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Abstract

Aims Heart failure (HF) is a chronic heart disease with a high incidence and mortality. Due to the regulatory complexity of
gene coexpression networks, the underlying hub genes regulation in HF remain incompletely appreciated. We aimed to ex-
plore potential key modules and genes for HF using weighted gene coexpression network analysis (WGCNA).
Methods and results The expression profiles by high throughput sequencing of heart tissues samples from HF and non-HF
samples were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and
non-HF samples were firstly identified. Then, a coexpression network was constructed to identify key modules and potential
hub genes. The biological functions of potential hub genes were analysed by Gene Ontology and Kyoto Encyclopedia of Genes
and Genomes pathway enrichment analyses. Finally, a protein–protein interaction (PPI) network was constructed using the
STRING online tool. A total of 135 DEGs (133 up-regulated and 2 down-regulated DEGs) between HF and non-HF samples were
identified in the GSE135055 and GSE123976 datasets. Moreover, a total of 38 modules were screened based on WGCNA in the
GSE135055 dataset, and six potential hub genes (UCK2, ASB1, CCNI, CUX1, IRX6, and STX16) were screened from the key mod-
ule by setting the gene significance over 0.2 and the module membership over 0.8. Furthermore, 78 potential hub genes were
obtained by taking the intersection of the 135 DEGs and all genes in the key module, and enrichment analysis revealed that
they were mainly involved in the MAPK and PI3K-AKT signalling pathways. Finally, in a PPI network constructed with the 78
potential hub genes, CUX1 and ASB1 were identified as hub genes in HF because they were also identified as potential hub
genes in the WGCNA.
Conclusions To the best of our knowledge, our study is the first to employ WGCNA to identify the key module and hub genes
for HF. Our study identified a module and two genes that might play important roles in HF, which may provide potential bio-
markers for the diagnosis of HF and improve our knowledge of the molecular mechanisms underlying HF.
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Introduction

Heart failure (HF) is the most common heart disease world-
wide and affects millions of people.1 In 2016, there were ap-
proximately 300 000 deaths associated with HF.2 HF is an
important health problem and causes severe medical and
economic burdens worldwide.2

Heart failure is a chronic disease and a complication of
many other diseases, such as type 2 diabetesmellitus3 and cor-
onary heart disease.4 The occurrence and development of HF
can be driven by a variety of biological factors, such as myocar-
dial stretch, oxidative stress, inflammatory response, and
neuroendocrine system activation.5 HF involves many patho-
physiological mechanisms, accompanied by many molecules
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entering body fluids and thus becoming biomarkers for diag-
nosis. Brain natriuretic peptide and N-terminal proBNP are
the two molecular markers considered by the European Soci-
ety of Cardiology for the clinical diagnosis of HF.6 In recent
years, some new molecular markers have also been used in
the diagnosis, classification, and efficacy monitoring of HF,
such as the inflammatory mediators IL-1 and IL-6,7 Gal-3,8

myocardial remodelling marker matrix metalloproteinases,9

and various non-coding RNAs that can stably exist in plasma,
such as miR-133a and miR-29a.10 Identifying biomarkers that
play key roles in these pathways is of great significance for
the early diagnosis of HF, optimizing accurate treatment strat-
egies for patients with HF, and reducing its mortality.

Epigenetic regulation plays an important role in the devel-
opment of HF. Epigenetic regulation involves RNA, specifically
the roles of short and long non-coding RNAs and endogenous
competing RNA regulatory networks, and DNA, including DNA
methylation, histone modifications, and chromatin conforma-
tional changes. In addition to miRNAs, transcription factors
are key regulators of gene expression that enhance or inhibit
gene transcription by binding to specific DNA sequences of
target gene promoters. If transcription factors and miRNAs
jointly regulate a coding gene, and in turn, transcription fac-
tors regulate the coding gene of this miRNA, a feed-forward
loop is established between transcription factors, miRNAs,
and the coding genes.11 Due to the regulatory complexity of
gene coexpression networks in HF, it is of great importance
to explore molecular biomarkers for the diagnosis and treat-
ment of HF.

Weighted gene coexpression network analysis (WGCNA) is
a systems biology method for analysing the correlations
among genes and the relationships between modules and ex-
ternal sample traits.12 WGCNA allows the discovery of corre-
lations between gene clusters and clinical traits and between
genes and coexpressed modules or clinical traits. In the cur-
rent study, we hypothesized that gene coexpression networks
regulated the hub genes and pathways involved in HF. The re-
sults of this study provide potential biomarkers for the diag-
nosis of HF and improve our knowledge of the molecular
mechanisms underlying HF.

Methods

Data collection

Gene expression matrixes of GSE13505513 and GSE12397614

were downloaded from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo) based on the GPL16791
platform (Illumina HiSeq 2500, Homo sapiens). The
GSE135055 dataset consisted of 21 human HF and 9 human
non-HF (NF) left ventricle tissue samples. The GSE123976
dataset consisted of 6 human HF and 3 human NF left ventricle

tissue samples. The clinical characteristics of the samples were
summarized in Supporting Information, Table S1. The step-by-
step flowchart of this research was shown in Figure 1.

Identification of differentially expressed genes

The differentially expressed genes (DEGs) between HF and NF
samples in each dataset were screened using the limma pack-
age of R based on a cut-off value|log2 (fold change)| > 0.05
and an adjusted P < 0.05.

Construction of the weighted gene coexpression
network analysis network

Weighted gene coexpression network analysis was performed
using the WGCNA package of R to identify potential key mod-
ules and potential hub genes. First, all samples were clustered
to screen obvious outliers. Second, a soft-thresholding power
β was selected, and a scale-free network was constructed.
Third, hierarchical clustering and the dynamic tree cut func-
tion were used to detect modules. Fourth, the correlations be-
tween modules and clinical information were analysed to
identify key modules, and potential hub genes in the key

Figure 1 The flow chart of the study. DEGs, differentially expressed
genes; HF, heart failure; NF, non-HF; PPI, protein–protein interaction;
WGCNA, weighted gene coexpression network analysis.
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Figure 2 Identification of DEGs between the HF and NF groups in the GSE135055 and GSE123976 datasets. (A) Volcano plot showing that a total of
10 316 DEGs between HF (n = 6) and NF (n = 3) samples were identified in the GSE123976 dataset, of which 10 247 were up-regulated and 69 were
down-regulated in HF. Blue represents down-regulated genes, red represents up-regulated genes, and grey represents genes with no significant dif-
ference in expression. (B) The top 100 DEGs of the GSE123976 dataset were visualized in a heatmap. (C) Volcano plot showing that a total of 314 DEGs
between HF (n = 21) and NF (n = 9) samples were identified in the GSE135055 dataset, of which 203 were up-regulated and 111 were down-regulated
in HF. Blue represents down-regulated genes, red represents up-regulated genes, and grey represents genes with no significant difference in expres-
sion. (D) The top 100 DEGs of the GSE135055 dataset were visualized in a heatmap. (E) Venn diagram showing the intersections of up-regulated DEGs
between the GSE123976 and GSE135055 datasets. (F) Venn diagram showing the intersections of down-regulated DEGs between the GSE123976 and
GSE135055 datasets. DEGs, differentially expressed genes; HF, heart failure; NF, non-HF; PPI, protein–protein interaction; WGCNA, weighted gene
coexpression network analysis.
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Figure 3 Construction of the gene coexpression network for the GSE135055 dataset. (A) Sample clustering of the GSE135055 dataset revealed no ob-
vious outliers. (B) Network topology analysis revealed that the network met the scale-free topology threshold of 0.9 when β = 5. The x-axis represents
soft-thresholding power, and the y-axis represents the scale-free topology model fit index. (C) Network topology analysis revealed that the mean con-
nectivity was close to 0 when β = 5. The x-axis represents soft-thresholding power, and the y-axis represents the mean connectivity. (D) Clustering den-
drogram of DEGs in the GSE135055 dataset based on topological overlap. Each module is given a unique colour and represents a cluster of coexpressed
genes.
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module were obtained by setting the gene significance over
0.2 and the module membership over 0.8.

Gene ontology and Kyoto Encyclopedia of Genes
Genomes pathway enrichment analyses

Potential hub genes were identified by taking the intersection
of DEGs and genes in the key module. To explore the biolog-
ical functions and signalling pathways involved in potential
hub genes, gene ontology (GO) analysis and Kyoto Encyclope-
dia of Genes Genomes (KEGG) pathway analysis were per-
formed using the clusterProfiler package of R. The biological
functions of the genes can be divided into three categories:
biological process, molecular function, and cellular compo-
nent. Bar plots and bubble plots were created using the
ggplot package of R to visualize the enrichment results.
Enriched results with a P value < 0.05 were considered
significant.

Construction of the protein–protein interaction
network

The protein–protein interaction (PPI) network was con-
structed using the Search Tool for the Retrieval of Interacting
Genes online tool (STRING, https://www.string-db.org) to
identify hub genes, and the results were visualized and
analysed with Cytoscape.

Results

Identification of differentially expressed genes in
the GSE135055 and GSE123976 datasets

FPKM format expression profiles of the GSE135055 and
GSE123976 datasets were obtained from the GEO database.
A total of 10 316 DEGs were identified between the HF

Figure 4 Identification of the key modules associated with the development of heart failure. Heatmap displaying the correlations and significant dif-
ferences between gene modules and clinical information. Correlations are displayed in rectangles, and correlation coefficients and P values are
displayed in rectangles. Red rectangles denote negative correlations between modules and clinical information, and green rectangles denote positive
correlations between modules and clinical information.
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(n = 6) and NF (n = 3) samples in the GSE123976 dataset, in-
cluding 10 247 up-regulated and 69 down-regulated DEGs in
HF relative to NF (Figure 2A). A total of 314 DEGs were iden-
tified between the HF (n = 21) and NF (n = 9) samples in the
GSE135055 dataset, including 203 up-regulated and 111
down-regulated DEGs in HF relative to NF (Figure 2C).
Heatmaps of the top 50 DEGs (ranked by adjusted P value)
in the GSE123976 and GSE135055 datasets are shown in Fig-
ure 2B,D, respectively. In addition, a total of 135 overlapping
DEGs between the GSE135055 and GSE123976 datasets were
identified. Among them, 133 were up-regulated, and 2 were
down-regulated in HF (Figure 2E,F).

Construction of the gene coexpression network
by weighted gene coexpression network analysis

Weighted gene coexpression network analysis was carried
out on the expression profile of the GSE135055 dataset. Sam-
ple clustering was performed, and the clustering dendrogram
revealed no obvious outliers (Figure 3A); therefore, all sam-
ples were included in further analysis. Then, the soft thresh-
old power β was calculated before the construction of the
gene coexpression network. According to the results, the net-
work met the scale-free topology threshold of 0.9 (Figure 3B),
and the mean connectivity was close to 0 (Figure 3C) when
the soft-thresholding power was 5; therefore, β = 5 was se-
lected to construct a hierarchical clustering tree. Ultimately,

38 modules were identified based on average hierarchical
clustering and dynamic tree clipping (Figure 3D).

Identification of key modules associated with
heart failure progression

The relationships between each module and all clinical vari-
ables, including status (HF vs. NF), age, and sex, in the
GSE135055 dataset were investigated. The results showed
that among the modules, the yellowmodule had the strongest
association with HF (r = 0.9, P = 9e-12) (Figure 4), indicating
that the genes of the yellow module may play important roles
in the occurrence and development of HF. Thus, the yellow
module was considered as a key module for further analysis.

Identification of the hub genes in the key module

Pearson’s correlation analysis of gene significance vs. module
membership in the yellow module showed that they were
highly correlated (r = 0.85, P < 1e-200) (Figure 5A). To iden-
tify the potential hub genes in the yellow module, we se-
lected a threshold of 0.2 for the correlation between genes
and clinical variables and a threshold of 0.8 for the correla-
tion between genes and the yellow module. A total of six
hub genes were screened: UCK2, ASB1, CCNI, CUX1, IRX6,
and STX16. A heatmap of these hub genes was constructed
based on the topology overlap (Figure 5B). The results re-

Figure 5 Hub genes in the yellow module strongly correlated with the progression of heart failure. (A) Scatterplot of gene significance vs. module
membership for the progression of heart failure in the yellow module (r = 0.85, P < 1e-200). (B) A heatmap showing the associations between hub
genes based on topology overlap. Dark colours indicate a high degree of topology overlap and strong correlations between the hub genes.
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vealed that STX16 had strong associations with UCK2, IRX6,
CCNI and ASB1, and IRX6 was strongly correlated with CCNI.

Biological function analysis of potential hub genes

To explore the function of potential hub genes in the yel-
low module, the intersection of the 135 DEGs identified in
the GSE135055 and GSE123976 datasets and the 1877
genes in the key module was obtained. A Venn diagram
was constructed to visualize the intersecting genes, and
78 intersecting genes were identified, which were
up-regulated DEGs in the GSE135055 and GSE123976
datasets (Figure 6A). Subsequently, GO and KEGG pathway

enrichment analyses were performed to explore the poten-
tial functions of the 78 intersecting genes. The results
showed that the 78 intersecting genes were mainly
enriched in axonogenesis, regulation of cell shape, Ras pro-
tein signal transduction, and regulation of cell morphogen-
esis in biological process (Figure 6B) and were mainly
located in focal adhesion, microtubules, myofibrils, and syn-
aptic clefts (Figure 6C). The KEGG pathway results showed
that the intersecting genes were significantly enriched in
the MAPK signalling pathway, PI3K-AKT signalling pathway,
and ARG-RAGE signalling pathway in diabetic complications
(Figure 6D), which indicated that these intersecting genes
may exert potential roles in the development of HF via
these pathways.

Figure 6 Biological function analysis of intersecting genes. (A) Venn diagram showing the intersecting genes between the yellow module and the dif-
ferentially expressed genes, and 78 differentially expressed up-regulated genes were screened. (B) Bubble plots of the biological process (BP) enrich-
ment for 78 up-regulated genes. (C) Bubble plots of the cellular component (CC) enrichment for 78 up-regulated genes. (D) Bubble plots of Kyoto
Encyclopedia of Genes Genomes pathway enrichment for 78 up-regulated genes.
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Identification of hub genes in heart failure

Next, we investigated the correlations between the 78
intersecting genes using STRING and visualized the results
using Cytoscape (Figure 7). ASB1 and CUX1 were found in
both the key module and the PPI network, suggesting that
these genes may act as hub genes in the progression of HF.

Discussion

In the present study, a total of 135 overlapping DEGs were
identified in the GSE135055 and GSE123976 datasets, includ-
ing 133 up-regulated DEGs and 2 down-regulated DEGs. We

identified a key module and six hub genes in the GSE135055
dataset by constructing a WGCNA network, including UCK2,
ASB1, CCNI, CUX1, IRX6, and STX16. Seventy-eight intersecting
genes were identified by taking the intersection of genes in the
key module and the 135 DEGs in the HF group compared with
the NF group. Enrichment analysis revealed that 78
intersecting genes were mainly involved in the MAPK and
PI3K-AKT signalling pathways. A PPI network was constructed
to investigate the PPIs among the 78 genes, and CUX1 and
ASB1 were defined as hub genes in the progression of HF.

Weighted gene coexpression network analysis is a method
for exploring the relationships among genes, modules, and
clinical traits based on a weighted approach. WGCNA involves
expression clustering analysis, phenotypic correlation analy-
sis, the analysis of correlations between genes, gene module

Figure 7 Identification of hub genes in heart failure using protein–protein interaction analysis. The protein–protein interaction network of the 78 dif-
ferentially expressed up-regulated genes. Dots represent genes, and the size of the dot represents the degree of connection with other genes.
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definition, coexpression network construction, and the iden-
tification of connections between modules and phenotypes.
Therefore, WGCNA is a reliable and effective tool for explor-
ing pairwise connections among numerous genes. Here, six
hub genes (UCK2, ASB1, CCNI, CUX1, IRX6, and STX16) were
identified by WGCNA. A previous study discovered the abnor-
mal expression of these genes in advanced-stage HF
patients.15 CUX1 plays key roles in tumour differentiation
and metastasis.16–17 Abnormal CUX1 expression is associated
with the Ebstein anomaly, which affects cardiomyocytes and
myocardium differentiation.18 IRX6 was associated with point
mutations and small insertions/deletions in a Dutch Brugada
syndrome cohort.19

In the current study, a PPI network analysis showed that
ASB1 was defined as a hub gene and played important roles
in PPIs in HF. ASB1 is a member of the ankyrin repeat and SOCS
box-containing (ASB) family of proteins (1-18). The ASB1 gene,
located on chromosome 2q37, encodes a protein with 335
amino acids. ASB1 is associated with several cullin-associated
neddylation proteins that are involved in targeted ubiquitin
degradation pathways.20 Emeny et al. reported that severe
anxiety was associated with 48.5% increased methylation at
a single CpG site located in the promoter of the gene encoding
ASB1.21 These results indicated that epigenetics regulated the
expression of the stress-responsive ASB1 gene in an
anxiety-related phenotype manner. The regulation of methyl-
ation plays an important role in cardiac function. Ortega
et al. found that a special ASB1methylation pattern was linked
to left ventricular structure and performance in end-stage
ischaemic cardiomyopathy. The gain of methylation of ASB1
CpG islands is closely related to LV function, dimension, and
output.15 Further study will be needed to elucidate the molec-
ular mechanism of ASB1 in the progression of HF.

In the phosphatidylinositol-3-kinase (PI3K)/protein kinase
B (PKB/Akt) signal transduction pathway, PI3K is an intracellu-
lar phosphatidylinositol kinase. The main effector activated
downstream is Akt, also known as serine/threonine protein
kinase. In this study, the analyses of the biological functions
of the 78 up-regulated genes in the yellow module showed
that these genes were mainly enriched in the MAPK and
PI3K-AKT signalling pathways. Chang et al. reported that
tetrahydrobiopterin reverses left ventricular hypertrophy
and diastolic dysfunction in spontaneously hypertensive rats
through PI3K/Akt.22 It has been reported that the MAPK sig-
nalling pathway is involved in coronary artery disease23 and

that adriamycin induces HF via the MAPK/AMPK pathway.24

Moreover, cardiac contractility modulation has been shown
to alleviate chronic HF in a rabbit model through the PI3K/
AKT pathway.25 Our results supported the role of the MAPK
and PI3K-AKT signalling pathways in the development of HF.
However, constructing a WGCNA on HF downloaded from a
GO dataset without verification by qPCR is one limitation of
the current study. Another limitation is small samples, as well
as potential effects of patient race.

Conclusions

One susceptibility module and two hub genes for HF were
identified by coexpression network based on bioinformatic
analyses, and we found that the module might cause HF
through the MAPK and PI3K-AKT signalling pathways. Our re-
sults may provide potential biomarkers for the diagnosis of
HF and improve our knowledge of the molecular mechanisms
underlying HF.
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