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Abstract14

Navigating uncertainty is crucial for survival, with the location and availability of reward varying in15

different and unsignalled ways. Hippocampal place cell populations over-represent salient locations16

in an animal’s environment, including those associated with rewards; however, how the spatial uncer-17

tainties impact the cognitive map is unclear. We report a virtual spatial navigation task designed to18

test the impact of different levels and types of uncertainty about reward on place cell populations.19

When the reward location changed on a trial-by-trial basis, inducing expected uncertainty, a greater20

proportion of place cells followed along, and the reward and the track end became anchors of a warped21

spatial metric. When the reward location then unexpectedly moved, the fraction of reward place22

cells that followed was greater when starting from a state of expected, compared to low, uncertainty.23

Overall, we show that different forms of potentially interacting uncertainty generate remapping in24

parallel, task-relevant, reference frames.25
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Introduction27

Animals, including humans, thrive according to their ability to adapt to tasks, situations, and environ-28

ments which vary in their regularity and associated uncertainties. For instance, while driving, minor29

unpredictable delays are common, would not prompt a route change and may even be unnoticed. They30

can thus be considered a form of expected uncertainty (often associated with aleatoric uncertainty or risk;31

Hüllermeier and Waegeman, 2021), in which precise outcomes are not fully forseeable. However, a traffic32

jam can seem very surprising for someone used to a clear commute, a form of unexpected uncertainty33

(Soltani and Izquierdo, 2019; Yu and Dayan, 2005). This can indicate a significant contextual change that34

might necessitate significant adaptation, for instance, the need to use another route. Importantly, the35

threshold to consider an outcome as unexpected differs depending on expected uncertainty, for example,36

sporadic traffic jams might be customary to someone living in a busy capital, but prompting unexpected37

uncertainty in a small countryside town. For the brain to process and interpret these interacting forms38

of uncertainty is critical for adaptive behavior.39

Most research on neural correlates of uncertainties has concentrated on aspects of decision-making,40

related to rewards and punishments (Behrens et al, 2007; Cohen et al, 2015; Dayan, 2012; Hsu et al,41

2005; McGuire et al, 2014; Nassar et al, 2019; Preuschoff et al, 2011; Soltani and Izquierdo, 2019; Yu42

and Dayan, 2005). By contrast, it has rarely been applied to spatial contexts such as the location-specific43

traffic example above. In particular, the concept of uncertainty has not previously been applied to the44

description and understanding of spatial representations in the hippocampus and related structures,45

such as the well-studied place cells (Bast et al, 2009; Best et al, 2001; Burgess et al, 1995; Dombeck46

et al, 2010; Kleinknecht et al, 2012; Morris et al, 1990; Moser et al, 2008; Muller, 1996; O’Keefe and47

Dostrovsky, 1971; Radvansky et al, 2021; Sosa and Giocomo, 2021; Tessereau et al, 2021)(O’Keefe and48

Dostrovsky, 1971), even though many previous results might fit into such a general framework. For49

example, whether the hippocampal place cell population (i.e. the cognitive map) changes gradually or50

suddenly during a progressive change to the features (e.g. shape) of an animal’s environment depends51

on the amount of experience the animal has had with the intermediate features (Leutgeb et al, 2005a;52

Plitt and Giocomo, 2021; Wills et al, 2005): the more experience, the more expected uncertainty and the53

more gradually the place cell population changes; the less experience, the less expected uncertainty and54

the more suddenly the place cell population changes. Though previous hippocampal research did not55

explicitly describe results in terms of uncertainty, insights for understanding how place cell populations56

might map environments with different levels of uncertainty can still be deduced.57

In the case of expected uncertainty, for example, varying the spatial environment on a trial-by-trial basis58

(i.e., expected uncertainty in the spatial reference frame) caused hippocampal activity to reflect the59

statistics of the episodic environment (Plitt and Giocomo, 2021). Perhaps similarly, switching a stable60

reward location by block (e.g. expected uncertainty in reward location on a timescale of tens of minutes61

timescale) induces the progressive recruitment of reward-centred place cells (Gauthier and Tank, 2018;62

Issa et al, 2024; Sosa et al, 2023). However, reward foraging behaviors in nature often involve rapid, non-63

random, changes in reward locations in a stable spatial environment, a condition of expected uncertainty64

that has not been explored in prior studies. Therefore, it is unclear how the hippocampal place cell65

population encodes expected uncertainty in reward location on a trial by trial basis, independent of66

changes to the spatial reference frame.67

In the case of unexpected uncertainty, numerous prior studies provide insights into how place cell popula-68

tions change their encoding when animals are exposed to large, unexpected changes to their environments.69

This is typically induced by switching the animals to a novel arena or track which bears little resemblance70

to previously experienced spaces. These manipulations often result in a phenomenon known as remap-71

ping (Anderson and Jeffery, 2003; Bostock et al, 1991; Kentros et al, 1998; Leutgeb et al, 2005b; Muller72

and Kubie, 1987; Sanders et al, 2020), where place fields change their activity patterns between the two73

environments (Frank et al, 2004; Hill, 1978; Michon et al, 2021; Sheffield et al, 2017; Wills et al, 2005).74

While such ”remapping” experiments are typically performed by changing aspects of space, prior studies75

have not looked at unexpected uncertainty in reward location, independent of changes to the spatial ref-76

erence frame, without prior experience for such a move. Furthermore, in prior ”remapping” experiments,77
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the level of uncertainty between the familiar and novel experiences has not been systematically varied.78

Thus, not only is it not clear how changes to hippocampal representations in the light of unexpected and79

expected uncertainty compare, but it is also unknown whether the encoding changes to place cells that80

are induced by unexpected uncertainty depend on the initial level of expected uncertainty–that is, how81

uncertainty interactions influence place cell mapping of environments.82

To examine the consequences of uncertainties, we built a virtual reality spatial navigation task to test83

explicitly the impact of different levels, types, and interactions of variability on the cognitive map. As84

reward has been observed to be a particularly significant aspect of experience, potentially acting as an85

anchor for cognitive maps (Burgess and O’Keefe, 1996; Dupret et al, 2010; Gauthier and Tank, 2018;86

Jarzebowski et al, 2022; Sarel et al, 2017), we designed our task around uncertainty in the location87

of reward. Mice were trained, in a stable spatial reference frame, to lick for a water reward whose88

precise location on any trial was more or less certain (a form of expected uncertainty), and whose89

location distribution might also translate without warning (unexpected uncertainty). During the task,90

we imaged dorsal CA1 in the hippocampus using 2-photon calcium imaging (2P) (Dombeck et al, 2010)91

of pyramidal cells expressing the calcium indicator jGCaMP8m (Zhang et al, 2023). We found that92

expected uncertainty in reward location enhanced the proportion of place cells that tracked the reward93

on a trial-by-trial basis compared to what we refer to as low uncertainty. Additionally, the reward and94

the track end became anchors of a warped metric for space. Unexpected uncertainty caused substantial95

remapping of place cells but, when we varied the initial level of expected uncertainty, we did not find a96

difference in the overall proportion of place cells that remapped in the spatial reference frame. Instead,97

starting from a state of high versus low expected uncertainty increased the proportion of reward and98

warped place cells that moved to follow the reward after the unexpected change in reward location, a99

condition that we termed uncertainty interaction. Starting from a state of low expected uncertainty, by100

contrast, led to a less flexible representation in which reward location encoding place cells tended to101

remain at the location of the initial reward, even after the unexpected change in reward location. Hence,102

by inducing different forms of uncertainty in reward location and looking at their interaction, we show103

that uncertainty generates remapping in parallel, task-relevant, reference frames.104
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Results105

Mice adapt their behaviour to the degree of uncertainty of the task.106

Fig. 1: Training protocol and imaging procedure

a) Training protocol: head-fixed mice on a wheel ran in 1d virtual reality (VR) environments in which water107

reward was delivered at specific potential locations once per traversal of a 3m long linear track (and could subse-108

quently be consumed anywhere by licking). In the low uncertainty condition (LU), the location could take one of109

two positions at the edges of a 10cm reward zone (left). In the expected uncertainty condition (EU), there were 10110

potential locations evenly spaced within a 90cm wide zone that were selected uniformly at random on every run111

(right). Mice were trained on one session per day (on average 88.8 trials ±15 std) until their behaviour was stable.112

b) After training, mice experienced a switch session. Initial trials (on average 40.8 ±-3.5 std) in the session113

had the same location contingencies as those experienced during training. Without prior notice, the locations114

at which reward might be provided switched to one of two positions at the edges of a more distal 10cm zone,115

thus creating unexpected uncertainty (UU, left) in mice originally trained in LU, and a form of uncertainty116

interaction (UI, right) for mice originally trained in EU.117
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c) Schematic of the VR apparatus: the licking behavior of mice was recorded as they ran on a wheel whose118

turning determined the velocity of the visual flow on screens. When the mice reached the end of the track, the119

screen went black for 3 seconds and mice were teleported to the start of the virtual track.120

d) Visualization of the track used for VR in this paper. Top: 3D view of the track, showing the relative perspec-121

tive with distal cues. Bottom: front view of the track.122

e) Schematic of two photon calcium imaging of mouse CA1 neurons (green colors) expressing jGCaMP8m.123

124

125

To study how different forms of reward location uncertainty affect the place cell code, we trained seven126

male, water-scheduled mice to lick for a water reward as they ran on a 3m linear virtual reality (VR)127

track, and simultaneously recorded place cell activity with 2-photon calcium imaging (Dombeck et al,128

2010). At the end of the track, the screen switched off for 3 seconds and mice were teleported to the start129

of the track for the next trial. On each trial, the reward location lay at discrete sites within a designated130

reward zone of the track, with the width of this zone inducing varying degrees of predictability. In one131

subgroup (3 mice, low uncertainty; LU), the reward was made available at one of two adjacent locations132

10 cm apart, generating low (but, to avoid potential anomalies, not zero) uncertainty about the reward133

location in each trial (Figure 1a:i). In the second group (4 mice, expected uncertainty; EU), the reward134

was made available at one of ten potential locations within a 1-meter zone, creating a condition in which135

mice could come to expect the resulting high aleatoric uncertainty (Figure 1a:ii). Importantly, the visual136

environments were the same between the two groups, and contained extra-track cues, as well as a more137

marked cue indicating the end of the track (Figure 1d). Once the mice were accustomed to the reward138

contingencies in low or expected uncertainty conditions, they all experienced a switch in reward location139

to a new, distal, 10 cm reward zone (Figure 1b). In the mice trained under LU, this switch induced a140

form of unexpected uncertainty (UU, Figure 1b:i). In the mice trained under EU, this switch induced a141

form of uncertainty interaction (UI, Figure 1b:ii).142

Mice were first trained until they were accustomed to the specific reward contingencies of LU and EU.143

Mice experiencing LU displayed licking and velocity patterns characteristic of high predictability: the144

lick rate increased shortly before the reward zone, peaked within it, and then decreased, stopping until145

the next trial (Figure 2a). These mice also slowed down as they approached the reward zone, stopped to146

consume the reward, and then resumed running at a faster velocity until the end of the track (Figure 2a).147

Mice trained in EU began licking and slowing down shortly before the start of the wider reward zone148

(Figure 2b) and therefore appeared to treat the reward as occurring anywhere across the broad zone,149

as expected for mice experiencing EU. To assess if the behavior in EU varied when the reward was150

consumed at different locations in the reward zone, we averaged the licking and velocity profiles over151

trials according to where the reward was consumed (see Methods) in the first third (proximal reward152

trials; 146 in total), middle third (115 middle reward trials), and last third (111 distal reward trials) of153

the reward zone. We found that mice licked persistently until they received the reward (Figure 2b). Once154

they received the reward, mice ceased licking and began running in a stereotypical manner (similar to155

LU; Figure 2b), demonstrating their understanding of the single-reward trial structure.156

Hippocampal place cells organise into position, reward-centred, and warped157

reference frames to reflect uncertainty158

In order to investigate the population of place cells under these various conditions, we performed 2-159

photon calcium imaging of dorsal CA1 pyramidal cells while mice performed the task. We extracted160

place cells using an information theoretic criterion (see Methods), resulting in 1108 place cells for LU161

and 1192 place cells for EU. We first confirmed that the LU condition of our task produced results that162

were consistent with existing literature on place cell activity in reward navigation tasks by averaging163

place cell activity (DF/F) over the recording session post-training in an external, position, reference164

frame (Figure 2d:i). In the LU condition, we observed a higher density of place cells in the vicinity of the165

reward zone (Figure ??:i), with on average 0.65% of cells per cm peaking in the vicinity of the reward166
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zone defined as being between 15 cm before, and 20 cm after, it (see Methods) -, against 0.26% elsewhere167

(comparison in/out proportion z-test: p-value= 1.5 × 10−75, comparison in>out 1-sided proportion z-168

test: p-value< 7.3 × 10−76). Place cells peaking in the vicinity of the reward zone had narrower place169

fields (Figure ??:iii; comparison in/out t-test: p-value= 1.8 × 10−28, comparison in<out 1-sided t-test:170

p-value= 8.9× 10−29).171

In the EU condition, we found only minor over-representation of the broad reward zone, with 0.35% of172

place cells per cm peaking in the region between −15cm of the start, and +20cm of the end, of the zone173

(see Methods), against 0.32% elsewhere (Figure ??:i, comparison in/out proportion z-test: p = 1.3×10−1,174

EU comparison in>out 1-sided proportion z-test: p = 6.6 × 10−2). Place cells peaking in the vicinity175

of the reward zone were also narrower in EU (Figure ??iii ; comparison in/out t-test: p = 1 × 10−7,176

comparison in>out 1-sided t-test: p = 5.18× 10−8).177

In this position reference frame, a higher proportion of cells was found to peak in the vicinity of the reward178

zone in LU than EU (Figure ??i; comparison LU/EU proportion z-test: p = 7.9 × 10−27, comparison179

LU>EU 1-sided proportion z-test: p = 4× 10−27).180

To explore further the impact of a dynamically changing reward location on the place cell population181

on a trial-by-trial basis, we compared the positions of peak activity for each cell between trials in which182

the reward was collected near the start (proximal) or the end (distal) of the reward zone (scatter plots183

in Figure 2f:i; quantification of stable neurons in Figure 2g, whose peaks are within the bounds shown184

in Figure 2f:i). In the LU condition (Figure 2f:i; g:blue bar), in which these positions are very close,185

73.10% of place cells maintained their peak activity location across the two groups of trials, compared186

to only 41.19% under EU (Figure 2f:i; g:purple bar; proportion z-test between the percentages in LU187

in EU: p = 1 × 10−53. 1-sided proportion z-test LU>EU p = 5.26 × 10−54). We also examined the188

locations of the peaks of the place fields of these cells and found that position-stable cells are evenly189

distributed, with 38.3% of those cells located before the reward zone for LU (c.f. 31.9% for EU), 27.9%190

(c.f. 32.22% for EU) in the vicinity of the reward zone, and 33.8% (c.f. 35.93% for EU) after the reward191

zone (Figure 2j). Although the total percentages are similar, the reward zone area is wider, and starts192

earlier in the track, in EU, resulting in a higher relative proportion of cells per cm before the reward zone193

(Figure 2k:i; comparison proportion z-test LU/EU p = 3.47 × 10−28, 1-sided proportion z-test LU<EU194

p = 4.41× 10−28) and lower in the vicinity of the reward zone compared to LU (Figure 2k:ii; comparison195

proportion z-test LU/EU p = 8.82× 10−28, 1-sided comparison z-test LU>EU p = 4.41× 10−28).196

Given that the reward changes location on a trial-by-trial basis, particularly in the EU condition, and197

that place cells can become organised within different task-relevant reference frames with experience198

(Anderson and Jeffery, 2003; Aoki et al, 2019; Gauthier and Tank, 2018; Markus et al, 1995; Muzzio199

et al, 2009; Plitt and Giocomo, 2021; Radvansky et al, 2021; Sosa and Giocomo, 2021; Sosa et al, 2023),200

specifically reward (Burgess and O’Keefe, 1996; Gauthier and Tank, 2018; Jarzebowski et al, 2022; Sosa201

and Giocomo, 2021; Sosa et al, 2023), we asked whether the EU condition might reinforce the reward202

reference frame, possibly reflected in an increased population representing the changing variable. We203

therefore considered whether cells code for position relative to the reward location on a trial rather than204

in spatial position associated with the track. To examine this we averaged cell activity relative to reward205

position (Figures 2d:ii; e:ii, see Methods). In contrast to the position reference frame, in the reward206

reference frame, there was an equal accumulation of cells aligned in the vicinity of the reward in both207

LU and EU conditions (Figure ??ii), with 4.8% of cells per cm in the vicinity of the reward (with a208

peak of activity between −15cm and +20cm of the reward), against only 0.2% of cells per cm outside209

these bounds, in LU (comparison in/out proportion z-test: p-value< 0.2 × 10−308, comparison in>out210

1-sided proportion z-test: p-value< 2.2× 10−308), and 3.4% per cm in the vicinity of the reward, against211

1.25% per cm elsewhere in EU (comparison in/out proportion z-test: p-value< 2.2× 10−308, comparison212

in>out 1-sided proportion z-test: p-value< 2.2 × 10−308; Figure ??ii). Averaging in a reward-centered213

reference frame also reduced the widths of place fields peaking in the vicinity of the reward compared to214

elsewhere, for both LU (comparison in/out proportion z-test: p-value= 3.2× 10−28, comparison in<out215

1-sided proportion z-test: p-value< 1.61 × 10−28) and EU (comparison in/out proportion z-test: p-216

value= 1.6×10−12, comparison in<out 1-sided proportion z-test: p-value< 8.11×10−13; Figure ??iv). The217

difference in accumulation of reward place cells between position and reward reference frames revealed a218
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population of cells that stably followed the reward on every trial (termed reward cells) and was confirmed219

by single-cell activity profiles across all trials (Figure ??), highlighting populations of cells with stable220

fields relative to position and also reward. These reward cells generalize previous findings (Gauthier and221

Tank, 2018) to our task in which the reward changes location on every trial.222

To investigate the effect of a dynamically changing reward location on the place map in this reward223

reference frame, we compared the locations of peak activity with respect to reward location between224

proximal and distal reward trials. We found that 70.21% of the place cells maintained their peak activity225

relative to the reward location across the two groups of trials in LU, compared with 14.85% in EU (Figure226

2f:ii, with the stable neurons shown in the boxes quantified in Figure 2h; proportion z-test LU/EU:227

p = 1×10−159, 1-sided proportion z-test LU>EU p = 5.51×10−160). Examining the distribution of these228

cells along the track (Figure 2l), we found that 36.25% of the reward-stable cells were before the reward229

in LU, compared to 14.69% in EU (Figure 2l:i; comparison proportion z-test p = 3.06 × 10−8, 1-sided230

proportion LU>EU z-test p = 1.53 × 10−8). Stability of encoding at the reward was most enhanced in231

EU, with 38.98% of reward-stable cells being located in its vicinity, compared to 22.87% of reward-stable232

cells in LU (Figure 2l:ii; comparison LU/EU proportion z-test p = 5.02× 10−5, 1-sided proportion z-test233

LU<EU p = 5.02 × 10−6). After the reward, less stability was reported in LU, with 36.24% of reward-234

stable cells compared to EU, with 46.33% of reward-stable cells (Figure 2l:iii; comparison proportion235

z-test p = 1.27× 10−2, 1-sided proportion z-test LU<EU p = 6.34× 10−3).236

While the reward location cannot be predicted, the part of each run from the reward to the end of the237

track is predictable, and is characterized by a stereotypical behavioral routine. Hippocampal activities238

have been shown to reflect the statistics of the episodic environments animals experience (Plitt and239

Giocomo, 2021), for example reflecting stereotypical behavioural sequences (Skaggs and McNaughton,240

1998), and organising along warped metrics that homogenise similar episodes (Gothard et al, 1996). We241

therefore asked whether the hippocampus might similarly represent these post-reward events regardless242

of reward location, reflecting stereotypical changes. Consistent with this idea, we qualitatively observed243

a group of cells that seemed to span the range from the reward location to the end of the track in a244

flexible manner (Figure 2f:i). To quantify this, we considered a third, warped, metric for space in which245

we compressed and expanded it so that there were two segments of 20 bins each — one linking the start246

of the track to the reward location and the other from the reward location to the end of the track (Figure247

2d:iii; e:iii). We found that 75.4% of cells kept their position of peak activity in the warped reference248

frame between proximal and distal reward trials in LU, and 41.1% in EU (Figure 2i). Examining the249

relative distributions of warped-stable cells around the reward location in this reference frame, we found250

a balanced distribution in LU: 31.01% of warped-stable cells before the reward, 32.0% in the vicinity of251

the reward, and 36.8% after the reward (Figure 2m). As the reward location cannot be predicted in EU,252

this analysis is provided here for completeness with respect to other reference frames. In contrast, the253

warped metric highlighted a post-reward alignment of cells after the reward in EU, with 28.51% of the254

warped-stable cells before the reward, 20.7% in the vicinity of the reward, and 50.7% after the reward.255

We found a significantly lower degree of post-reward warping in LU compared to EU (Figure 2m:iii;256

comparison proportion z-test p = 8.40× 10−7, 1-sided proportion z-test LU<EU p = 4.2× 10−7).257

Note that the higher percentages of stability between proximal and distal reward trials reported in Figures258

2g,h,i in low uncertainty simply reflect the task design, in which reward, position and warped reference259

frames are more similar in LU than in EU due to its far narrower reward zone. We provide the statistical260

comparisons for the sake of completeness. Our finding of excess stability in reward (Figure 2l) and warped261

reference frames (Figure 2m) in EU confirm our conclusion that expected uncertainty highlights enhanced262

reward and warped reference frames as an adaptation to reflect the statistics of change in the task263

design. Overall, our findings show that expected uncertainty in reward location enhanced the proportion264

of place cells that tracked the reward on a trial-by-trial basis (reward-referenced cells) compared to low265

uncertainty, and the reward and the track end became anchors of a warped metric for space.266
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Fig. 2: Expected uncertainty reveals dual spatial and reward reference frames for behaviour and
place cell activity, and a warped metric that combines both

a) i: Average lick rate (number of lick events per 10cm position bin) after training in the LU condition.267

ii: Average velocity trace in the same condition. For both: Thick line shows the mean across sessions268
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(n = 12 sessions, m = 3 mice) normalised to the maximum per session, shaded region represents the269

standard deviation across sessions; shaded lines show each session trace. iii;iv: The same plots as for270

LU, but under EU, for laps of trials separated as shown in b): yellow: proximal, grey: middle and orange271

distal reward trials. For both top and bottom: Thick line showing the mean across sessions (n = 16272

sessions, m = 4 mice) normalised to the maximum per session, shaded region represents the std across273

sessions, shaded lines show each session trace. Green thick lines show the reward zone.274

b) Diagram of the division between the laps according to the location at which the reward was consumed275

for the analysis in EU.276

c) i: Cross validated place map in a position reference frame for one session of LU for one animal, show-277

ing the average place cell activities (N = 437 place cells out of 518 total cells) on even trials normalised278

to their maximum value, ordered by their position of peak activity on odd trials, after training in low279

uncertainty. ii: The same activity, but averaged according to a reward reference frame (aligning the280

position to the reward location at every trial – see Methods). iii: The same activity averaged according281

to a warped/interpolated position-reward reference frame (a warped metric vector is created by two282

uniform interpolations linking the start of the track - reward - end of the track – see Methods).283

d) The same (c), but for an animal experiencing EU (N = 369 place cells out of 475 total cells).284

e) i: Scatter plot showing the positions of peak activity on trials on which the reward is at the proximal285

(x-axis) versus distal (y-axis) end of the reward zone for LU (left; 1118 place cells) and EU (right; 1192286

place cells). Each white dot is a single place cell; the heatmaps show a probability density function esti-287

mate of the data (see Methods, normalised to 1). Yellow lines show the reward zone on proximal trials,288

orange lines on distal trials. Blue lines (left) and purple lines (right) delineate the diagonal used in the289

quantification for statistics in f). Scatter plots include a jitter proportional to cell density, enhancing290

visualization of overlapping data points. ii: Similar to (i), but in a reward-centered reference frame. The291

yellow line shows the reward location on proximal trials, the orange line on distal trials (both at 0, by292

definition of the reward reference frame). Blue square (left) and purple square (right) delineate the area293

used in the quantification for statistics in g). iii: similar to (i) in a warped metric (see Methods). Blue294

lines (left) and purple lines (right) delineate the post-reward diagonal used in the quantification for295

statistics in h).296

f) Percentages of cells that have a similar (±15cm) position of peak activity in ‘proximal’ and ‘dis-297

tal’ reward trials in LU (blue region) and EU (purple region). comparison proportion z-test LU/EU298

p = 1× 10−53, 1-sided proportion z-test LU>EU p = 5.26× 10−54.299

g) Same than f) in a reward reference frame. Comparison proportion z-test LU/EU p = 1.1 × 10−159,300

1-sided proportion z-test EU>LU p = 5.51× 10−160.301

h) Same than g) in a warped reference frame (±3warped units). Comparison proportion z-test LU/EU302

p = 1.2× 10−61, 1-sided proportion z-test EU>LU p = 5.6× 10−62.303

i) Percentages of cells that are stable in a position reference frame (with a maximum displacement304

of ±15cm; within the diagonal lines in e:i): i: before the reward zone, comparison proportion z-test305

p = 1.77 × 10−2, 1-sided proportion z-test LU<EU p = 8.86 × 10−3; ii: in the vicinity of the reward306

zone (-15 +20cm), comparison proportion z-test p = 8.82 × 10−28, 1-sided proportion z-test LU>EU307

p = 4.41 × 10−28, iii: after the reward zone, comparison proportion z-test p = 3.17 × 10−2, 1-sided308

proportion z-test LU<EU p = 1.59× 10−2, for LU (blue) and EU (purple).309

j) Same as (i) but divided by the total area covered by every zone. left: comparison proportion z-test310

p = 3.47 × 10−28, 1-sided proportion z-test LU<EU p = 1.73 × 10−28 middle: comparison proportion311

z-test p = 1.96× 10−10, 1-sided LU>EU comparison test p = 5.31× 10−11, right: comparison proportion312

z-test p = 2× 10−1.313

k) Percentages of cells with stable peaks in a reward reference frame (±15cm; within the boxes in e:ii):314

i: before the reward, comparison proportion z-test LU/EU p = 3.06× 10−8, 1-sided proportion LU>EU315

z-test p = 1.53× 10−8. ii: in the vicinity of the reward zone ([−15,+20]cm), comparison LU/EU propor-316

tion z-test p = 1 × 10−5, 1-sided proportion z-test LU<EU p = 5.02 × 10−6. iii: after the reward zone,317

comparison proportion z-test p = 1.27 × 10−2, 1-sided proportion z-test LU<EU p = 6.34 × 10−3, for318

LU (blue) and EU (purple).319

l) Percentages of cells with stable peaks in a warped reference frame (with a maximum dis-320

placement of 3 warped units, representing between 20cm and 40cm, depending on the position321

of the reward; within the diagonal lines in e:iii): i: before the reward, comparison proportion322

z-test LU/EU p = 3.37 × 10−1, non significant. ii:: in the vicinity of the reward zone (-2 +3323
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warped units), comparison proportion z-test p = 9.06 × 10−6, 1-sided proportion LU>EU z-324

test p = 4.53 × 10−6. iii: after the reward zone, for LU (blue) and EU (purple), comparison325

proportion z-test LU/EU p = 8.4 × 10−7, 1-sided proportion LU<EU z-test p = 4.2 × 10−7.326

327

328

Expected uncertainty leads to enhanced flexibility of the reward and warped329

populations towards a surprisingly new reward location.330

We have so far shown that expected uncertainty leads to an enhanced reward and warped reference331

frame by contrasting with a condition of low uncertainty. To complement the collection of uncertainties,332

and investigate their interaction, we performed a larger, unpredictable, change in reward location meant333

to induce a sudden surprise and a condition of unexpected uncertainty. After familiarising the animals334

to the LU and EU conditions, we imaged CA1 place cells while changing the reward location during a335

session, without prior notice or experience, to a narrow reward zone further down the track (Figure 1b).336

This unannounced change generates unexpected uncertainty (UU) in LU mice and a form of uncertainty337

interaction (UI) in EU mice. As drastic changes in context can lead to very abrupt shifts in place field338

locations (Michon et al, 2021; Sheffield et al, 2017; Wills et al, 2005), we asked whether UU would339

induce a higher degree of change in the place map compared to UI, due to a higher level of surprise.340

Comparison between LU and EU highlighted a difference with respect to the anchor of the reward on341

the place map, but it was unclear if or how these differences would change the response to unexpected342

uncertainty. Specifically, noting that the reward location variability in the EU mice led them to have a343

greater proportion of place cells stably tied to reward and warped reference frames rather than position,344

we tested whether this would generalize to the farther move of the reward, which would be exemplified345

by greater stability in these reference frames for UI than UU in the face of an unexpected change.346

We first verified that the behavior after the switch stabilizes to a pattern reflecting the new task statistics.347

The licking and velocity patterns aligned with prior observations (compare Figures 2a;b and 3a;b). Note348

that the two subjects in UI had different patterns of post-switch behavior (Figure ??); thus, as well as349

analyzing them together we report in the Supplement (Figures S?? and S??) the statistical comparisons350

presented in this section for each of these animals separately.351

Next, we examined how the place map was impacted by the unexpected change. Although we expected352

more global remapping in UU than UI (since they should have been more surprised), a qualitative353

assessment of the place map after the switch (Figure 3c;d) highlighted similar, moderate, degrees of354

remapping in both conditions, primarily affecting place cells peaking between the previous and new355

reward zones. Comparing post-switch maps, we found that reward over-representation was marginally356

less in the new location under UU than UI. Indeed, after UU we found 0.38% of cells per cm in the357

vicinity of the reward zone, 0.32% of cells per cm elsewhere, versus 0.56% of cells per cm in the vicinity358

of the reward after UI and 0.28% of cells per cm elsewhere (proportion z-test UU/UI p = 1.13 × 10−2,359

1-sided z-test UU<UI p = 5.6× 10−3, Figure ??).360

To quantify the impact of the sudden reward location change on each place cell’s activity, we compared361

the location of peak activity before and after the switch for cells that remained place cells after the362

switch (455 place cells out of 1872 total cells for UU, 246 out of 970 for UI). Surprisingly and contrarily363

to our expectations, we found that similar percentages of cells maintained their peak activity location364

after the switch in UU (24.4% of cells) and UI (21.5% of cells) in a position reference frame (Figure 3e;h;365

comparison proportion z-test UU/UI p = 4 × 10−1). Thus, unexpected uncertainty caused substantial366

remapping of place cells but, when we varied the initial level of expected uncertainty, we did not find a367

difference in the overall proportion of place cells that remapped in the spatial reference frame.368

However, building on the observation of a slightly lower reward over-representation after UU compared369

to UI, we turned to analyse the cells that moved with the reward across the switch in a reward reference370

frame. We found that a significantly lower percentage of cells stably peaked in the vicinity of the reward371

in a reward-reference frame across the switch in UU (7% of cells) than in UI (18.2% of cells) (Figure 3f;i;372
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comparison proportion z-test UU/UI p = 1.73×10−6, 1-sided proportion z-test UU<UI p = 8.65×10−7),373

excluding those place cells that were stable in the position reference frame (i.e., those quantified in Figure374

3h). Thus, expected uncertainty leads to a more flexible reward reference frame.375

We then wondered whether the enhanced flexibility of the reward anchor in UI would also translate376

to the warped reference frame. Indeed, we found that fewer cells maintained their peak activity in UU377

(6% of cells) compared to UI (14% of cells) in the warped reference frame (Figures 3g;j; comparison378

proportion z-test UU/UI p = 2.94× 10−3, 1-sided proportion z-test UU<UI p = 1.47× 10−3), excluding379

any position-stable or reward-peaking cells quantified in Figures 3h;i. Therefore, expected uncertainty380

leads to hippocampal representations that are more stable in both the reward and warped reference381

frames in subsequent adaptations to unexpected changes.382
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Fig. 3: Expected uncertainty in reward location enhances flexible reward and warped reference
frames
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a) UU: Top: normalized lick rate averaged over all sessions. i: before the switch, ii: after the switch.383

Bottom: similar to Top) for normalized velocity. Green thick lines show the full reward zone. Shaded384

areas show standard deviations and individual lines show individual sessions averages.385

b) UI: Top: normalized lick rate on proximal (Yellow), middle (Grey) and distal (Orange) reward trials.386

i: before the switch, ii: after the switch. Bottom: similar to Top) but for normalized velocity. Green thick387

lines show the full reward zone before the switch, pink lines the reward zone after the switch. Shaded388

areas show standard deviations and individual lines show individual sessions averages. See Figure ?? for389

results for separate mice.390

c) i: Place map before the switch (N place cells=304) in UU, showing the average activity for one ani-391

mal, ordered according to their cross-validated position of peak activity before the switch, and shown in392

a position reference frame. Green lines mark the reward zone. ii: activities of the same cells ordered as393

in (i), after the switch. Turquoise lines mark the previous reward zone, pink lines show the new reward394

zone. iii: New place map after the switch (N after=322).395

d) The same as (c), but for UI (N before=283, N after=328).396

e) i: Scatter plot showing the positions in a position reference frame of peak activity before (x-axis)397

versus after the switch (y-axis) in UU (left) and UI (right). Each white dot is a cell and heatmap shows398

a probability density function estimate (see Methods). Turquoise lines delineate the diagonal used for399

statistics in f). Scatter plots include a jitter proportional to cell density, enhancing visualization of400

overlapping data points. ii: Similar to i: but in a reward reference frame. Turquoise squares delineate401

the area used for statistics in g). iii: Similar to (i:,ii:) but in a warped reference frame. Turquoise lines402

delineate the post-reward diagonal used for statistics in g).403

f) Percentages of cells with stable peaks in a position reference frame (with a maximum displacement404

of ±15cm; shown by the lines in the heatmap in e)i:) : for UU (turquoise) and UI (red). The black dots405

show individual session percentages. Comparison proportion z-test UU/UI p = 5.14× 10−1.406

g) Percentages of cells with stable peaks in a reward reference frame (between −15cm and +20cm of407

the reward; shown by the lines in the heatmap in e)ii:), excluding position-stable cells. Proportion z-test408

UI/UU p = 1.73× 10−6, 1-sided comparison UU<UI 1-sided proportion z-test p = 8.65× 10−7.409

h) Percentages of cells with stable peaks in a warped reference frame (with a maximum displacement410

of 3 warped units, representing between 20cm and 40cm, depending on the position of the reward,411

shown by the lines on the heatmaps in e)iii:), excluding position- and reward-stable cells. Proportion412

z-test UU/UI p = 2.94 × 10−3, 1-sided comparison UU<UI 1-sided proportion z-test p = 1.47 × 10−3.413

414

415

Place cells over-represent previous rewards in UU, generalize in UI416

Surpised by the finding that the proportion of cells maintaining their peak activity location before417

and after the switch was similar in UU and UI conditions in a position reference frame, we decided to418

investigate further the relative stability in position reference frame, and looked at how the peaks of these419

position-stable cells were distributed along the track. The distributions of percentage of cells per position420

bin did not show any significant overall difference between the two conditions (Kolmogorov-Smirnov test421

p = 0.872, non significant; figure 4a).422

However, minor differences were apparent when dividing the track up into three areas: ahead of the reward423

zone before the switch, at the previous reward zone, and the remainder (zones marked with bars in the424

insert in Figure 4a). In UU, a slightly greater position-stability was observed before the previous reward425

zone, with 11.87% of cells (50.5% of total position-stable cells) located before the previous reward zone426

in UU, compared to 7.72% of cells (35.8% of total position-stable cells) in UI (Figure 4b:ii; comparison427

UU/UI proportions z-test p = 6×10−2, 1-sided proportion z-test UU>UI p = 2.27×10−1). In the vicinity428

of the previous reward zone, no significant difference was found, with 4.4% of cells (18% of position-429

stable cells) in UU and 6.5% of cells (30% of position-stable cells) in UI (Figure 4b:iii; comparison UU/UI430

proportions z-test p = 2.2× 10−1, non significant). After the previous reward zone, a similar proportion431

of cells was position-stable, with 7.7% of cells (31.5% of position-stable cells) in UU and 7.3% of cells432
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(34% of position-stable cells) in UI (Figure 4b:iv; comparison UU/UI proportions z-test p = 8.6× 10−1,433

non significant).434

Consistent with our results so far, this picture changed considerably in a reward reference frame (Figure435

4c). Here, we found greater overall reward-stability in UI, with only 13.6% of cells maintaining their436

peak activity location relative to the reward after the switch in UU, compared to 28% of cells in UI437

(Figure 4c:i; comparison UU/UI proportions z-test p = 3× 10−6, comparison UU<UI 1-sided proportion438

z-test p = 2.7 × 10−6). Specifically, 5.4% of cells (40.3% of reward-stable cells) were located before the439

reward in UU, versus 7.3% of cells (26% of reward-stable cells) in UI (Figure 4c:ii; comparison UU/UI440

proportions z-test p = 3.4 × 10−1, non significant). In the vicinity of the reward, we found 7% of cells441

(51.1% of reward-stable cells) in UU, and 18.3% of cells (65.2% of reward-stable cells) in UI (Figure442

4c:iii; comparison UU/UI proportions z-test p = 3.4 × 10−6, comparison UU<UI 1-sided proportion z-443

test p = 2.7 × 10−6). Post-reward, similar percentages of reward-stable cells were found, with 4.8% of444

cells (35.5% of reward-stable cells) in UU, and 5.3% of cells (18.8% of reward-stable cells) in UI (Figure445

4c:iv; comparison UU/UI proportions z-test p = 7.9× 10−1, non significant).446

Given the over-representation of reward locations in both LU and EU, and our discovery that expected447

uncertainty leads to an enhanced flexibility of this population, we sought to understand where the448

previously reward-peaking cells moved to after the unexpected switch in UU and UI. For this, we explored449

the post-switch peak locations of cells that peaked in the vicinity of the reward pre-switch. These differed450

significantly between UU and UI (Figure 4e; distribution comparison using a Kolmogorov-Smirnov test451

p-value< 2.2×10−308). The bimodal distribution for UU indicates a peak at the previous reward location;452

by contrast, more reward-cells moved to the new reward location in UI. Quantifying whether the previous453

reward location in UU is indeed over-represented, we found 0.9% of previously reward-peaking cells per454

cm at the current reward location after the switch (comparison current>elsewhere 1-sided proportion z-455

test p< 2.2×10−308) and 0.88% of those cells per cm peaking at the previous reward location (comparison456

previous¿elsewhere 1-sided proportion z-test < 2.2 × 10−308), while only 0.14% of previously reward457

stable cells remapped elsewhere in the track after the switch (See figure 4f), confirming persistence of458

the previous reward location in UU.459

Building on the observation of an enhanced post-reward warped metric after UI compared to UU, we460

turned to look into whether there was a difference between UU and UI in how the warped stability is461

organized with respect to the reward. Investigation of the stability with respect to the warped reference462

frame confirmed our earlier results, showing overall lower warped-stability in UU, with 26.2% of cells,463

compared to UI, with 41% of cells (Figure 4d:i; comparison UU/UI proportions z-test p = 6.51 ×464

10−5, comparison UU<UI 1-sided proportion z-test p = 3.26 × 10−5). Similarly consistent with our465

earlier results, no difference in warped-stability was found before the reward, with 10.1% (38.7% of all466

warped-stable cells) in UU and 10.2% (24.8% of warped-stable) in UI (Figure 4d:ii; comparison UU/UI467

proportions z-test p = 9.8×10−1, non-significant). In the vicinity of the reward, fewer cells were warped-468

aligned in UU (7.4% of cells, 28.6% of warped-stable cells), compared to UI (17.9% of cells, 43.6% of469

warped-stable cells) (Figure 4d:iii; comparison UU/UI proportions z-test p = 2.9 × 10−5, comparison470

UU<UI 1-sided proportion z-test p = 1.4 × 10−5). Post-reward warped-stability was slightly different,471

with only 8.6% of cells (32.8% of warped-stable cells) in UU, and 13% (31.7% of warped-stable cells) in472

UI (Figure 4d:iv; comparison UU<UI 1-sided proportion z-test p = 6.02× 10−2).473

Overall, these results establish that starting from a state of high versus low expected uncertainty increased474

the proportion of reward and warped place cells that moved to follow the reward after the unexpected475

change in reward location. Starting from a state of low uncertainty, by contrast, led to a less flexible476

representation in which reward location encoding place cells tended to remain at the location of the477

initial reward, even after the unexpected change in reward location.478
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Fig. 4: Unexpected uncertainty in reward location highlights persistence of the previous reward
location, EU features generalisation of reward encoding

a) Distribution of the locations of the peak activity of position-stable cells. The x-axis shows position479

along the track in cm. Bars show the percentage of position-stable cells having their peak activity in480

a position reference frame in the respective position-bin for UI (red) and UU (turquoise). Right insets481

show repeat of 3e) illustrating the cells counted in the histogram plot. Distribution comparison using a482
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Kolmogorov-Smirnov test p = 0.47, non significant.483

b) Percentages of cells with stable peaks in a position reference frame: i: across the whole track (with a484

maximum displacement of ±15cm; similar to 3h) comparison UU/UI proportions z-test p = 5.14× 10−1,485

non significant; ii: before the reward zone (<−15cm) before and after the switch (horizontal bar zone486

in the insert); comparison UU/UI proportions z-test p = 8.64 × 10−2, comparison UU>UI 1-sided487

proportion z-test p = 4.32 × 10−2; iii: in the vicinity of the reward zone (−15cm/+20cm) before and488

after the switch (tilted bar zone in the insert); comparison UU/UI proportions z-test p = 2.27 × 10−1,489

non significant; iv) after the reward zone (>+20cm) both before and after the switch (vertical bar zone490

in the insert); comparison UU/UI proportions z-test p = 9.52× 10−1, non significant.491

c) Percentages of cells with stable peaks in a reward reference frame: i: across the whole track; com-492

parison UU/UI proportions z-test p = 1.26 × 10−6, comparison UU<UI 1-sided proportion z-test493

p = 8.65 × 10−7; ii: before the reward zone (<−15cm) before and after the switch; comparison UU/UI494

proportions z-test p = 4.04 × 10−1, non significant; iii: in the vicinity of the reward (−15cm/+20cm)495

before and after the switch; comparison UU/UI proportions z-test p = 1.73× 10−6, comparison UU<UI496

1-sided proportion z-test p = 8.65 × 10−7; iv) after the reward (>+20cm) before and after the switch;497

comparison UU/UI proportions z-test p = 4.14× 10−1, non significant.498

d) Percentages of cells with stable peaks in a warped reference frame: i: across the whole track; UU/UI499

proportions z-test p = 6.51 × 10−5, comparison UU<UI 1-sided proportion z-test p = 3.26 × 10−5; ii:500

before the reward (<-2 warped units) before and after the switch; comparison UU/UI proportions z-test501

p = 8.35×10−1, non-significant; iii: in the vicinity of the reward (−2/+3 warped units) before and after502

the switch, comparison UU/UI proportions z-test p = 2.9×10−5, comparison UU<UI 1-sided proportion503

z-test p = 1.4× 10−5; iv: after the reward (>+3 warped units) before and after the switch; comparison504

UU/UI proportions z-test p = 1.2× 10−1, comparison UU<UI 1-sided proportion z-test p = 6.2× 10−2.505

e) Distribution of the peak location relative to post-switch reward of the cells that peaked in the vicinity506

of ([−15,+20]cm) the reward before the switch for UI (red) and UU (turquoise). The x-axis shows507

bins of position along the track relative to post-switch reward. Cells peaking at 0cm follow the reward508

through the switch. Right insets repeat figure 3e), illustrating the cells counted in the histogram plot509

with vertical bars. Distribution comparison using a Kolmogorov-Smirnov test p-value< 2.2× 10−308.510

f) Percentages per cm of previously reward peaking cells after the switch, that stay reward511

peaking (current, rightward tilt), that stay peaking at the previous reward (previous, leftward512

tilt), or that move elsewhere (else, plain bar) for UU. Comparison current>else 1-sided propor-513

tions z-test < 2.2 × 10−308, comparison previous>else 1-sided proportions z-test < 2.2 × 10−308.514

515

516

Discussion517

We imaged dorsal CA1 while mice navigated in a virtual reality corridor in which reward became avail-518

able according to one of a number of distributions of spatial location. These induced different forms519

of uncertainty that we studied across three positional reference frames: environment-centered, reward-520

centered, and a combined metric where the reward and the end of the track anchored experience, with521

the hippocampus generating what amounts to a warped spatial metric. We found that reward-dedicated522

place cells adapted flexibly to trial-by-trial changes in reward location, with this adaptability extending523

to larger, unexpected reward shifts, especially in reward-based and warped reference frames. This was524

not observed in animals conditioned to low uncertainty. Initial stability in reward location did not lead525

to more global remapping in a position reference frame when the reward subsequently moved, but led to526

persistence of previous reward location. These results contribute to our understanding of the structure527

of cognitive maps.528

Our results expand on previous findings about reward-dedicated place cells(Dupret et al, 2010; Gau-529

thier and Tank, 2018; Hollup et al, 2001; Jarzebowski et al, 2022; Sosa and Giocomo, 2021), showing530

their ability to adapt to single-trial changes in reward location. This is consistent with previous electro-531

physiological results highlighting abstract goal populations in the hippocampus (McKenzie et al, 2013;532

McNaughton and Bannerman, 2024; Zeithamova et al, 2018), and behavioral results showing that the533
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hippocampus is required for single-shot learning of new goal locations (Bast et al, 2009; Kleinknecht534

et al, 2012; Morris et al, 1990; Sosa and Giocomo, 2021; Steele and Morris, 1999; Tessereau et al, 2021).535

Such cells have been suggested in models (Burgess and O’Keefe, 1996; Foster et al, 2000; Tessereau et al,536

2021) as serving flexible behavioural adaptation, for example acting as a reference point for vector-based537

navigation (Burgess et al, 1995; Foster et al, 2000; Tessereau et al, 2021), or uncertainty resolution, to538

guide prediction (Burgess et al, 1995). Our results converge with a recent paper investigating the effect539

of multiple similar changes in reward location on the reward population codes of the hippocampus. By540

changing the reward location between multiple phase of stable reward locations, (Sosa et al, 2023) found541

that place cells can organise within reward-centered sequences which recruit more cells as the reward loca-542

tion changes day-by-day. Although the authors focus on reward population codes, we can now interpret543

their results in terms of expected uncertainty, induced by block-by-block changes in reward. The extra544

recruitment of reward cells would then be an instance of the excess of reward-following cells apparent in545

our UI condition. Similar findings suggest that reward-induced behavioral changes create a landmark-546

based reference frame in the hippocampus (Vaidya et al, 2023), with over-representation of salient cues547

extending beyond rewards (Tanni et al, 2022; Vaidya et al, 2023). This over-representation likely arises548

from distinct mechanisms for landmarks and rewards (Sato et al, 2020).549

In conditions of EU, we observed a warped spatial metric consistent with past studies(Gothard et al,550

1996), where the track segment following the reward and preceding the teleportation zone was renor-551

malized. Whether the warped metric is the reflection of stereotypical behavioural sequences induced by552

having to stop to consume the reward, and running until the end of the track, or whether the reward553

itself is a sufficient anchor to induce such a warped metric, remains unclear. Comparable place map554

warping has been seen when mice were exposed to gradually changing visual patterns Plitt and Gio-555

como (2021) or visual boundaries (Leutgeb et al, 2005a), creating continuous place cell activity profiles.556

In contrast, abrupt remapping occurred when mice were only familiar with extreme conditions, parallel-557

ing the response to unexpected uncertainty in the reward reference frame in our study. The integration558

of homogeneous episodes within continuous, possibly warped, metrics is also consistent with suggested559

roles of the hippocampus as a comparator (Kumaran and Maguire, 2007; Vinogradova, 2001) – perhaps560

responding to the conflict between external cues and internal, self-motion cues (Gothard et al, 1996),561

or intrinsic reward encoding. Indeed, warped metrics provide an efficient way to associate discontiguous562

events (Wallenstein et al, 1998), and may promote one-shot decision making by enhancing state-space563

separability (McKenzie et al, 2014; Muzzio et al, 2009; Nitz, 2009; Sun et al, 2023).564

Our finding that unexpected uncertainty did not induce greater position remapping than expected uncer-565

tainty contradicts our initial hypothesis, which anticipated more extensive remapping under surprise.566

By contrast, previous work has suggested that greater surprise is associated with greater remapping567

(Sanders et al, 2020), and indeed drastic changes in context, such as the visual environment (Anderson568

and Jeffery, 2003; Bostock et al, 1991; Kentros et al, 1998; Leutgeb et al, 2005b; Muller and Kubie, 1987;569

Sanders et al, 2020; Sheffield and Dombeck, 2019) can lead to substantial degrees of remapping. It may be570

that surprising reward locations and sensory mispredictions (Sanders et al, 2020) are treated somewhat571

independently. This would be consistent with the greater degree of reward-related and warped-metric572

remapping in UU compared to UI, suggesting that remapping can occur independently in different ref-573

erence frames, and building on existing results shedding light on overlapping reference frames in spatial574

navigation tasks (Zinyuk et al, 2000).575

In UU, we found that the population of place cells previously peaking at the reward became bimodally576

distributed around the previous and new reward location. This suggests that repeated experience of a577

specific episode could lead to cells becoming specific to single episodes, akin to splitter cells (Wood et al,578

2000), but in reward reference-frames, similar to the finding in (McKenzie et al, 2013). In contrast, in579

UI, reward-aligned cells and warped-aligned cells moved flexibly to the new goal location. This confirms580

a previous result suggesting independence of reward and position reference frames in rats (Aoki et al,581

2019). We might interpret this difference in terms of generalization: context-specific representations are582

probably well suited for efficient decision making when environments distinctly differ, as in the transition583

in UU. However, under EU, the multiple reward locations are tied under a common, moderately compact,584

distribution. Rather than exhausting capacity by representing each separately, the hippocampal solution585
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appears to be to have similar events share representations, by adopting metrics that encapsulate shared586

aspects of experience. This then generalizes when the reward location shifts yet further in UI.587

We focused our analyses on peak place cell activity, but future work could explore subtleties in firing588

rates (Sanders et al, 2019), and the relationship with theta rhythms (Chadwick et al, 2015). We only589

considered stable place cells before and after transitions; examining population turnover could yield590

further insights. To ensure robustness, we emphasized average spatial receptive fields, but tracking fast591

reward location changes remains essential. Finally, repeated switches, like those in UU, may eventually592

become expected, highlighting the need to understand how unknown unknowns transition to known593

unknowns in stochastic environments.594

Future work should focus on deciphering the implementation processes underlying our findings. Plateau595

potentials generated by synchronized inputs from the entorhinal cortex and CA3 can lead to the formation596

of new feature-selective cells (Bittner et al, 2015). Furthermore, recent studies have highlighted enhanced597

reward-reference frame coding in the lateral entorhinal cortex (LEC) (Issa et al, 2024), and medial598

entorhinal cells are also attracted to goals (Boccara et al, 2019). Given that grid cells provide different599

spatial metrics and can anchor to task-relevant features (Peng et al, 2023), it would be natural to explore600

grid cell activity in the various conditions of our study. This might shed light on the structured diversity601

of CA1 place cells selectivity.602

Task-relevant place cells selectivity could be driven by neuromodulatory inputs (Kaufman et al, 2020;603

Palacios-Filardo and Mellor, 2019; Palacios-Filardo et al, 2021). Evidence shows that acetylcholine,604

dopamine, noradrenaline and serotonin neuromodulatory systems provide signals associated with expec-605

tation, error and uncertainty, with their release reconfiguring hippocampal (and wider cortical) neuronal606

circuits to enable the update of estimates and memories (Dayan, 2012). Under this framework, the release607

of specific combinations of neuromodulators potentially codes for different types of uncertainty and could608

thereby influence the degree and type of place cell reorganisation. Indeed, dopaminergic and noradren-609

ergic projections to CA1 from ventral tegmental area and locus coeruleus convey information about610

reward prediction errors (Cohen et al, 2012; Fiorillo et al, 2003; Schultz et al, 1997) and surprise (Fiorillo611

et al, 2003; Heer and Mark, 2023; Kaufman et al, 2020; McNamara et al, 2014) and can causally shape612

reward-related CA1 reorganisation (Kaufman et al, 2020; Krishnan et al, 2022), specifically in response613

to high reward prediction errors (Michon et al, 2021). Synaptic plasticity is the mechanism for place614

cell reorganisation and is regulated by neuromodulators in multiple ways (Palacios-Filardo and Mellor,615

2019). For example, acetylcholine reprioritises entorhinal and CA3 inputs to CA1 reducing the inter-616

nal representations from CA3 and enhancing external sensory input from entorhinal cortex (Hasselmo,617

2006; Hasselmo and McGaughy, 2004; Palacios-Filardo et al, 2021) whilst also reconfiguring inhibitory618

networks (Haam et al, 2018; Leão et al, 2012) and enhancing dendritic excitability and synaptic plastic-619

ity (Buchanan et al, 2010; Dennis et al, 2016; Gu and Yakel, 2011; Teles-Grilo Ruivo and Mellor, 2013;620

Williams and Fletcher, 2019) in response to surprising events (Mineur et al, 2022; Ruivo et al, 2017).621

Thus, neuromodulators are an attractive mechanism linking detection of uncertainty to the update of622

hippocampal representations with new information.623

In conclusion, we exploited the relative transparency of the spatial activity of hippocampal place cells in624

order to examine the effects of different forms of uncertainty about the location of reward, and, equally,625

used these different forms of uncertainty to enrich our understanding of the hippocampal code for space.626

Place cells exhibited impressive adaptation to the diverse statistical contingencies, with sub-populations627

adopting what we can see as different relevant reference frames. This sharpens the hippocampus’s role628

as not only a spatial navigator but also a flexible processor of uncertainty. By offering multiple reference629

frames depending on task-relevant features like reward, the hippocampus provides a robust framework630

for adapting to both expected and unexpected uncertainty. This flexibility suggests a novel mechanism631

by which the brain supports rapid decision-making under uncertainty —- crucial for survival in changing632

environments – and provides downstream circuits with a computationally sophisticated representation633

which can afford an attractive combination of specialization and generalization.634
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Methods635

Mouse surgery636

All experiments were approved and conducted in accordance with the Northwestern University Animal637

Care and Use Committee. Seven male P56-P63 mice (C57BL/6J, Jackson Laboratory, stock no.000664)638

were used in the experiments. To induce the expression of a calcium indicator, mice were first injected639

with AAV virus expressing jGCaMP8m (AAV1-syn-FLEX-jGCaMP8m-WPRE) (Zhang et al, 2023) into640

dorsal CA1 region of the right hippocampus (1.8mm lateral, 2.3mm caudal of Bregma, 1.25mm below the641

dura surface). After the injection, mice first recovered with ad libitum water for 1-2 days and then were642

subject to water restriction (0.8-1.2ml per day) until the end of all experiments. The weight of all mice643

was monitored and kept between 75%-80% of the original weight. After 3-5 days under water restriction,644

hippocampal cannula implant surgeries were performed above the injection site to allow optical access to645

dorsal CA1 of the hippocampus, as previously described (Dombeck et al, 2010). Briefly, cortex above the646

dorsal hippocampus was aspirated until the white matter of the external capsule was exposed. Phosphate647

buffer solution (PBS) was repeatedly applied until the bleeding stopped and a small drop of Kwik-Sil648

was applied to the tissue surface before the cannula was inserted. A head-plate and a ring were cemented649

on the skull using Meta-bond. Proper analgesic and anesthetic procedures were carried out according to650

the animal protocol. All mice were allowed to recover for 5-7 days before the start of behavioral training.651

Virtual reality and behavior task652

Seven male mice were first separated into two groups, three and four mice for each group respectively.653

All mice were first habituated in the head-fixed VR setup (Sheffield et al, 2017) (with screen off) for one654

session (45 minutes), during which a couple of water rewards were delivered to the mice randomly to655

familiarize them with the lick port. Beginning from the second session, VR screens were turned on and656

both groups of mice were first trained in one visual environment to perform the URTask. Each training657

session lasted 45min to 1hr depending on how many laps the mice had run. Mice were considered well-658

trained if they satisfied both criteria: 1. They had to run at least 1 2 laps per minute; 2. They had to659

have anticipatory licking before the reward (anticipatory licking) for at least 50% of the laps; 3. Their660

behaviour is stable for three consecutive sessions, as measured by the average correlation coefficient of661

velocity and licking patterns across all laps. All mice reached this performance level after 8-10 session of662

training.663

Two-photon imaging664

Two-photon calcium imaging of dorsal CA1 neurons was performed using a custom-built moveable objec-665

tive microscope, with a 40x /0.8NA water immersion objective (LUMPlanFL N 3 40/0.8 W, Olympus),666

as described previously (Dombeck et al, 2010; Sheffield et al, 2017). The control software for two-photon667

scanning was ScanImage 5.1(Vidrio Technologies). Average laser power after the objective was around668

60 100mW. Time-series movies of 12000 24000 frames, 512 x 256 pixels were acquired at 30Hz frame-669

rate. A Digidata1440A (Molecular Device) data acquisition system (Clampex 10.3) was used to record670

(at 1 kHz) and synchronize behavioral variables (licking, linear track position, velocity and reward deliv-671

ery) with two-photon imaging frame time. During the same session, the imaging field stayed the same.672

During the consecutive imaging sessions, the imaging fields were not identical, although there might be673

overlap between the imaging fields.674
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Image processing and ROI selection675

Two-photon imaging time-series movies were first imported into Suite2p (Pachitariu et al, 2017) for rigid676

and non-rigid motion-correction. Putative cell (region of interest, ROIs) were extracted from motion-677

corrected movies using Suite2p.678

Table 1: Suite2P Parameters

Parameter Value Parameter Value Parameter Value
nplanes 1 nchannels 1 functional chan 1
tau 0.6 fs 30 do bidiphase 0
bidiphase 0 multiplane parallel 0 ignire flyback -1
preclassify 0 save mat 1 save NWB 0
combined 1 reg rig 1 reg tif chan2 0
aspect 1 delete bin 0 move bin 0
do registration 1 align by chan 1 nimg init 300
batch size 500 smooth sigma 1.15 smooth sigma time 0
maxregshift 0.1 th badframes 1 keep movie raw 0
two step registration 0 nonrigid 1 block size 32,64
snr thresh 1.2 maxregshiftNR 5.0 1Preg 0
spatial hp reg 32 pre smooth 0 spatial taper 40.0
roidetect 1 denoise 1 spatial scale 0
threshold scaling 2.0 max overlap 0.75 max iterations 20
high pass 100.0 spatial hp detect 25 anatomical only 0.0
diameter 0

Extracted ROI fluorescence traces were then exported from suite2P and imported into MATLAB for679

extracting significant calcium transients (Dombeck et al, 2010). For each ROI, the potential signal con-680

tamination from the surrounding neuropil was subtracted (after multiplied by a factor of 0.7) from the681

raw fluorescence signal. Slow time-course changes in the neuropil-corrected traces were removed by cal-682

culating the distribution of fluorescence in a 20-s time window around each time point and subtracting683

the 8th percentile value of the distribution. The baseline subtracted traces were then subjected to the684

analysis of the ratio of positive- to negative-going transients of various amplitudes and durations. This685

resulted in the identification of significant transients with less than 1% false positive rate. The signifi-686

cant transients were left untouched while all other values in the trace were set to 0. The resulting traces687

(referred to as ’changes in fluorescence’ in the following section) of all ROIs were used for further data688

analysis.689

Place cell spatial information test and identification690

Fluorescence tuning maps were created by binning the position across the track into 60 bins and identi-691

fying the mean change in fluorescence when the animal was moving at least 0.1 cm per second. To test692

whether a cell is a place cell, we computed the spatial information (I) in bits per action potential for the693

fluorescence tuning map (Climer and Dombeck, 2021):694

I =
1

f̄

N∑
i=1

fi · PX(xi) log2

(
fi
f̄

)

where f̄ is the mean change in fluorescence, N is the number of bins, fi is the fluorescence change in695

the ith spatial bin, and PX(xi) is the probability that the animal is in the ith spatial bin. To build a696

null distribution of information, we circularly shuffled the fluorescence trace with a minimum shift of 15697

seconds and recalculated the tuning map 1000 times. A cell was considered a significant place cell if it698

had higher information than 99% of these shuffled epochs, had an information value of at least 0.5 bits699

per action potential.700
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Trial inclusion criteria701

The position of reward consumption was defined as the first lick after reward delivery on every trial. As702

animals were engaged in the task, on most trials, licking was very close to reward delivery. The reward703

zone was then defined as the zone between the most proximal reward consumption position, until the704

most distal reward consumption position.705

In order to obtain a meaningful reward zone, we excluded 2.5% of the trials (35 out of 1376 total trials706

included in this paper) that were outlier in the distance at which the reward was consumed after delivery.707

This selection criteria generated a threshold of approximately 11 cm between reward delivery and reward708

consumption, therefore excluding trials in which the reward was not consumed, or was consumed after this709

distance. Supplementary Figure ?? shows the histogram of consumption distance from reward delivery,710

which we also consider as a marker for engagement in the task.711

Trial separation712

We separated proximal, middle and distal rewards by dividing the reward zone in 3 bins of identical713

length. The trials in which the reward was consumed in the first (resp. second, third) bin were labelled714

’proximal’ (resp. ’middle’, ’distal’).715

Behaviour analysis716

We excluded from all analyses the teleportation phase (during which the screen went black), and all717

datapoint at which the velocity fell under 0.1 cm/s.718

Analyses were performed using custom Python code. To calculate the lick rate and velocity patterns719

(figures 2a;b, figure 3a;b), we averaged the lick rate and velocity trace, downsampled at 30 Hz, over a720

position vector covering all position values (from 0 to 3m) with a bin size of 10 cm. To compute averages,721

we extracted the values of the behavioral variables for the cases in which the position trace was within722

each position bin, and computed averages weighted by the time spent in each position bin. For figure723

2a, for every session average-value, we computed the average over all trials for LU and divided it by the724

maximum value over the session. We then averaged this value across sessions and animals. For figure725

2b, for EU, we computed the average on proximal, middle and distal trials, and normalised it to the726

maximum value of the average computed over the full session. We then averaged these values across727

sessions and animals.728

Place cell activity analysis729

For all place cells analyses, we excluded periods in which the animal ran with a velocity less than 1cm/s,730

and the teleportation corridor. For figure 2d;e, Figure 3c;d, and Figure 3b, each place cell’s activity was731

averaged similarly to behavioural variables: the average place cell activity over the session was computed732

by averaging the activity per position bin across every trial weighted by the time spent in each position733

bin. Place maps in figures 2d;e show the average activity of cells on odd trials, ordered based on the734

location of the peak activity on even trials. Place map plots were produced by normalizing the average735

activity of every cell on odd trials by its maximum value.736

For switch sessions (place maps in figures 3c;d), place map plots before the switch were produced by737

normalising the average activity of every cell on all trials before the switch by its maximum value.738

Similarly, place map plots after the switch were produced by normalising the average activity of every739

cell on all trials after the switch by its maximum value.740
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Peak activity analysis741

The position of maximum activity was extracted as the location of the 10cm bin in which the average742

activity of the cell was greatest. For figure 2e, we considered the average activity on proximal and distal743

groups of trials. For figure 3e, the average was computed over trials before (x-axis) and after (y-axis) the744

reward switch separately.745

For figures 2f and 3e, the x and y coordinates are fitted with gaussian kde function from the scipy.stats746

module, which estimates the probability density function (PDF) of a random variable in a non-parametric747

way. The heatmap shows this Gaussian fitted density estimation.748

Reward and warped reference frame749

The reward reference frame was obtained by computing positions relative to the position of the750

consumption of the reward at every trial, and using 10cm position bins.751

The warped reference frame was obtained by creating a warped vector interpolating the position in 20752

bins between the start of the track and the reward location, and 20 bins from the reward location to the753

end of the track at every trial. These new bins were then the basis for all averages.754

Place cell identification755

In figure 2g,’Position-stable” cells were place cells that passed the place cell test and which position of756

peak of activity on proximal and distal trials were at most 15cm apart.757

In figure 3f,’Position-stable” cells were place cells that passed the place cell test before and after the758

switch and which position of peak of activity before and after the switch were at most 15cm apart.759

In figure 3g, ’reward-peaking’ cells were place cells that passed the place cell test before and after the760

switch and whose positions of peak of activity in the reward reference frame before and after the switch761

were between -15 and +20 cm.762

In figure 3h, ’Warped’ place cells were place cells that passed the place cell test before and after the763

switch and which position of peak of activity in the warped reference frame before and after the switch764

were identical with + or - 3 warped units, and which position of maximum activity followed the reward.765

Cell percentage and cell percentage per cm766

Statistical analyses767

All statistics were done using the package ’statsmodels’ in python.768

To compare percentages, we used the percentage z-test, and for 1-sided proportion z-test to test for769

directionality. To compare distributions, we used the Kolmogorov-Smirnov test.770

Data availability771

The data will be made freely available following publication.772
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Code availability773

All computer programs will be made freely available following publication.774

Supplementary material775

Please see supplementary figures.776
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FX* Legend: Lead
JM‡ Equal
PD‡ Support
DD‡ 

CRediT contribution matrix. Color code refers to the level of contribution per category, as previously
used (Tay, 2021). Categories reflect the ones published in the original CRediT taxonomy in (Brand et al,
2015).
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Zhang Y, Rózsa M, Liang Y, et al (2023) Fast and sensitive gcamp calcium indicators for imaging neural983

populations. Nature 615(7954):884–891984

Zinyuk L, Kubik S, Kaminsky Y, et al (2000) Understanding hippocampal activity by using purposeful985

behavior: place navigation induces place cell discharge in both task-relevant and task-irrelevant spatial986

reference frames. Proceedings of the National Academy of Sciences 97(7):3771–3776987

29

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2025. ; https://doi.org/10.1101/2025.01.06.631465doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.06.631465
http://creativecommons.org/licenses/by-nc-nd/4.0/

