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Abstract: Lipid peroxidation (LPO) and hyper-ferritinemia are involved in inflammatory responses.
Although hyper-ferritinemia is a characteristic of AOSD, its link to LPO remains unclear. We
investigated the association between LPO and ferritin expression, and evaluated the relationship
between LPO-related metabolites and inflammatory parameters. Mean fluorescence intensity (MFI)
of LPO (C11-Biodipy581/591)-expressing PBMCs/monocytes in AOSD patients and healthy control
(HC) subjects was determined by flow-cytometry analysis. Expression of ferritin and cytokines on
PBMCs/macrophages was examined by immunoblotting. Plasma levels of LPO-related metabolites
and cytokines were determined by ELISA and the MULTIPLEX platform, respectively. LPO MFI
on PBMCs/monocytes were significantly higher in patients (median 4456 and 9091, respectively)
compared with HC (1900, p < 0.05, and 4551, p < 0.01, respectively). Patients had higher ferritin
expression on PBMCs (mean fold, 1.02) than HC (0.55, p < 0.05). Their ferritin expression levels
on PBMCs stimulated with LPO inducers erastin or RSL3 (2.47 or 1.61, respectively) were higher
than HC (0.84, p < 0.05, or 0.74, p < 0.01). Ferritin expression on erastin-treated/IL-1β-treated
macrophages from patients were higher than those from HC (p < 0.001). The elevated levels of LPO-
related metabolites, including malondialdehyde and 4-hydroxyalkenals, were positively correlated
with disease activity scores, suggesting LPO involvement in AOSD pathogenesis. Increased ferritin
expression on PBMCs/macrophages stimulated with LPO inducers indicates a link between LPO
and elevated ferritin.

Keywords: lipid peroxidation (LPO); LPO inducer; LPO-related metabolites; ferritin; adult-onset
Still’s disease (AOSD)

1. Introduction

Adult-onset Still’s disease (AOSD) is characterized by fever, rash, arthralgia or arthritis,
liver dysfunction, multi-systemic involvement, and increased acute-phase reactants, includ-
ing hyper-ferritinemia [1,2]. AOSD is a rare but important cause of fever of unknown ori-
gin [3]. The reported incidence rates of AOSD were 0.16, 0.22, and 0.4 per 100,000 persons
in west France [4], Japan [5], and northern Norway [6], respectively. Aberrant immune
system activation may lead to increased pro-inflammatory cytokines, including interleukin
(IL)-1β, IL-6, IL-18, and tumor necrosis factor (TNF)-α [7–10]. Therefore, biologics target-
ing IL-1, IL-6, or IL-18 have been proven effective in treating AOSD [10–15]. Given its
clinical phenotypes and the absence of detectable autoantibodies, AOSD is considered an
autoinflammatory disease (AID) [16] with inflammasomes’ dysregulation [17,18]. We have
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recently revealed the pathogenic roles of NOD, LRR, and pyrin domain-containing protein
3 (NLRP3) inflammasome signaling in AOSD [19].

Hyper-ferritinemia, a significant feature of several autoimmune [20] and autoinflam-
matory diseases [21], may not only reflect an acute-phase response but may play a critical
role in the inflammation [22] and immunomodulation in these diseases [23]. Ferritin is
a major intracellular iron storage protein composed of 24 heavy (H)- and light (L)-chain
subunits, and the ratio between these two subunits may differ depending on tissue types
and physiologic statuses [24]. Levi et al. demonstrated that L-chain apoferritin (FTL) has a
higher capacity than H-chain apoferritin (FTH) to induce iron-core nucleation, whereas
H-chain ferritin is superior in promoting Fe++ oxidation [25]. Beyond its iron storage
role, ferritin participates in the pathogenesis of inflammation [26] and may stimulate and
amplify the inflammatory processes [27]. FTH displays both immunomodulatory and pro-
inflammatory functions and induces the expression of different inflammatory mediators,
such as IL-1β [28]. Exogenous FTH stimulation may regulate NLRP3 inflammasome sig-
naling and IL-1β production on macrophages [29]. Serum ferritin levels were found to be
correlated with disease activity and macrophage activation [21,30]. Besides, Thomas et al.
have shown that ferritin is a good source of iron for catalysis of lipid peroxidation (LPO) [31].
Daily supplementation with iron may increase LPO in young women [32], and an excess
of free Fe++ can promote the production of radical oxygen species (ROS) [33]. Therefore,
cellular iron metabolism, including in iron import, storage, utilization, and export, should
be strictly regulated [34].

Oxidative stress is defined as the imbalance between the production of reactive oxygen
species (ROS) and antioxidants, and excess ROS production may induce LPO and cause
cell death through apoptosis, autophagy, and ferroptosis [35]. Ferroptosis is an iron-
dependent form of regulated cell death, distinct from apoptosis, autophagy, and other
forms of cell death [36]. Cysteine-glutamate transporter System Xc (xCT), a heterodimer
transmembrane protein, enhances cysteine uptake, generates glutathione biosynthesis,
and may act as a cofactor for glutathione peroxidase 4 (GPX4) [37]. GPX4 can combine
with GSH to co-localize lipid peroxides in cells and then prevent ferroptosis. A class of
ferroptosis inducers, such as erastin, reduces the concentration of intracellular cystine by
inhibiting xCT, while RSL3 induces ferroptosis by inhibiting GPX4 [38]. Increasing evidence
indicates that ferroptosis is associated with reduced detoxification of lipid peroxides by
GPX4, and the peroxidation of polyunsaturated fatty acids (PUFAs) was considered a key
driver of ferroptosis [36]. Besides, malondialdehyde (MDA) has been widely used as a
convenient biomarker for lipid peroxidation because of its facile reaction with thiobarbituric
acid (TBA) [39] and mediators of inflammatory responses [40]. The 4-hydroxyalkenals
(4-HNE), an aldehyde product of membrane lipid peroxidation, is nowadays considered as
a major bioactive marker of lipid peroxidation because it is produced in relatively large
amounts [39,41]. However, there is not any data regarding LPO stress or LPO-related
metabolites in AOSD.

This pilot study investigates the differences in LPO levels in circulating monocytes
and peripheral blood mononuclear cells (PBMCs) between AOSD patients and healthy
control (HC) subjects. We also examine the effect of LPO inducers, including erastin and
RSL3, on the protein expression levels of FTH, FTL, pro-IL-1β, IL-1β, and IL-18 on PBMCs
or macrophages derived from AOSD patients and HC subjects, respectively. Besides, we
compare the plasma levels of MDA and 4-HNE, the LPO products, between AOSD patients
and HC subjects and then evaluate the correlation between the levels of LPO-related
metabolites and disease activity scores or inflammatory parameters in AOSD patients.

2. Materials and Methods
2.1. Patients and Study Design

In this prospective study, 25 AOSD patients who fulfilled the Yamaguchi criteria [42]
were enrolled consequently. Systemic disease activity was assessed with a modified
Pouchot score [43]. This systemic activity score (range 0–12) assigns one point to each of
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12 manifestations: fever, evanescent rash, sore throat, arthralgia or arthritis, myalgia, pleuri-
tis, pericarditis, pneumonitis, lymphadenopathy, hepatomegaly or abnormal liver function,
elevated leukocyte count ≥15,000/mm3, and serum ferritin levels >3000 µg/L. Active
AOSD was defined as systemic activity scores of at least 4 [44]. All patients were treated
with corticosteroids with or without the non-steroidal anti-inflammatory drugs (NSAIDs)
at an active status. Besides, the disease-modifying anti-rheumatic drugs (DMARDs) pre-
scribed included methotrexate (n = 16), hydroxychloroquine (n = 18), azathioprine (n = 4),
cyclosporine (n = 7), and tocilizumab, an IL-6 receptor inhibitor (n = 4). A higher propor-
tion of active AOSD patients received cyclosporine (5, 35.7%) and tocilizumab (3, 21.4%)
compared with inactive patients (2, 18.2% and 1, 9.1%, respectively), but no statistical
significance was found. Fourteen healthy volunteers who had no rheumatic disease were
enrolled as control subjects. This study was approved by the Institutional Review Board
of the Chinese Medicine University hospital (CMUH109-REC1-108, Date of approval:
8 September 2020), and informed consent was obtained from each participant according to
the Declaration of Helsinki.

2.2. Quantitation of C11-BODIPY581/591 Levels Using Flow Cytometry Analysis

PBMCs were immediately isolated from whole blood using the Ficoll-PaqueTM PLUS
(GE Healthcare Biosciences, Chicago, IL, USA) density gradient centrifugation, and then
reacted with 500 µL of RBC Lysis Solution (BD Biosciences, San Jose, CA, USA) for 5 min to
lyse red blood cells. PBMCs (2 × 105 cells) were stained with 2 µM of C11-BODIPY581/591

(Life Technologies-Invitrogen, Carlsbad, CA, USA), a lipophilic ROS-sensitive probe in-
dicating LPO (Thermo Fisher Scientific, Inc., Waltham, MA, USA), for 30 min and then
washed with phosphate-buffered saline (PBS). The cells were stained with Allophyco-
cyanin (APC)-conjugated anti-CD14 monoclonal antibody (mAb) (BD Biosciences, San
Jose, CA, USA), according to the manufacturer’s protocol and the described technique [45].
Fluorescent antibodies, mouse IgG2ακ-APC (BD Biosciences, San Jose, CA, USA), were
used as isotype controls. The cells were centrifuged at 1800 rpm for 5 min, and then
the supernatant was discarded. After being resuspended with 200 µL of PBS, they were
analyzed by a BD FACSCelesta™ Flow Cytometer (BD Biosciences, San Jose, CA, USA).
The PBMCs were gated based on the dot-plots of forward scatter (FSC) and side scatter
(SSC), and then monocytes were included and analyses of CD14+ cells were performed.
To determine C11-BODIPY581/591 expressions, we set the gating mode using unstained
samples of PBMCs by FSC and SSC of light as background fluorescence. For analyzing
the percentage of C11-BODIPY581/591 on CD14+ cells, the gate was set to determine CD14+

cells, and C11-BODIPY581/591 levels were calculated on the cell population. Data were ex-
pressed as the mean fluorescence intensity (MFI) or the percentages of C11-BODIPY581/591

expressions in circulating PBMCs or CD14+ cells (monocytes).

2.3. In Vitro Cell Studies

The PBMCs derived from active AOSD patients and HC subjects were rested for 1 h
in the completed culture RPMI 1640 medium (Thermo Fisher Scientific, Inc., Waltham,
MA, USA) with 10 mM of HEPES at 37 ◦C in an incubator, and then placed in culture
RPMI 1460 medium with 10 ng/mL of granulocyte macrophage-colony stimulating factor
(GM-CSF) (R&D Systems, Minneapolis, MN, USA) for 7 days to induce the macrophage
differentiation [46]. To examine the effect of LPO inducers, including erastin and RSL3, on
the expression of ferritin, FTL, FTH, IL-1β, and IL-18 on the PBMCs or macrophage isolated
from AOSD patients and HC subjects, cells were incubated with different treatments for
24 h.

The proteins were extracted with Cell lysis buffer (Cell Signaling Technology, Danvers,
MA, USA) supplemented with complete EDTA-free protease inhibitor cocktail (Roche) on
ice and then stored at −80 ◦C until use. The concentration of proteins was determined
by the BCA assay kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The proteins
(10 µg) were separated with 12.5% SDS-PAGE and then transferred on 0.45 µm PVDF
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membranes (PerkinElmer, Foster City, CA, USA). The membranes were blocked with 5%
skimmed milk in PBS containing 0.1% Tween-20 (Bionovas, Inc., Washington, DC, USA)
at room temperature for 30 min. Immunoblots were performed using specific primary
antibodies against anti-ferritin, anti-xCT, anti-GPx4, anti-FTL and anti-FTH antibodies
(Abcam, Cambridge, MA, USA), anti-pro-IL-1β and anti-IL-1β antibodies (NOVUS, Lit-
tleton, CO, USA), anti-IL-18 and anti-CD68 antibodies (Santa Cruz Biotechnology, Dallas,
Texas, USA), and anti-GAPDH antibody (Elabscience, Houston, TX, USA) at 4 ◦C overnight.
Immunoreactive bands were visualized using an enhanced chemiluminescence detection
system (Millipore, Billerica, MA, USA), and band intensity was determined by Image J
software. The protein expression levels of ferritin, FTL and FTH, CD68, pro-IL-1β, IL-1β,
and IL-18 were normalized to GAPDH.

2.4. Investigation of Cell Viability by WST-1 Assay

PBMCs from patients and HC subjects were seeded onto 96-well plates. Cells were
incubated with a ferroptosis inducer, including 20 µM of erastin (Sigma-Aldrich, St. Louis,
MO, USA) or 10 µM of RSL-3 (Sigma-Aldrich, St. Louis, MO, USA) for 24 h at 37 ◦C.
The cell viability of PBMCs was determined by the WST-1 assay as a cell proliferation
reagent (Merck Millipore, Temecula, CA, USA). After incubating the WST-1 reagent for 2 h,
absorbance was monitored at 440 nm using an ELISA reader.

2.5. Determination of Plasma Levels of Malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE)

Whole blood was collected in blood collection EDTA tubes (BD Biosciences, San Jose,
CA, USA), and the obtained plasma samples were centrifuged at 2000 rpm for 10 min.
Plasma samples were stored at −80 ◦C until use. Plasma MDA levels were determined by
a commercial MDA kit by quantification of thiobarbituric acid reactive substance (TBARS)
(Biovision, Milpitas, CA, USA) [47], and 4-HNE-BSA levels were measured by an ELISA
kit (Abcam, Cambridge, MA, USA) according to the manufacturer’s instructions.

2.6. Determination of Plasma Levels of Cytokine Profiles

To avoid the potential variability in cytokines’ quantification across the platform,
plasma levels of IL-1β, IL-1 receptor antagonist (IL-1Ra), IL-6, IL-18, and TNF-α were deter-
mined by magnetic multiplex using a MULLIPLEX® Human Cytokine/Chemokine/Growth
Factor Panel A (Cat# HCYTOMAG-60K-16) according to the manufacturer’s instructions
(Milliplex MAP kits, EMD Millipore, Billerica, MA, USA).

2.7. Statistical Analysis

Results are presented as the mean ± standard deviation (SD) or median (interquartile
range). The Bonferroni post-test and Kruskal–Wallis test were used for comparisons
between groups. When the tests showed a significant difference, the exact p-value was
determined using the Mann–Whitney U test. The correlation coefficient was calculated
using the nonparametric Spearman’s rank correlation test. A p-value < 0.05 was considered
statistically significant.

3. Results
3.1. Clinical Characteristics of AOSD Patients

Among the 25 AOSD patients, spiking fever (≥39 ◦C), rash, arthralgia or arthritis,
sore throat, liver dysfunction, and lymphadenopathy were noted in 23 (92.0%), 21 (84.0%),
18 (72.0%), 16 (64.0%), 9 (36.0%), and 7 (28.0%) patients respectively, in the initial active
status. There were no significant differences in the age at study entry or the proportion of
females between AOSD patients (mean age ± SD, 38.7 ± 9.0 years, and 80.0%, respectively)
and healthy subjects (38.5 ± 3.7 years and 78.6%, respectively).
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3.2. The Levels of C11-BODIPY581/591 Fluorescence Intensity on PBMCs and CD14+ Cells in
AOSD Patients and Healthy Control (HC) Subjects

The results of previous studies showed that ferritin expression was higher in mono-
cytes compared with other leucocytes [48,49]. Considering that the effects of ferritin on
inflammatory responses mainly occur in CD14+ cells or monocytes/macrophages [29], we
mainly investigated CD14+ cells among the PBMCs. The C11-BODIPY581/591 fluorescence
intensity (MFI) that reflects LPO levels on PBMCs or CD14+ cells was quantified using
flow cytometry analysis. The representative histograms of C11-BODIPY581/591 fluorescence
intensity on PBMCs (Figure 1A) or CD14+ cells (Figure 1C) were obtained from one active
AOSD patient, one inactive AOSD patient, and one HC, respectively. A significantly higher
MFI of LPO-expressing PBMCs was observed in active AOSD patients (4456, interquartile
range (IQR) 4047–5307) compared with HC (1900, IQR 1015–3099, p < 0.05) (Figure 1B). Sim-
ilarly, active AOSD patients had a significantly higher MFI on LPO-expressing CD14+-gated
cells (median 9091, IQR 6193–10,200) than HC (4551, IQR 2085–6490, p < 0.01) (Figure 1D).
As shown in Figure 1E, the percentage of LPO production was detected on CD14+ cells. The
percentage of elevated LPO on CD14+ cells was significantly higher in active AOSD patients
(median 97.96, IQR 90.0–99.5) than in HC subjects (median 87.3, IQR 60.1–87.5, p < 0.05),
but no significant difference was observed between inactive AOSD patients (median 95.06,
IQR 78.5–97.5) and HC subjects (Figure 1F).
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(B) or CD14+-gated cells (D) among active AOSD patients, inactive AOSD patients, and HC subjects. 
(E) Dot-plots of C11-BODIPY581/591 level on circulating allophycocyanin (APC)-CD14+ cells from one 
of the different groups. After gating on monocytes (CD14+ cells), the percentages of positive C11-
BODIPY581/591 were calculated. (F) Comparisons of the percentages of C11-BODIPY581/591-positive 
CD14+ cells were evaluated among active AOSD patients, inactive AOSD patients, and HC subjects. 
The data are presented as box-plot diagrams, in which the box encompasses the 25th percentile 
(lower bar) to the 75th percentile (upper bar). The horizontal line within the box indicates the me-
dian value for each group. The p-values were determined by using the Kruskal–Wallis test. * p-value 
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the C11-BODIPY581/591 fluorescence intensity on circulating PBMC-gated cells (A) or CD14+-gated
cells (C) obtained from one active AOSD patient, one inactive AOSD patient, and one HC subject.
Comparisons of the mean fluorescence intensity (MFI) of C11-BODIPY581/591 on PBMC-gated cells
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(E) Dot-plots of C11-BODIPY581/591 level on circulating allophycocyanin (APC)-CD14+ cells from
one of the different groups. After gating on monocytes (CD14+ cells), the percentages of positive C11-
BODIPY581/591 were calculated. (F) Comparisons of the percentages of C11-BODIPY581/591-positive
CD14+ cells were evaluated among active AOSD patients, inactive AOSD patients, and HC subjects.
The data are presented as box-plot diagrams, in which the box encompasses the 25th percentile (lower
bar) to the 75th percentile (upper bar). The horizontal line within the box indicates the median value
for each group. The p-values were determined by using the Kruskal–Wallis test. * p-value < 0.05,
** p-value < 0.01.

3.3. LPO Inducers Increased the Expression of Ferritin and IL-1β on PBMCs from AOSD Patients

Similar to the elevated levels of serum ferritin, our AOSD patients had significantly
higher expression levels of intracellular ferritin on PBMCs (median 1.02, IQR 0.82–1.61)
compared with HC subjects (median 0.55, IQR 0.45–0.63, p < 0.05, Figure 2A). Given
that both xCT and GPX4 are endogenous antioxidants acting against free iron-mediated
LPO [37,38], the levels of xCT protein on PBMCs were significantly lower in AOSD patients
(median 0.938, IQR 0.31–0.53) than in HC subjects (median 1.18, IQR 1.06–1.57, p < 0.05),
but the expression levels of GPX4 were not significantly different between the two groups.

After stimulation of PBMCs with LPO inducers, erastin or RSL3, the FTH levels on
the erastin-treated or RSL3-treated PBMCs from AOSD patients (mean of fold change,
2.47 and 1.61, respectively) were significantly higher than those from HC subjects (0.84,
p < 0.05, and 0.74, p < 0.01, respectively, Figure 2B). The expression levels of FTL were
also significantly enhanced on the erastin-treated and RSL3-treated PBMCs from AOSD
patients, which was not observed in those from HC subjects. The CD68 is commonly
used as a cytochemical and an active marker of monocytes/macrophages [50]. Hu et al.
demonstrated that upregulation of CD68+ expression in macrophages could be induced by
neutrophil extracellular traps from AOSD patients [51]. Besides, Ruscitti et al. revealed
a positive correlation between FTH levels and the number of infiltrating FTH/CD68+
macrophages in the cutaneous lesions of AOSD patients [52]. Given the high CD68 expres-
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sion in monocytes/macrophages, we examined the effect of LPO inducers on the CD68
expression on PBMCs. The CD68 expression levels on erastin-treated PBMCs from AOSD
patients (mean of fold change, 1.37) were also significantly higher than those from HC
subjects (0.86, p < 0.05) (Figure 2B).
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Figure 2. LPO inducers upregulated the expression of ferritin and IL-1β on PBMCs from AOSD patients. (A) The
representative protein expression levels of ferritin, xCT, and GPX4 on PBMCs lysates obtained from AOSD patients (n = 4)
and HC (n = 4). (B) Western blotting analysis results of the expression levels of (B) ferritin heavy chain (FTH), ferritin light
chain (FTL), CD68 protein, (C) ProIL-1β, IL-1β, and IL-18 in the PBMCs from AOSD patients or HC subjects after incubation
with ferroptosis inducers, erastin (20 µM) or RSL3 (10 µM), for 24 h. (A1–A3), (B1–B3) and (C1–C3) Proteins expression
were evaluated by the Western blotting assay. The bars and error bars indicate mean and standard deviation, respectively.
(D) After treatment with erastin (20 µM) or RSL3 (10 µM) for 24 h, the cell viability of PBMCs was measured by the WST-1
assay. PBMC: peripheral blood mononuclear cells; AOSD: adult-onset Still’s disease; HC: healthy controls; IL: interleukin;
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FTH: ferritin heavy chain; FTL: ferritin light chain. Bars and error bars indicate mean and standard deviation, respectively.
The p-values were determined by the multiple comparison Bonferroni post-test. * p-value < 0.05, ** p-value < 0.01.

Considering that lipopolysaccharide induced pro-IL-1β protein expression on PBMCs
through the oxidation pathway [53], we examined the effect of LPO inducers on pro-
inflammatory cytokine production. After stimulation of PBMCs with erastin or RSL3,
pro-IL-1β protein expression levels were significantly higher in AOSD patients (mean of
fold change, 1.40 and 1.26, respectively) compared with HC subjects (0.59, p < 0.05, and
0.62, p < 0.01, respectively) (Figure 2C). Upon RSL3 stimulation, IL-1β protein expression
levels were also significantly increased in PBMC (mean of fold change, 1.62) from AOSD
patients compared to those of HC subjects (mean of fold change, 0.42, p < 0.05) (Figure 2C).
However, there was no significant difference in IL-18 expression levels on erastin-treated
or RSL3-treated PBMCs between AOSD patients and HC subjects (Figure 2C).

Erastin and RSL3 are not only LPO inducers but also ferroptosis inducers that may
affect cell viability. However, in the present study, we revealed no significant change in
the cell viability of PBMCs treated with erastin or RSL3 between AOSD patients and HC
(Figure 2D).

3.4. LPO Inducers Increased the Expression Levels of LPO, FTH, and FTL on Monocytes or
Macrophages from AOSD Patients and HC Subjects

Compared with HC subjects, active AOSD patients had significantly higher LPO levels
on erastin-treated CD14+ cells (median fold, 1.71, IQR 1.19–3.10 versus 0.97, IQR 0.84–1.07,
p < 0.05) (Figure 3A), but this was not observed on erastin-treated PBMCs (Figure 3B).
Subsequently, we obtained monocyte-derived macrophages by using the stimulation of
peripheral blood CD14+ cells with GM-CSF, and examined the expression levels of FTH,
FTL, and CD68 on macrophages after treatment with erastin, RSL3, or IL-β. The results
showed significantly higher FTH levels on erastin-treated and IL-1β-treated macrophages
from AOSD patients (mean fold, 1.54 and 1.13, respectively) compared with those from
HC subjects (0.35 and 0.40 respectively, both p < 0.001, Figure 3C,D). Similarly, the FTL
levels were significantly higher on the erastin-treated macrophages from AOSD patients
(mean fold, 1.60) than from HC subjects (0.35, p < 0.05, Figure 3E). However, there was no
significant difference in CD68 expression levels on macrophages between AOSD patients
and HC subjects (Figure 3C,F).

3.5. Plasma Levels of TBARS (MDA) and 4-HNE and Their Relation with Inflammatory
Parameters or Cytokines in AOSD Patients

Given that TBARS (MDA) and 4-HNE are potential biomarkers of LPO [39], we also
evaluated the relation between plasma levels of TBARS (MDA) or 4-HNE and inflammatory
parameters in AOSD. The MDA, the end product of polyunsaturated fatty acids’ peroxida-
tion, could react with thiobarbituric acid (TBA) to form MDA-TBA2 adducts, also called the
thiobarbituric acid reactive substance (TBARS). With maximum absorbance at 532 nm and
fluorescence Excitation/Emission at 532/553 nm, the TBARS assay was used to measure
one of the lipid peroxidation products, MDA [54]. As shown in Figure 4A,B, active AOSD
patients had significantly higher levels of plasma TBARS (MDA) and 4-HNE-BSA (median
3.34, IQR 3.07–3.73, and 0.74, IQR 0.69–0.77, respectively) than HC subjects (median 2.65,
IQR 2.51–2.75, p < 0.01, and 0.62, IQR 0.59–0.69, p < 0.01, respectively). Besides, plasma
4-HNE-BSA levels were significantly increased in active AOSD patients compared to inac-
tive AOSD patients (median 0.62, IQR 0.55–0.69, p < 0.01) (Figure 4B). In AOSD patients,
plasma levels of TBARS (MDA) or 4-HNE-BSA were positively correlated with systemic
activity scores (Figure 4C,D). Plasma TBARS (MDA) levels were also significantly corre-
lated with the levels of C-reactive protein (CRP) or pro-inflammatory cytokines, including
IL-1β, IL-1RA, and TNF-α, in active AOSD patients (Figure 4E–H). However, there was no
significant correlation between plasma TBARS (MDA) levels and plasma levels of IL-18 or
IL-6 (Figure 4I,J).
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Figure 3. LPO inducers increased the expression levels of LPO, FTH, and FTL on monocytes/macrophages from AOSD
patients and HC subjects. After incubation of CD14+ monocytes (A) and PBMCs (B) with erastin (20 µM) for 24 h, the
C11-BODIPY581/591 fluorescence intensity on circulating CD14+-gated cells or PBMC-gated cells was determined by flow
cytometry. Fold change of C11-BODIPY581/591 MFI was calculated as the LPO MFI on erastin-treated cells/those on
untreated cells. Data are presented as box-plot diagrams, with the box encompassing the 25th percentile (lower bar) to the
75th percentile (upper bar). The horizontal line within the box indicates the median value respectively for each group. The
p-values were determined using the nonparametric Mann–Whitney U test. * p-value < 0.05, ** p-value < 0.01. (C) After the
macrophages isolated from AOSD patients or HC subjects were stimulated with erastin (20 µM), RSL3 (10 µM), or IL-1β
(2 ng/mL) separately for 24 h, the levels of (D) FTH, (E) FTL, and (F) CD68 expression were evaluated by the Western
blotting assay. The bars and error bars indicate mean and standard deviation, respectively. The p-values were determined
by the multiple comparison Bonferroni post-tests. * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001.
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Figure 4. Plasma levels of LPO-related metabolites and their relation to disease activity and inflammatory parameters in
AOSD patients. (A) Comparison of plasma MDA (malondialdehyde) levels between active AOSD patients (n = 14) and HC
subjects (n = 9). (B) Comparison of plasma 4-hydroxyalkenals (4-HNE) levels among active AOSD patients (n = 14), inactive
AOSD patients (n = 11), and HC subjects (n = 9). The correlation of plasma levels of (C) MDA or (D) 4-HNE with disease
activity scores, or between MDA levels and (E) CRP, (F) IL-1β, (G) IL-1RA, (H) TNF-α, (I) IL-18, or (J) IL-6. The p-values
were determined by using the Kruskal–Wallis test. ** p-value < 0.01. The correlation of 4-HNE-BSA levels with activity
scores (D). The correlation of MDA levels with (C) activity scores, (E) CRP, (F) IL-1β, (G) IL-1RA, (H) TNF-α, (I) IL-18, or
(J) IL-6. The p-values were determined by Spearman’s test. AOSD: adult-onset Still’s disease; CRP: C-reactive protein; HC:
healthy controls; IL: interleukin; IL-1RA: interleukin-1 receptor antagonist; TNF: tumor necrosis factor.
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4. Discussion

Lipid peroxidation (LPO) is crucial for the pathogenesis of inflammatory diseases [35].
However, the relation between LPO and inflammatory parameters in AOSD, including
ferritin levels, remains unexplored. This study is the first that uses flow cytometry analysis
to demonstrate significantly higher LPO levels in circulating monocytes and PBMCs of
AOSD patients compared with HC subjects. Consistent with two previous studies [2,21],
our AOSD patients showed significantly higher ferritin expression levels on PBMCs than
HC subjects. To explore the link between LPO and ferritin expression, we further evaluated
the ferritin expression levels on PBMCs and macrophages treated with LPO inducers
erastin or RSL3. The results showed that both erastin and RSL3 could significantly enhance
ferritin expressions, including FTH and FTL, and the increment was greater in AOSD
patients than in HC subjects, suggesting an association between increased LPO stress
and elevated ferritin in AOSD. Besides, the levels of TBARS (MDA) and 4-HNE, the LPO
downstream metabolites, were significantly increased and correlated with systemic disease
activity scores in our AOSD patients. These findings indicate the potential involvement of
LPO stress in AOSD pathogenesis.

AOSD patients have been reported to have high circulating levels of ferritin [2,21].
Ferritin, the second-largest intracellular iron pool, plays an important role in the pathogen-
esis of inflammation [22,29]. Resonating with these observations, our AOSD patients had
significantly higher expression levels of intracellular ferritin in PBMCs than HC subjects.
Regarding the immunomodulatory role of ferritin, certain acidic isoferritins homologous to
FTH, such as placental 43 kda isoferritin (p43-PLF), are involved in the immunosuppressive
activity in pregnancy [55]. Bresgen et al. also revealed that ferritin could contribute to
apoptosis in primary hepatocytes through Fas stimulation and proapoptotic mitochondrial
signaling [56,57].

Ferroptosis has recently been regarded as an iron-dependent form of non-apoptotic
cell death [36]. There is a need for a fine-tuned mechanism to maintain iron homeostasis
that may fulfill the need for iron but avoid the toxicity caused by an excess of ROS [36,37].
Cysteine acts as a substrate for glutathione biosynthesis, which is further used to activate
GPX4 to inhibit lipid peroxidation. Intracellular cysteine levels are mainly regulated by
system Xc, also known as system xCT, which is a cystine/glutamate antiporter. Therefore,
xCT is considered as an endogenous antioxidant for free-iron-mediated LPO [37,38]. We
similarly revealed significantly lower xCT protein levels in PBMCs in the AOSD patients
compared with HC subjects, and accordingly, significantly higher LPO levels on circulating
PBMCs and monocytes in the AOSD patients compared with HC subjects.

Although ferritin levels’ elevation is a feature of AOSD [2,21], the relation between
ferritin expression and LPO in AOSD has yet to be explored. Given that erastin and RSL3
are ferroptosis inducers capable of inducing lipid oxidation, we examined the effects of both
inducers on the expression of ferritin subunits FTH and FTL in PBMCs and macrophages.
After stimulation with erastin or RSL3, there was an upregulation of ferritin expression lev-
els in PBMCs of the AOSD patients, and the increments were significantly greater compared
with HC subjects. Similarly, the ferritin expression on erastin- or RSL3-treated macrophages
from the AOSD patients was significantly higher than that from HC subjects. The results
indicate that ferritin expression could be regulated by oxidative stress [58]. Besides, both
LPO inducers could enhance IL-1β expression, and the increments were greater in the
AOSD patients than in HC subjects, suggesting a potential effect of LPO on the production
of proinflammatory cytokines [59]. As ferritin synthesis can also be upregulated by inflam-
matory cytokines [60], the ferritin expression on macrophages from our AOSD patients
was further enhanced by IL-1β. These observations suggest a link between increased LPO
and elevated ferritin expression in AOSD, at least partly through IL-1β augmentation.
However, the causal relationship needs further clarification in future studies.

Ruscitti et al. demonstrated an increased number of CD68(+)/H-ferritin (+) cells
on macrophages in lymph nodes from active AOSD patients [61]. In the present study,
we revealed that LPO inducers could upregulate the expression levels of both CD68
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and ferritin in PBMCs from AOSD patients, suggesting a pathogenic role of LPO in the
expression of ferritin in this inflammatory disease. Besides, Ruscitti et al. demonstrated
that exogenous FTH stimulation could regulate NLRP3 expression and IL-1β production
on macrophages [29]. We revealed that IL-1β could also upregulate FTH expression on
macrophages or PBMCs from AOSD patients. Since LPO oxidation stress can induce FTH
expression and modulate inflammation response, we speculate that LPO stress is a potential
modulator of intracellular iron homeostasis in the inflammatory diseases.

Given that erastin and RSL-3 are also the inducers of ferroptosis, both inducers
may affect cell viability [36]. However, we revealed no significant differences in the cell
viability of PBMCs treated with erastin or RSL3 between AOSD and HC. Similar to our
findings, Wang et al. reported that erastin could even promote PBMCs’ proliferation and
differentiation through induction of LPO [62], indicating that LPO could initiate ferroptotic
signaling, but not necessarily induce cell death.

Elevated circulating TBARS (MDA) levels have been found in patients with autoim-
mune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis
(RA) [63,64]. Yin et al. also revealed that lipid peroxidation by 4-HNE treatment may
indeed induce inflammation reactions in synoviocytes in RA [65]. We similarly demon-
strated that AOSD patients had elevated levels of TBARS (MDA) and 4-HNE, which were
positively correlated with disease activity scores. These results suggest that TBARS (MDA)
or 4-HNE may be an activity indicator in AOSD patients. Similar to the findings that a sig-
nificant correlation between TBARS (MDA) and TNF-α levels was found in severe dengue
cases [66], a positive correlation between TBARS (MDA) levels and proinflammatory cy-
tokines, including L-1β and TNF-α, was observed in our patients. Besides, our results
showed that plasma TBARS (MDA) levels were positively correlated with levels of IL-1Ra,
an inhibitory cytokine that controls inflammatory responses and plays a compensatory role
in fine-tuning the immune response.

Despite the novel findings, there are some limitations of our study. This preliminary
pilot study enrolled a limited number of active AOSD patients. The lack of a significant
correlation between FTH and TBARS (MDA) levels in AOSD patients might be due to
the small sample size. In addition, we did not elucidate the effect of lipid oxidation/its
metabolites on NLRP3 inflammasome signaling in AOSD patients because the sample size
was not large enough to be tested. Therefore, future studies dissecting the biological role of
lipid peroxidation in the FTH-NLRP3 inflammasome signaling axis in macrophages are
certainly needed.

5. Conclusions

For the first time, we demonstrated elevated LPO levels in circulating PBMCs and
monocytes and augmented expression levels of ferritin and IL-1β in response to LPO
inducers in AOSD patients but not in HC subjects. The plasma levels of TBARS (MDA)
and 4-HNE, the LPO downstream metabolites, were increased and positively correlated
with the disease activity score in active AOSD patients. The TBARS (MDA) levels were also
significantly correlated with inflammatory parameters and cytokines in AOSD patients.
These findings suggest that LPO may be linked to elevated ferritin levels and participate in
AOSD pathogenesis.
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