10.3) was used to record
sn  (at 1 kHz) and synchronize behavioral variables (licking, linear track position, velocity and reward deliv-
o2 ery) with two-photon imaging frame time. During the same session, the imaging field stayed the same.
ez During the consecutive imaging sessions, the imaging fields were not identical, although there might be
e overlap between the imaging fields.
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o Image processing and ROI selection

e 'T'wo-photon imaging time-series movies were first imported into Suite2p (Pachitariu et al, 2017) for rigid
e and non-rigid motion-correction. Putative cell (region of interest, ROIs) were extracted from motion-
es corrected movies using Suite2p.

Table 1: Suite2P Parameters

Parameter Value | Parameter Value | Parameter Value
nplanes 1 nchannels 1 functional_chan 1
tau 0.6 fs 30 do_bidiphase 0
bidiphase 0 multiplane_parallel 0 ignire_flyback -1
preclassify 0 save_mat 1 save_ NWB 0
combined 1 reg-rig 1 reg_tif_chan2 0
aspect 1 delete_bin 0 move_bin 0
do_registration 1 align_by_chan 1 nimg-_init 300
batch_size 500 smooth_sigma 1.15 smooth_sigma_time 0
maxregshift 0.1 th_badframes 1 keep_movie_raw 0
two_step_registration 0 nonrigid 1 block_size 32,64
snr_thresh 1.2 maxregshiftNR 5.0 1Preg 0
spatial_hp_reg 32 pre_smooth 0 spatial_taper 40.0
roidetect 1 denoise 1 spatial_scale 0
threshold_scaling 2.0 max_overlap 0.75 max_iterations 20
high_pass 100.0 spatial_hp_detect 25 anatomical_only 0.0
diameter 0

oo Extracted ROI fluorescence traces were then exported from suite2P and imported into MATLAB for
0 extracting significant calcium transients (Dombeck et al, 2010). For each ROI, the potential signal con-
s tamination from the surrounding neuropil was subtracted (after multiplied by a factor of 0.7) from the
sz raw fluorescence signal. Slow time-course changes in the neuropil-corrected traces were removed by cal-
63 culating the distribution of fluorescence in a 20-s time window around each time point and subtracting
es the 8th percentile value of the distribution. The baseline subtracted traces were then subjected to the
es analysis of the ratio of positive- to negative-going transients of various amplitudes and durations. This
e resulted in the identification of significant transients with less than 1% false positive rate. The signifi-
67 cant transients were left untouched while all other values in the trace were set to 0. The resulting traces
s (referred to as ’changes in fluorescence’ in the following section) of all ROIs were used for further data
689 analysis.

« Place cell spatial information test and identification

s1 Fluorescence tuning maps were created by binning the position across the track into 60 bins and identi-
e2 fying the mean change in fluorescence when the animal was moving at least 0.1 cm per second. To test
003 whether a cell is a place cell, we computed the spatial information (I) in bits per action potential for the
s fluorescence tuning map (Climer and Dombeck, 2021):

1 fi
I=3 ;f - PX () log, <f>

0s where f is the mean change in fluorescence, N is the number of bins, f; is the fluorescence change in
e the i'" spatial bin, and PX (z;) is the probability that the animal is in the i*" spatial bin. To build a
s7 null distribution of information, we circularly shuffled the fluorescence trace with a minimum shift of 15
s seconds and recalculated the tuning map 1000 times. A cell was considered a significant place cell if it
oo had higher information than 99% of these shuffled epochs, had an information value of at least 0.5 bits
w0 per action potential.
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« Trial inclusion criteria

02 The position of reward consumption was defined as the first lick after reward delivery on every trial. As
73 animals were engaged in the task, on most trials, licking was very close to reward delivery. The reward
e zone was then defined as the zone between the most proximal reward consumption position, until the
s most distal reward consumption position.

s In order to obtain a meaningful reward zone, we excluded 2.5% of the trials (35 out of 1376 total trials
77 included in this paper) that were outlier in the distance at which the reward was consumed after delivery.
s This selection criteria generated a threshold of approximately 11 cm between reward delivery and reward
00 consumption, therefore excluding trials in which the reward was not consumed, or was consumed after this
no  distance. Supplementary Figure 7?7 shows the histogram of consumption distance from reward delivery,
= which we also consider as a marker for engagement in the task.

72 Trial separation

ns We separated proximal, middle and distal rewards by dividing the reward zone in 3 bins of identical
ns  length. The trials in which the reward was consumed in the first (resp. second, third) bin were labelled
ns  'proximal’ (resp. ‘middle’; *distal’).

ns  Behaviour analysis

. We excluded from all analyses the teleportation phase (during which the screen went black), and all
ns  datapoint at which the velocity fell under 0.1 cm/s.

no  Analyses were performed using custom Python code. To calculate the lick rate and velocity patterns
=0 (figures 2a;b, figure 3a;b), we averaged the lick rate and velocity trace, downsampled at 30 Hz, over a
= position vector covering all position values (from 0 to 3m) with a bin size of 10 cm. To compute averages,
= we extracted the values of the behavioral variables for the cases in which the position trace was within
723 each position bin, and computed averages weighted by the time spent in each position bin. For figure
= 2a, for every session average-value, we computed the average over all trials for LU and divided it by the
s maximum value over the session. We then averaged this value across sessions and animals. For figure
26 2b, for EU, we computed the average on proximal, middle and distal trials, and normalised it to the
77 maximum value of the average computed over the full session. We then averaged these values across
728  sessions and animals.

= Place cell activity analysis

0 For all place cells analyses, we excluded periods in which the animal ran with a velocity less than lem/s,
1 and the teleportation corridor. For figure 2d;e, Figure 3c;d, and Figure 3b, each place cell’s activity was
2 averaged similarly to behavioural variables: the average place cell activity over the session was computed
3 by averaging the activity per position bin across every trial weighted by the time spent in each position
7 bin. Place maps in figures 2d;e show the average activity of cells on odd trials, ordered based on the
s location of the peak activity on even trials. Place map plots were produced by normalizing the average
s activity of every cell on odd trials by its maximum value.

1 For switch sessions (place maps in figures 3c;d), place map plots before the switch were produced by
s normalising the average activity of every cell on all trials before the switch by its maximum value.
79 Similarly, place map plots after the switch were produced by normalising the average activity of every
no cell on all trials after the switch by its maximum value.
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m  Peak activity analysis

2 The position of maximum activity was extracted as the location of the 10cm bin in which the average
s activity of the cell was greatest. For figure 2e, we considered the average activity on proximal and distal
1 groups of trials. For figure 3e, the average was computed over trials before (x-axis) and after (y-axis) the
ns  reward switch separately.

ns For figures 2f and 3e, the x and y coordinates are fitted with gaussian_kde function from the scipy.stats
#r module, which estimates the probability density function (PDF) of a random variable in a non-parametric
ns  way. The heatmap shows this Gaussian fitted density estimation.

» Reward and warped reference frame

0 The reward reference frame was obtained by computing positions relative to the position of the
1 consumption of the reward at every trial, and using 10cm position bins.

2 The warped reference frame was obtained by creating a warped vector interpolating the position in 20
73 bins between the start of the track and the reward location, and 20 bins from the reward location to the
74 end of the track at every trial. These new bins were then the basis for all averages.

s Place cell identification

6 In figure 2g,’Position-stable” cells were place cells that passed the place cell test and which position of
7 peak of activity on proximal and distal trials were at most 15cm apart.

s In figure 3f,’Position-stable” cells were place cells that passed the place cell test before and after the
o switch and which position of peak of activity before and after the switch were at most 15cm apart.

wo In figure 3g, reward-peaking’ cells were place cells that passed the place cell test before and after the
w1 switch and whose positions of peak of activity in the reward reference frame before and after the switch
72 were between -15 and 420 cm.

w3 In figure 3h, "Warped’ place cells were place cells that passed the place cell test before and after the
s switch and which position of peak of activity in the warped reference frame before and after the switch
s were identical with 4 or - 3 warped units, and which position of maximum activity followed the reward.

w Cell percentage and cell percentage per cm

w Statistical analyses

ws  All statistics were done using the package ’statsmodels’ in python.

w0 To compare percentages, we used the percentage z-test, and for 1-sided proportion z-test to test for
o directionality. To compare distributions, we used the Kolmogorov-Smirnov test.

~ Data availability

72 The data will be made freely available following publication.
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=~ Code availability

ma All computer programs will be made freely available following publication.

» Supplementary material

s Please see supplementary figures.

= Acknowledgements

s We are grateful to Claudia Clopath, Matt Jones, Zach Mainen, Tony Pickering and Mark Walton for
7o influential discussions about the design of the task. We thank Marielena Sosa, Mark Plitt and Lisa
w0 Giocomo for sharing their results prior to publication.

= Funding

72 Funding was from the Max Planck Society (CT, PD) and the Humboldt Foundation (PD). PD is a
73 member of the Machine Learning Cluster of Excellence, EXC number 2064/1 — Project number 39072764
7  and of the Else Kroner Medical Scientist Kolleg “ClinbrAln: Artificial Intelligence for Clinical Brain
75 Research”. Funding for JRM from Wellcome Trust (101029/Z/13/Z) and Biotechnology and Biological
76 Sciences Research Council (BBSRC, BB/V001728/1, BB/N013956/1). FX was supported by National
. Institute of Mental Health Training Program in Neurobiology of Information Storage (T32MHO067564)
s predoctoral fellowship.

w» Author Credit Contribution

Fig. 5: CRediT

PR ) S

-2 - I3

w [ o > - £ o o -

#og £82 |5 4 G5 0 e 8o £83 =

8§5° 5892 |2.2 Sw3 §csasggsp 55550 | ©

TES oo = 6EZ |8 cE Ssx 38 wg2e | o

255 ] S652 | & SEE 2388385 = E25S |2 c

e 285 |®Ee |8 s |258 |28cPegy |S|PESEE (= S

S38 85s |€8%5 | s S 50c |c288s8 | ]3885% ¢ 2

528 |2f2 |55 |8 |° |f4s |.B5ies |®m|2:2%8s 2

@6 = SE® o2 | > g [ =) 52852 Sl3Ecss8 | E

255 | 3% 2213 “5% (83288 512883% |8

TS5 95 g ~ =3 |8 S PR 228 5| |e223F% |8 5|8

SS§E S°5 |g38 |8 Zc |82tg|Bgto 2 2358 |2 S|&

SE6E (8984|283 |So |85 |cEgE|38sS 2l L28<s |8, |22

gEOE 2 £%3 |z |28 |5 £(38ss > S|8q |22

8205 (2852|858 |E2 |88 (8223 |c8E3 S|S83+2 |58 8|z

osg‘g mﬁgm Teg |68 |z |8228 |meE T |E2Cs8 |83 |55

O83G5 |[S6S8E|SE£EQ |us |[ES |eFEL |Q0EE S (25653252 | |@
cT
FX* Legend: Lead
JME Equal
PDt Support

DDf

CRediT contribution matrix. Color code refers to the level of contribution per category, as previously
used (Tay, 2021). Categories reflect the ones published in the original CRediT taxonomy in (Brand et al,
2015).
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