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Background: White matter (WM) damage is a consistent finding in HIV-infected (HIV+)

individuals. Previous studies have evaluated WM fiber tract-specific brain regions in

HIV-associated neurocognitive disorders (HAND) using diffusion tensor imaging (DTI).

However, DTI might lack an accurate biological interpretation, and the technique suffers

from several limitations. Fixel-based analysis (FBA) and free water corrected DTI (fwcDTI)

have recently emerged as useful techniques to quantify abnormalities in WM. Here, we

sought to evaluate FBA and fwcDTI metrics between HIV+ and healthy controls (HIV−)

individuals. Using machine learning classifiers, we compared the specificity of both FBA

and fwcDTI metrics in their ability to distinguish between individuals with and without

cognitive impairment in HIV+ individuals.

Methods: Forty-two HIV+ and 52 HIV– participants underwent MRI exam, clinical, and

neuropsychological assessments. FBA metrics included fiber density (FD), fiber bundle

cross section (FC), and fiber density and cross section (FDC). We also obtained fwcDTI

metrics such as fractional anisotropy (FAT) andmean diffusivity (MDT). Tract-based spatial

statistics (TBSS) was performed on FAT andMDT. We evaluated the correlations between

MRI metrics with cognitive performance and blood markers, such as neurofilament light

chain (NfL), and Tau protein. Four different binary classifiers were used to show the

specificity of the MRI metrics for classifying cognitive impairment in HIV+ individuals.

Results: Whole-brain FBA showed significant reductions (up to 15%) in

various fiber bundles, specifically the cerebral peduncle, posterior limb of

internal capsule, middle cerebellar peduncle, and superior corona radiata. TBSS

of fwcDTI metrics revealed decreased FAT in HIV+ individuals compared to

HIV– individuals in areas consistent with those observed in FBA, but these were

not significant. Machine learning classifiers were consistently better able to distinguish

between cognitively normal patients and those with cognitive impairment when

using fixel-based metrics as input features as compared to fwcDTI metrics.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.725059
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.725059&domain=pdf&date_stamp=2021-11-04
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nasir_uddin@urmc.rochester.edu
https://doi.org/10.3389/fneur.2021.725059
https://www.frontiersin.org/articles/10.3389/fneur.2021.725059/full


Finkelstein et al. FBA and fwcDTI in HIV

Conclusion: Our findings lend support that FBA may serve as a potential in vivo

biomarker for evaluating and monitoring axonal degeneration in HIV+ patients at risk

for neurocognitive impairment.

Keywords: HIV, diffusion MRI (dMRI), fixel-based analysis, free water imaging, machine learning, cognitive

impairment, brain, white matter (WM)

INTRODUCTION

Combined antiretroviral therapy (cART) has reduced morbidity
and mortality rates significantly in HIV infected (HIV+)
individuals (1). However, the increased survival may be masking
an increase in cognitive impairment (2), mediated by injury to the
central nervous system (CNS) and disruption of the blood–brain
barrier (BBB) (3). TheHIV reservoir in the CNS resides primarily
in microglia and perivascular macrophages, resulting in chronic
neuroinflammation (4). While the small pool of infected cells in
the CNS can release neurotoxic viral proteins, Tat and gp120, the
larger pool of activated glia cells is responsible for the release
of cytokines that can induce neuronal injury and cell death (5).
HIV-associated oligodendrocyte injury results in demyelination
and alterations in white matter (WM) structural integrity (6).
Thus, damage to WM fibers is likely a key factor in cognitive
impairment observed in HIV-associated neurocognitive disorder
(HAND) (7).

MR neuroimaging studies have sought to identify potential
in vivo biomarkers to investigate CNS injury in the setting of
HIV infection (8). Structural and functional MRI have helped
elucidate how atrophy and aberrant network topology mediate
cognitive decline in HIV infection (9, 10). Nonetheless, given the
well-established presence of WM alterations in HIV infection, it
is paramount to further characterize WM in HAND. However,
during chronic neuroinflammation, there may be contributing
vasogenic edema (11), confounding the interpretation of WM
lesions. Accordingly, appropriate models that accurately account
for free water (FW) contamination are necessary to sufficiently
evaluate WM structural integrity in HIV infection (12).

Abbreviations: cART, combined antiretroviral therapy; CNS, central nervous

system; BBB, blood–brain barrier; WM, white matter; HAND, HIV-associated

neurocognitive disorder; FW, free water; DTI, diffusion tensor imaging; FA,

fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; MD, mean

diffusivity; TBSS, tract-based spatial statistics; CSF, cerebrospinal fluid; FAT, free

water corrected FA; MDT, free water corrected MD; FBA, fixel-based analysis;

FD, fiber density; FC, fiber bundle cross section; FDC, fiber density cross

section; AFD, apparent fiber density; FOD, fiber orientation distribution; MT-

CSD, multi tissue constrained spherical deconvolution; GM, gray matter; NfL,

neurofilament light chain; VVL, viral load; GLM, general linear model; CFE,

connectivity-based fixel enhancement; FDR, false discovery rate; ROI, region

of interest; TFCE, threshold-free cluster enhancement; WNL, within normal

limits; ANI, asymptomatic neurological impairment; MND, minor neurocognitive

impairment; CI, cognitively impaired; kPCA, kernel principal component analysis;

LDA, linear discriminant analysis; PPV, positive predictive value; ROC, receiver

operating characteristic; AUC, area under the curve; fwcDTI, free water corrected

DTI; DWI, diffusion weighted imaging; PLIC, posterior limb of the internal

capsule; MCP, middle cerebellar peduncles; SCR, superior corona radiata; CP,

cerebellar peduncle; SLF, superior longitudinal fasciculus; AdaBoost, adaptive

boosting; PRC, precision-recall curve; DMN, default mode network, CST,

corticospinal tract.

Due to its non-invasiveness, diffusion tensor imaging (DTI)

has been widely used in clinical neuroimaging studies (13,
14). DTI metrics such as fractional anisotropy (FA), axial

diffusivity (AD), radial diffusivity (RD), and mean diffusivity

(MD) characterize the orientation and distribution of the random

movements of water molecules, diffusion magnitude, diffusional

directionality perpendicular to the axon, and diffusional

directionality along the axon, respectively (15, 16). Previous

studies have shown that FA is decreased in the posterior limb

of internal capsule (PLIC), the corticospinal tract (CST), and
temporal and frontoparietal WM regions, whereas RD and MD

were increased in bilateral CST and temporal and frontal WM

regions in HIV+ individuals (17–22). Decreased FA has also

been observed in the superior longitudinal fasciculus (SLF) and

was correlated with decreased memory and executive function

in HIV+ subjects exhibiting HAND (23). Tract-based spatial
statistics (TBSS) is a popular voxel-based method to analyze DTI
metrics, which maps control and disease cohort FA images to a
WM skeleton to improve correspondence between subjects (24).
We have previously reported diffuse FA and MD abnormalities
using TBSS in HIV+ individuals (25).

However, voxel-based measures are often contaminated by
extracellular FW (12). FW contamination in the diffusion signal
is due to water molecules that are not restricted by their
environment, such as the cerebrospinal fluid (CSF). Edema
caused by stroke (26), brain tumors (12), or neuroinflammation
can also contaminate WM voxels (27, 28). Accordingly, FW
contaminated voxels will fit more toward an isotropic tensor
and exhibit decreased FA values, confounding the interpretation
of the results. Previously, several studies have reported that
FW correction enhances specificity of DTI metrics (29–32) and
reduces test–retest reproducibility errors (33). However, the
diffusion tensor model is limited in that it is not able to reliably
model complex and crossing-fiber populations, which are present
in up to 90% of WM voxels (34, 35). Furthermore, while TBSS
of FW corrected FA (FAT) is likely to provide more reliable
measures of WM integrity in HIV infection, it does not include
orientation information.

Fixel-based analysis (FBA) is a recent technique that
models individual fibers at the sub-voxel level, termed fixels,
which allow tract-specific comparisons (36). FBA enables the
characterization of multiple fiber populations within a voxel,
circumventing interpretation issues that commonly arise with
voxel-averaged measurements such as FA and MD. Moreover,
FBA accounts for both macrostructural (fiber bundle) and
microstructural (within voxel) changes within WM, providing
a more comprehensive understanding of intra-axonal and fiber
tract changes. Accordingly, FBA has been used in several
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neurological disorders including Parkinson’s disease (37, 38),
multiple sclerosis (39, 40), traumatic brain injury (41, 42),
schizophrenia (42), and healthy aging (43). FBA can be used to
estimate fiber density (FD) within a fiber bundle, the fiber bundle
cross section (FC), or a combined measure, fiber density cross
section (FDC). FD is related to the intra-axonal volume, and a
corresponding decrease in FD may reflect axonal degeneration
(36). However, correspondence between the apparent fiber
density (AFD) and simulated intra-axonal signal fraction is
improved at higher b-values (44). Accordingly, it is possible
that at moderate b-values (b <2,000 s/mm2), the FOD is no
longer purely representative of the intra-axonal volume (44). At
moderate b-values, the DW signal contains contributions from
both the intra-axonal and extra-axonal spaces, and the FD needs
to be interpreted cautiously. FD or AFD is calculated from the
fiber orientation distribution (FOD), which may be estimated
using constrained spherical deconvolution (CSD) (45, 46), or
advanced multi-tissue constrained spherical deconvolution (MT-
CSD) (47), which considers different brain tissue types. By
modeling gray matter (GM), WM, and CSF separately, MT-CSD
accounts for FW contamination and has been shown to have
better test–retest reliability than traditional DTI metrics (48). FC
reflects the cross-sectional area of a fiber bundle, perpendicular
to the length axis, and is derived from the Jacobian of the non-
linear transformation from subject space to template space. By
accounting for the orientation of the fiber bundle, FC is reflective
of the number of axons within the fiber bundle, and therefore
the ability to relay information (36). FDC accounts for both
macroscopic and microscopic effects on fiber density.

The aim of this study was to refine our understanding of how
WM structural integrity is affected in HIV-infected individuals,
and if these changes were associated with cognitive performance
in HAND, using two approaches, FBA and fwcDTI. Additionally,
we investigated whether fiber tract degeneration was related to
inflammatory blood markers NfL and Tau of HIV infection.
Machine learning classification, using a set of binary classifiers
was also performed to distinguish cognitively normal individuals
from those with cognitive impairment in HIV+ individuals.

MATERIALS AND METHODS

Study Participants
Forty-two treatment-naïve HIV+ participants (2 females and 40
males; mean age ± standard error, SE = 34.48 ± 1.95 years,
range 20–63 years) and 52 age-matched HIV uninfected (HIV–)
participants (26 females and 26 males; mean age± SE= 37.02±
1.66 years, range 18–63 years) were enrolled in a study assessing
the potential neurotoxicity of combination antiretroviral therapy
treatment (cART) study at the University of Rochester Medical
Center. All participants provided written informed consent
before enrollment according to the institutional protocol and
underwent clinical, laboratory, and brain MRI exams. All
experiments were performed in accordance with relevant
guidelines and regulations. The data reported here reflect the
baseline assessment of HIV+, cART naïve individuals prior to
starting cART. This time point was chosen because it represents
the clearest difference in cognitive performance within the HIV+

TABLE 1 | Participant demographics, clinical, and cognitive information.

HIV+ (N = 42) HIV– (N = 52) p-value

Age, mean(SE) 34.05 (2.01) 37.13 (1.65) 0.24

Gender, n (%)

Female 2 (0.048) 26 (0.5) <0.001

Male 40 (0.952) 26 (0.5)

Ethnicity, n (%)

Hispanic or Latino 2 (0.048) 3 (0.058) 0.829

Not Hispanic or Latino 40 (0.952) 49 (0.942)

Race, n (%)

Caucasian 20 (0.476) 43 (0.827)

Black 21 (0.5) 5 (0.096) <0.001

Other 1 (0.024) 2 (0.038)

Missing 0 (0) 1 (0.019)

Education, n (%)

<12 years 2 (0.048) 2 (0.038)

12 years (HS grad) 11 (0.26) 4 (0.077)

12–15 years (Some college) 16 (0.38) 10 (0.19) 0.002

16 years (Bachelor’s) 7 (0.17) 21 (0.40)

>16 years (Post-graduate) 6 (0.14) 15 (15.52)

Blood markers, mean (SE)

CD4 503.64 (41.99) – –

Viral load (×103) 771.22 (205.58) – –

Neurofilament (NfL) 11.39 (1.91) – –

Tau 2.47 (1.07) – –

Cognitive score

Total summary score −1.45 (0.386) 0.325 (0.444) 0.035

Executive z-score −0.122 (0.083) 0.227 (0.108) >0.05

Attention z-score −0.294 (0.101) 0.130 (0.092) 0.033

Motor z-score −0.208 (0.097) 0.246 (0.086) 0.016

Learning z-score −0.309 (0.082) −0.153

(0.100)

>0.05

Speed of learning z-score −0.188 (0.091) 0.042 (0.096) >0.05

Memory z-score −0.261 (0.096) −0.223

(0.102)

>0.05

Verbal z-score −0.073 (0.086) 0.057 (0.106) >0.05

HAND classification n (%)

WNL 21 (50%) NA NA

CI ANI 20 (48%)

MND 1 (2%)

Continuous variables summarized as Mean (SE), categorical variables are summarized as

frequency (percentages). CD4 in cells/mm3, NfL in pg/ml. Significant results are shown as

bold. SE, standard error; HAND, HIV-associated neurocognitive disorders; WNL, within

normal limits; CI, cognitive impairment; ANI, asymptomatic neurocognitive impairment;

MND, mild neurocognitive disorder; NA, not applicable.

group. Details about study participants (including age, sex, and
clinical results) are provided in Table 1.

Data Acquisition
Blood Sample
Plasma levels of markers associated with neuroinflammation
and neurodegeneration (Neurofilament light chain NfL, and
Tau protein) were measured by Simoa assay via commercial
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lab, QuanterixTM (Lexington, MA, United States, https://www.
quanterix.com/). Viral load (VL) from each HIV+ participant
was measured via Roche COBAS 8800 System with a lower limit
of detection of 20 copies/ml. CD4+ count was obtained via
flow cytometric immunophenotyping at the Clinical Laboratory
Improvement Amendments (CLIA), certified clinical lab at the
University of Rochester.

Neuropsychological Assessments
The neurocognitive evaluation was performed by trained
staff and supervised by a clinical neuropsychologist. Tests of
Executive Function (Trailmaking Test Parts A & B, Stroop
Interference task), Speed of Information Processing (Symbol
Digit Modalities Test and Stroop 2 Color Naming), Attention
and Working Memory [CalCAP(CRT4) and WAIS-III Letter-
Number Sequencing], Learning [Rey Auditory Verbal Learning
Test AVLT (trials 1–5), Rey Complex Figure Test Immediate
Recall], Memory (Rey Auditory Verbal Learning Test RAVLT
Delayed Recall, Rey Complex Figure Test Delayed Recall),
and Motor (Grooved Pegboard, left and right hand) were
administered at each visit. Premorbid intellectual functioning
ability was estimated via WRAT-4 Reading at the baseline
visit only. Raw scores were converted to z-scores using test
manual norms but the z-scores were cut off at ±3 standard
deviations (SD) above and below the mean values. Cognitive
domain scores were created by averaging the z-scores of tests
within each domain. A total summary score was calculated by
summing the z-scores of the six cognitive domains measured
(Executive Function, Speed of Information Processing, Attention
and Working Memory, Learning, Memory, and Motor). HAND
diagnoses were determined for each participant according to the
Frascati criteria (49). Participants were accordingly defined as
either within normal limits (WNL) or cognitively impaired (CI)
[i.e., participants having asymptomatic neurological impairment
(ANI) or minor neurocognitive impairment (MND)]. The
ANI was defined as neuropsychological impairment (>1 SD
below the demographically appropriate normative mean) in
2 or more cognitive domains with no functional decline
(as measured by the Instrumental Activities of Daily Living
Scale), while mild neurocognitive disorder (MND) was defined
as neuropsychological impairment in two or more cognitive
domains with mild functional decline (49).

Image Acquisition
All participants were scanned on a 3 T MRI scanner
(MAGNETOM Trio, Siemens, Erlangen, Germany) equipped
with a 32-channel head coil.

Anatomical Imaging
For the purpose of segmentation and identification of the
anatomical landmarks, T1-weighted (T1w) images were acquired
using a 3D magnetization prepared rapid acquisition gradient-
echo (MPRAGE) sequence with Inversion Time (TI)= 1,100ms,
Repetition Time (TR) = 2,530ms, Echo Time (TE) = 3.44ms,
Flip Angle = 7, Field of View (FOV) = 256 × 256, GRAPPA
factor= 2, number of average= 1, number of slices= 192, voxel

size = 1.0 × 1.0 × 1.0 mm3, and total time of acquisition (TA)
was 5min 52 s.

Diffusion Tensor Imaging
Diffusion-weighted images (DWI) were acquired using a single-
shot spin echo echo-planar imaging (SE-EPI) sequence with 60
non-collinear diffusion-encoded images (b = 1,000 s/mm2), 10
non-diffusion-weighted reference images (b = 0 s/mm2), TR =

8,900ms, TE = 86ms, FOV = 256 × 256, GRAPPA factor = 2,
number of slices= 70, number of volumes= 61, voxel size= 2.0
× 2.0 × 2.0 mm3, TA = 10min 51 s. In order to correct for EPI
distortions, a double-echo gradient echo field map sequence was
also acquired (TR = 400ms; TE = 5.19ms, FOV = 256 × 256,
flip angle = 60, number of slices = 70, voxel size = 2.0 × 2.0 ×

2.0 mm3, TA= 3min 28 s).

Image Preprocessing
All MRI images were visually inspected for any severe artifacts.
DWI images were corrected for eddy current-induced distortion,
susceptibility-induced distortion, and motion correction using
TOPUP and EDDY tools in FSL [https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/; (50, 51)].

Fixel-Based Analysis
FBA was performed using the recommended pipeline in MRtrix3
(www.mrtrix.org, version 3.0.2) (36, 52). Briefly, DWI images
were up-sampled by a factor of 2 in all three dimensions using tri-
cubic interpolation. The fiber orientation distribution functions
(FODs) within each voxel were computed in the following
way: response functions for single-fiber WM, GM, and CSF
were estimated from single-shell data using an unsupervised
method (53). Single-shell three-tissue CSD (SS3T-CSD) was then
performed to obtain FODs forWM, GM, and CSF compartments
(54) using MRtrix3Tissue (https://3Tissue.github.io), a fork of
MRtrix3 (52). A study-specific template was then created by
spatial normalization of subjects using symmetric diffeomorphic
non-linear transformation FOD-based registration (55). One
group-averaged FOD template was created for cross-sectional
analysis, including 20 HIV+ and 20 HIV– individuals. The FOD
image for each subject was then registered to the template using
FOD-guided non-linear registration.

A tractogram was then generated using whole-brain
probabilistic tractography on the FOD population template (52).
Twenty million streamlines were generated and subsequently
filtered to two million streamlines using spherical deconvolution
informed filtering of tractograms (SIFT) to reduce reconstruction
biases (56). Fixel-specific measures of fiber density (FD) and
fiber bundle cross section (FC) were calculated within each voxel.
The log of FC (logFC) was calculated to ensure FC values were
centered around zero and normally distributed. A combined
measure, FDC, was also generated by multiplying FD and FC.
FD, logFC, and FDC for all fixels within a given ROI were then
averaged, determined using a fixel mask for the major fiber
bundles, using the Johns Hopkins University (JHU) DTI-based
WM atlas.
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DTI Preprocessing
DTI metrics (FA and MD) were computed using DTIFIT in
FSL (57). Free water corrected DTI (fwcDTI) metrics (FAT and
MDT) were computed with a bi-tensor model from the DWI
using a previously described algorithm (58) and the processing
was performed using Nextflow pipeline (59) with all software
dependencies bundled in a Singularity Container (60).

Statistical Analysis
Participant Characteristics
Differences in clinical parameters between HIV+ and HIV–
cohorts at baseline were examined using two-way independent
t-tests at the α = 0.05 significance level. Statistical analysis of
demographic data was computed in R 3.6.2 (R Foundation for
Statistical Computing, Vienna, Austria).

Univariate comparisons between two independent groups
were conducted by either two-groupWelch’s unequal variances t-
test (for continuous variables) or Fisher exact test (for categorical
variables). Pearson correlation test was used to test the univariate
associations between two continuous variables. A p < 0.05
was considered statistically significant for a single hypothesis
testing problem. For inferential problems that involved multiple
hypotheses, Benjamini–Hochbergmultiple testing procedure was
used to control the false discovery rate (FDR) at α < 0.05
level (61).

Fixel-Based Analysis

Whole-Brain Fixed Based Analysis
Statistical analyses of images were performed in MRtrix3
(www.mrtrix.org, version 3.0.2) (52). All WM fixels were

compared between HIV+ and HIV– individuals. Group
comparisons were performed for FD, logFC, and FDC at each
fixel using a General Linear Model (GLM), with age and sex
included as covariates. Connectivity-based fixel enhancement
(CFE) and non-parametric permutation testing over 5,000
permutations were used to identify significant differences in fixel-
based metrics (62). Family-wise error (FWE)-corrected p-values
are reported to account for multiple comparisons. Significant
fixels (FWE corrected p < 0.05) were visualized using the
mrview tool in MRtrix3. Fixels were mapped to streamlines
of the template-derived tractogram, only displaying streamlines
corresponding to significant fixels. Significant streamlines were
colored by the effect size, presented as a percentage relative
to HIV– individuals or by streamline direction (left–right, red;
inferior–superior, blue; anterior–posterior, green).

Region of Interest Analysis
In addition to whole-brain analysis, region of interest (ROI)
analysis was also performed for fixel-based metrics (FD, logFC,
and FDC), DTI metrics (FA and MD), and fwcDTI metrics
(FAT and MDT) along specific WM tracts using the JHU DTI-
based WM atlas. ROIs were chosen to reflect canonical WM
pathways using previous studies investigating WM changes in
HIV infection (20, 21). The following ROIs were included
in the analyses: the left and right posterior limb of internal
capsule (PLIC), the left and right superior corona radiata
(SCR), the left and right cerebellar peduncles (CP), the left
and right inferior cerebellar peduncle (ICP), and the middle
cerebellar peduncle (MCP). These regions were chosen a priori
based on the findings from whole-brain FBA. The mean

FIGURE 1 | Fiber tract-specific reductions in HIV+ compared to HIV– using whole-brain FBA. Significant fixels (FWE-corrected p-value) between HIV+ and HIV–

groups displayed as the percentage decrease in the HIV+ group compared to healthy controls, displayed in coronal slices. FD, fiber density; logFC, fiber bundle cross

section; FDC, fiber density and cross section.

Frontiers in Neurology | www.frontiersin.org 5 November 2021 | Volume 12 | Article 725059

http://www.mrtrix.org
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Finkelstein et al. FBA and fwcDTI in HIV

value for FD, logFC, and FDC was computed for each ROI
and compared across groups. Correlation analyses were also
performed to evaluate the relationship between fixel-based
metrics and cognitive z-scores. Independent t-tests with multiple
comparison corrections were used to compare mean logFC,
FD, and FDC between cohorts over the ROIs. Correlations
were performed using the non-parametric Spearman’s rho and
a linear model with age and sex as covariates. Benjamini–
Hochberg procedure was applied to control the FDR at α < 0.05
significance level.

Tract Based Spatial Statistics (DTI and fwcDTI)
FSL-based TBSS was performed to investigate the FA, free
water corrected FA (FAT), MD, and free water corrected MD
(FAT) changes along WM tracts (24). Group comparisons were
performed using FSL Randomize for 5,000 permutations.
Threshold-free cluster enhancement (TFCE) (63) was
used for multiple comparison correction at the α = 0.05
significance level.

Machine Learning Classification
Machine learning classification was performed using FBA
and fwcDTI metrics for HIV+ individuals. Classifiers were
implemented in scikit-learn (64). Mean values within an ROI
that were determined to be significant between HIV+ and HIV–
subjects were used as input, corresponding to 12 input features.
Instances were standardized prior to training and dimensionality
reduction was performed using kernel principal component
analysis (kPCA) to two features. Four binary classifiers were
used to evaluate the specificity of both fixel-based metrics and
fwcDTI metrics in their ability to distinguish between WNL
and CI. In this study, we implemented random forest, naïve
Bayes, linear discriminant analysis (LDA), and adaptive boosting
(AdaBoost) classifiers. All classifiers were optimized using a
grid search algorithm with a stratified five-fold cross-validation.
Classifiers were evaluated using the weighted average (across
classes) for precision, recall, and f1-score. Precision, also known
as the positive predictive value (PPV), is defined as the number
of instances classified as positive, divided by the total number
of positive (CI) instances. Recall, or sensitivity, is the number of
instances accurately classified as positive (true positives), divided
by the total number of instances classified as positive. The F-score
is the harmonic mean of precision and recall. Receiver operating
characteristic (ROC) curves and precision-recall curves (PRC)
were also evaluated to assess the performance of these classifiers.
Given the small dataset, results are reported as the average
across five-fold.

RESULTS

Participant Characteristics
Clinical characteristics, demographic information, and cognitive
scores for HIV+ and HIV– individuals are presented in Table 1.
HIV+ and HIV– cohorts did not significantly differ in age or
ethnicity. The total summary z-score, attention z-score, and
motor z-score were found to be significantly lower in the HIV+
cohort (p < 0.05; Supplementary Figure S1).

TABLE 2 | Linear regression model comparing the FBA metrics in HIV+ and HIV–

individuals, with age and sex included as covariates.

ROI HIV+ HIV– Estimate Std error p-value Effect size

FD

Right PLIC 0.601 0.614 −0.020 0.006 0.03 0.46

Left PLIC 0.610 0.619 −0.013 0.007 0.28 0.29

Left SCR 0.352 0.356 −0.004 0.003 0.70 0.27

Right SCR 0.352 0.355 −0.001 0.004 0.81 0.17

Right ICP 0.402 0.406 0.007 0.012 0.81 0.08

Left ICP 0.427 0.427 0.012 0.011 0.72 0.01

MCP 0.448 0.443 0.004 0.009 0.81 0.14

logFC

Right PLIC −0.032 −0.007 −0.069 0.019 <0.001 0.30

Left PLIC −0.028 −0.011 −0.067 0.019 <0.001 0.19

Left SCR 0.025 0.023 −0.043 0.019 0.03 0.03

Right SCR 0.026 0.029 −0.046 0.019 0.03 0.04

Right ICP −0.017 0.017 −0.077 0.017 <0.001 0.43

Left ICP −0.013 0.024 −0.075 0.016 <0.001 0.46

MCP 0.068 0.110 −0.094 0.021 <0.001 0.40

FDC

Right PLIC 0.585 0.617 −0.065 0.015 <0.001 0.45

Left PLIC 0.599 0.621 −0.059 0.015 <0.001 0.32

Left SCR 0.361 0.367 −0.023 0.009 0.02 0.15

Right SCR 0.362 0.368 −0.020 0.010 0.06 0.16

Right ICP 0.396 0.415 −0.022 0.129 0.11 0.36

Left ICP 0.420 0.434 −0.019 0.012 0.12 0.27

MCP 0.485 0.502 −0.043 0.016 0.02 0.24

Estimate is average difference between HIV+ and HIV– for which HIV– is taken as the

reference group (two-tailed t-test, FDR corrected at the α = 0.05 significance level).

PLIC, posterior limb of internal capsule; SCR, superior corona radiate; ICP, inferior

cerebellar peduncle; MCP, middle cerebellar peduncle. Significant results are shown as

bold. p-values are false discovery rate (FDR)-corrected.

Whole-Brain Fixel-Based Analysis
Whole-brain FBA is shown in Figure 1. Streamlines
corresponding to significant fixels (FWE corrected p <

0.05) are represented as the percentage decrease in HIV+
individuals compared to HIV– individuals for FD, logFC, and
FDC. Macrostructural decreases (measured via logFC) of up
to 15% were observed along specific fiber tracts. Specifically,
the PLIC and MCP were affected bilaterally. The right SCR was
also affected. Similar findings were observed for FD, though
much less pronounced. Moreover, decreases in FD were more
localized to the PLIC. FDC exhibited similar patterns of micro-
and macro-structural degeneration, with a larger effect size
(Table 2). Compared to HIV– individuals, HIV+ individuals
had a 35% decrease in FDC in the PLIC bilaterally as well as the
right SCR. Figure 2 shows streamlines displayed and colored
based on orientation for significant decreases in logFC in HIV+
individuals. Figure 3 shows a coronal view of fiber tract-specific
significant fixels, and the inset shows a zoomed-in area indicating
regions with crossing fibers around cerebellar peduncles (CP)
and MCP.
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FIGURE 2 | Fiber tract-specific logFC decreases in HIV infection, colored by direction. Streamlines were cropped from the template tractogram to include only

significant fixels (FWE-corrected p < 0.05) for which the logFC metric is decreased in the HIV+ compared to HIV– individuals. Significant streamlines are shown across

coronal slices and colored by direction (anterior–posterior, green; superior–inferior, blue; left–right, red).

Region of Interest Analysis
Table 2 lists the mean and standard errors for several ROIs
between the participants for the FBAmetrics FD, logFC, and FDC
for HIV+ and HIV– individuals. Linear models were further
implemented to evaluate the relationship between fixel-based
metrics and cohorts, including age and sex as covariates. We
found a significant reduction in several ROIs in FBA metrics
in HIV+ than in HIV– individuals. Linear regression models
comparing DTI and fwcDTI metrics between HIV+ and HIV–
cohorts are provided in Supplementary Table S1. None of the
ROIs show any significant differences between the cohorts for the
DTI and fwcDTI metrics.

Figures 4A–C shows scatterplots examining the relationship
between the attention domain z-scores and FBA metrics (FD,
logFC, and FDC) for the right and left of PLIC and SCR. For
HIV+ individuals, the right PLIC was found to be significant
for FD (ρ = 0.33, p = 0.036), FDC (ρ = 0.44, p = 0.0039),
and logFC (ρ = 0.4, p = 0.0085) while the right and left SCR
were found to be significant in FDC (ρ = 0.43, p = 0.0048, and
ρ = 0.38, p = 0.014, respectively). On the other hand, none

of the ROIs for any metrics were significantly correlated with
attention z-scores in the HIV– individuals. Figure 4D illustrates
the corresponding ROIs.

Additionally, the right PLIC was also found to be significantly
correlated with tau protein in HIV+ individuals (ρ = 0.32,
p = 0.043; Supplementary Figure S2). However, no significant
associations were observed between FBA metrics and NfL.

Tract-Based Spatial Statistics (DTI and
fwcDTI)
No significant differences between HIV+ and HIV– cohorts were
observed in FA and FAT using TBSS (Supplementary Figure S3).
TBSS of FAT, while not significant, highlighted areas that were
decreased in HIV+ individuals compared to HIV– individuals.
It should be noted that in our study, the TBSS figures
(Supplementary Figure S3) report regions found for p < 0.5.
None of the regions survived for significance thresholding for
p < 0.05.
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FIGURE 3 | Fiber tract-specific significant fixels. Coronal slice showing fixels that were significantly decreased (FWE-corrected p-values) in HIV+ individuals compared

to HIV–. The zoomed-in area illustrates differences and p-values assigned to individual fixels in regions with crossing-fibers, around the cerebral peduncles (CP) and

middle cerebellar peduncles (MCP). Fixels are colored by FWE-corrected p-value.

Machine Learning Classification
Overall, we found that the use of fixel-based metrics resulted in
a higher precision and recall compared to when using fwcDTI
metrics. The adaptive boosting (AdaBoost) and random forest
methods resulted in the highest recall and f1-score, and the
highest precision was achieved with AdaBoost. Figure 5 shows
the ROC and PRC curves using an AdaBoost multiclass classifier.
Table 3 represents the sample averaged precision, recall, and f1-
scores for other classifiers contrasting specificity of FBA and
fwcDTI using five-fold cross-validation. In addition, the ROC
and PRC curves for LDA, random forest, and naïve Bayes are
provided in the Supplementary Figure S4. Decision boundaries
for each classifier are also provided in Supplementary Figure S5.

DISCUSSION

In this study, we evaluated fiber tract-specific WM changes in
HIV infection using FBA, DTI, and fwcDTI metrics. The major
findings of this work were as follows: (a) HIV+ individuals
exhibit axonal degradation within the PLIC, CP, and SCR as
revealed by FBA. (b) Similar trends were observed using TBSS
of FA and FAT. In contrast to FA, FAT showed trends toward

more areas that were decreased in HIV+ individuals compared
to HIV– individuals. (c) FBA metrics in PLIC and SCR exhibit
significant positive associations with attention cognitive z-scores
in HIV+ individuals. (d) Machine learning classifiers for FBA
reliably distinguished between cognitively normal patients and
those with cognitive impairment in patients with HIV infection.

To the best of our knowledge, this is the first study
investigating FBA and TBSS of fwcDTI metrics (FAT and MDT)
in HIV-infected individuals. The work presented here provides
a comprehensive and robust framework for evaluating brain
injury (and secondary chronic inflammation) in the setting of
HIV. Chronic neuroinflammation results in damage to the CNS,
alteration of the blood–brain barrier (BBB), and chronic edema
(65). Changes in whole-brain FBAwere found along distinct fiber
tracts associated with motor and attention cognitive domains. In
particular PLIC, CP, MCP, and SCR were affected and exhibited
reduced fiber density and fiber bundle cross section in HIV+
individuals compared to HIV– individuals. ROI-based analysis
revealed lower mean fixel-based metrics in the HIV+ cohort
compared to the HIV– cohort, consistent with those obtained
from the whole-brain FBA results.

Previous work using DTI has shown that FA is decreased in
corticospinal tract and that MD is increased in the corticospinal
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FIGURE 4 | Scatterplots show attention z-score as a function of FBA metrics: (A) fiber density (FD), (B) log of fiber cross section (logFC), (C) fiber density and cross

section (FDC), (D) JHU white matter atlas and corresponding regions of interest. Only significant regions are shown. Solid lines represent linear fit, and shaded areas

represent the 95% confidence interval. IC, internal capsule (yellow); CR, corona radiata (teal); CR, corona radiata.

tract (CST) bilaterally (23). However, FW contamination results
in fitting each voxel with an isotropic tensor, leading to an
erroneous conclusion that FA is decreased in the presence
of edema (12). Consistent with previous work, our findings
suggest that axonal degeneration occurs only in fixels associated
with the CST in HIV infection, but accounting for edema and
FW contamination. Moreover, FBA is a more robust method
to evaluate WM structural integrity compared to TBSS, with
or without FW correction. This is likely because constrained
spherical deconvolution is dependent on the response function,
which is estimated separately and independently for each tissue
type, ultimately better modeling the FOD (48).

In addition, our findings are consistent with previous
work investigating WM in HIV infection, and with the
clinical presentation of HAND (2). However, the present study

emphasizes FBA to provide a more robust means to evaluate
WM structural integrity independent of partial volume effects
and FW contamination. Although we only saw trends using
TBSS of fwcDTI, it is reasonable to implement this approach to
DTI data. Clinically, HAND is a spectrum of disorders in which
patients may present with difficulties in cognition, particularly
declines in psychomotor processing, attention, and memory.
Of interest, the role of the corona radiata in motor pathways
is well-established; however, recent studies have suggested that
the corona radiata is related to attention as well (66). As a
major WM intersection, it is possible that damage to the corona
radiata, observed in this study, affects both corticospinal fibers as
well as association fibers passing through the SCR, contributing
to the diffuse cognitive changes seen in HAND, particularly
psychomotor slowing. Additionally, the default mode network

Frontiers in Neurology | www.frontiersin.org 9 November 2021 | Volume 12 | Article 725059

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Finkelstein et al. FBA and fwcDTI in HIV

FIGURE 5 | Evaluation of classification results using AdaBoost classifier. (A) Receiver operating characteristic (ROC) curve for cognitively normal compared to

cognitively impaired (CI). (B) Precision vs. recall curve (PRC) for cognitively normal compared to CI. Solid line represents the mean curve using five-fold

cross-validation. Shaded areas represent ± 1 standard deviation. AUC reported as mean ± standard deviation across five-fold.

TABLE 3 | Precision, recall, and F1-scores for five different classifiers for FBA and

fwcDTI metrics reported using five-fold cross-validation in HIV+ subjects only.

Classifiers Metrics Precision Recall F1-score

LDA FBA 0.62 (0.067) 0.60 (0.054) 0.58 (0.054)

fwcDTI 0.50 (0.045) 0.43 (0.049) 0.46 (0.049)

Random forest FBA 0.62 (0.076) 0.77 (0.045) 0.76 (0.049)

fwcDTI 0.53 (0.040) 0.53 (0.045) 0.53 (0.045)

naïve Bayes FBA 0.62 (0.067) 0.58 (0.044) 0.55 (0.045)

fwcDTI 0.38 (0.045) 0.38 (0.049) 0.38 (0.045)

AdaBoost FBA 0.80 (0.049) 0.77 (0.045) 0.76 (0.049)

fwcDTI 0.48 (0.058) 0.46 (0.049) 0.47 (0.049)

Scores reported as weighted average across three classes. FBA, fixel-based analysis;

fwcDTI, free water corrected diffusion tensor imaging; LDA, linear discriminant analysis.

Values are reported as mean (SE). Highest performance is shown as bold.

(DMN) has been implicated in HIV and HAND (9). The DMN
is primarily composed of the medial prefrontal cortex, posterior
cingulate cortex, precuneus, and angular gyrus. Moreover, the
DMN, a task-negative network, is associated with attention
and memory. Thus, it might be possible that degeneration of
association fibers passing through the corona radiata and internal
capsule disrupt connections to the DMN (67).

We also investigated the relationship between fixel-based
metrics (i.e., FD, logFC, and FDC) and inflammatory blood
markers including CD4, VL, and neuronal markers NfL, and tau
protein in HIV+ individuals. The PLIC was the only structure
significantly correlated with tau protein (ρ = 0.32, p= 0.043). No
other bloodmarkers were significantly correlated with fixel-based
metrics. Tau protein is a component of the neurofibrillary tangles
most often associated with Alzheimer’s disease (68). However,
increasing evidence suggests that chronic neuroinflammation in
the setting of HIV infection predisposes HIV+ individuals to
premature neurodegeneration as measured by tau protein (69).

Lastly, four machine learning classifiers were used to classify
cognitive status in HIV+ individuals using fixel-based and free
water corrected DTI metrics. In general, we observed that fixel-
based metrics results in improved performance as measured with
precision, recall, and f1-score, compared to fwcDTI metrics.
Additionally, ensemble machine learning methods (random
forest and AdaBoost) resulted in higher precision, recall and
f1-score as compared with discriminant methods (LDA and
naïve Bayes). This is likely because ensemble methods utilize
bootstrapping and bagging methods that lower the variance
of the overall model. However, as suggested by the decision
boundaries in Supplementary Figure S5, it is possible that
these findings are due to overfitting given the small sample
size, and should be interpreted with caution. Additionally, we
observed that AdaBoost resulted in a higher precision than
the random forest classifier, likely because in AdaBoost, weak
classifiers are built sequentially propagating the errors from
prior weak learners, whereas in random forest algorithms the
decision trees are grown in parallel and as such are independent
from each other. Inclusion of other relevant imaging metrics
and biomarkers is likely to further improve prediction of
developing HAND.

This study has some limitations. First, only one of the HIV+
subjects in the study had mild neurological disorder (MND);
therefore, our study was mostly composed of cognitively normal
subjects and patients with ANI. However, MND and ANI were
combined and categorized as CI. Second, the proportion of male
and female subjects was not equal in the HIV+ cohort. However,
FBA and DTI metrics were not significantly different in males
vs. females in our HIV– participants, which had a more equal
representation. Though sex was used as a covariate in between-
group analyses, we cannot rule out this possible bias in our
findings. Third, as noted previously, the FD is dependent on the
b-value, and a higher correspondence between the intra-axonal
volume occurs at higher b-values (b >2,000 s/mm2). Thus, it
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is important to note that at b = 1,000 s/mm2, the AFD may
reflect the overall WM density and not just the intra-axonal
volume fraction (44). Fourth, it is worth noting that given the
small size of our dataset, classification results obtained here are
preliminary and need to be further validated in a larger dataset.
However, utilization of stratified sampling, standardization,
cross-validation, and boosting algorithms have been shown
to obviate overfitting when dealing with very small datasets
(70, 71). Future research will investigate the utility of fixel-
based metrics in evaluating HIV-associated neuroinflammation
longitudinally and developing prognostic machine learning
models for predicting HAND longitudinally.

CONCLUSIONS

Our findings suggest that FBAmay be reflective ofWM structural
integrity in the setting of chronic neuroinflammation in HIV
population. Our results indicate that degeneration occurs along
specific fiber tracts, which manifests as both macrostructural and
microstructural alterations, particularly in the internal capsule
and corona radiata in HIV+ individuals. Moreover, our findings
are consistent with the clinical presentation of HAND, which
often presents as psychomotor slowing with impaired attention,
memory, and fine motor function. TBSS-based analysis of free
water corrected and uncorrected DTI metrics showed decreasing
trends between the HIV+ and HIV– control group. However,
these were not significant, suggesting lower sensitivity for the
level of pathology in the cohort under investigation compared
to FBA. Therefore, FBA may provide a sensitive biomarker to
monitor axonal degeneration in individuals with HIV infection.
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Supplementary Figure S1 | Boxplots of cognitive domain Z-scores by

HIV-status. Worse scores (negative Z-scores) for attention, memory, and overall

cognitive summary score were observed in the HIV+ individuals compared to HIV

uninfected individuals. Significant group differences are shown with p < 0.05.

Supplementary Figure S2 | Relationship between fiber density and

cross-section (FDC) and Tau protein in HIV+ cohort. Only significant regions

shown. Solid lines represent linear fit, and shaded areas represent the 95%

confidence interval. IC, internal capsule.

Supplementary Figure S3 | Group comparisons of (A) FA, (B) FAT, and (C) MDT

using TBSS. Statistical maps thresholded at 0.5 (not significant) show regions

where FA and FAT are reduced in HIV+ individuals compared to HIV– individuals.

FA, fractional anisotropy; FAT, free water corrected fractional anisotropy; Blue

represents reduced FA or FAT in the HIV+ compared to HIV– individuals.

Supplementary Figure S4 | Evaluation of classification results using (A) LDA, (B)

random forest, and (C) naïve Bayes. Left column: receiver operating characteristic

(ROC) curve for cognitively normal compared to cognitively impaired (CI). Right

column: precision-recall curve (PRC) for cognitively normal compared to CI. Solid

line represents the mean curve using five-fold cross validation. Shaded areas

represent ± 1 standard deviation. AUC reported as mean ± standard deviation

across five-folds.

Supplementary Figure S5 | Decision boundaries of classifiers (A) LDA, (B) Naïve

Bayes, (C) Random Forest, and (D) AdaBoost. Shaded red area indicates region

where instances are classified as cognitively normal, and gray region indicates the

area where instances are classified as cognitively impaired (CI). The border

between these two regions represents the decision boundary for each classifier.

PC1: first principal component, PC2: second principal component.
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