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ABSTRACT Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture
because of their straightforward interpretability but are less useful for genetic prediction because of the
difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage between
markers introduces near collinearity among marker genotypes, complicating the detection of QTL and
estimation of QTL effects in linkage mapping, and this problem is exacerbated by very high density linkage
maps. Here we developed a thinning and aggregating (TAGGING) method as a new ensemble learning
approach to QTL mapping. TAGGING reduces collinearity problems by thinning dense linkage maps,
maintains aspects of marker selection that characterize standard QTL mapping, and by ensembling,
incorporates information from many more markers-trait associations than traditional QTL mapping. The
objective of TAGGING was to improve prediction power compared with QTL mapping while also providing
more specific insights into genetic architecture than genome-wide prediction models. TAGGING was
compared with standard QTL mapping using cross validation of empirical data from the maize (Zea mays L.)
nested association mapping population. TAGGING-assisted QTL mapping substantially improved predic-
tion ability for both biparental and multifamily populations by reducing both the variance and bias in
prediction. Furthermore, an ensemble model combining predictions from TAGGING-assisted QTL and
infinitesimal models improved prediction abilities over the component models, indicating some comple-
mentarity between model assumptions and suggesting that some trait genetic architectures involve a mix-
ture of a few major QTL and polygenic effects.
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Massive numbers ofmolecular markers can now be readily provided by
next-generation sequencing and high-throughput genotyping (Davey
et al. 2011; Elshire et al. 2011; Bian et al. 2014a; Glaubitz et al. 2014).
High-density markermaps (withmarker intervals smaller than 1 cM in
mapping populations) have been available to an increasing number of
plant species, such as in Arabidopsis thaliana (Kover et al. 2009; Huang

et al. 2011), maize (Swarts et al. 2014), rice (Yu et al. 2011), and
sorghum (Zou et al. 2012). Unfortunately, the dramatic increase of
marker availability may adversely affect quantitative trait locus
(QTL) mapping because collinearity among markers may complicate
the detection and estimation of QTL. Statistical tests to declare a QTL or
make QTL inference are conditional on other QTL inmulti-QTLmodels
(Zeng 1994). The value of a test statistic depends on other QTL in the
model if they share some proportion of genetic variation. Strong covari-
ance between tightly linked markers may increase the risk of selecting
collinear markers, bias the QTL estimates, and possibly overfit the pre-
dictive model, especially when a relaxed selection threshold is applied
(Bian et al. 2014b; Ogut et al. 2015).

Ensemble learning is an alternative approach that could improve
QTL-based prediction ability. Ensemble learning involves estimating
multiple “learner”models on a training data set and predicting unseen
observations by a vote or weighted average among the multiple learners
(Dietterich 2000). For example, suppose one has available a vector of
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some input variables, x, associated with a numerical outcome vector y.
The estimation process involves finding a function of F(x) that maps
values in the space of x to values in the corresponding space of y. F(x)
can be estimated in various ways, one of which is by ensemble learning.
The generic ensemble estimator takes the form: F̂ðxÞ ¼ hsðf fsðxÞgS1Þ,
where S is the number of ensemble members (or “base learners”), the
base learners f fsgS1 are functions of x derived from the training data,
and hsð�Þ is an ensemble learning function. As one example, the en-
semble learner can be estimated simply by model averaging the base
learners, f fsðxÞgS1. The base learners can be trained based on random
samples from the original data set or a subset of x. Common ensemble
methods include bootstrap aggregation of predictions (bagging) and
random forests, and several features characterize them, such as loss
function, ensemble dispersions, and memory of baser learners (Hastie
et al. 2009). Bagging of regression models is trained by paralleling base
regressions with no influence (zero memory) among them and mini-
mizing squared-error loss function on bootstrap samples (Breiman
1996a). If the bootstrap estimation is roughly correct, then aggregat-
ing would reduce variance without increasing bias. Random forests
(Breiman 2001) increase ensemble dispersion over bagging by addi-
tionally using a randomly chosen subset of the predictors rather than
using all of them, and this method typically solves for paralleled de-
cision or regression trees (nonlinear base learners). The ensembles of
base learners produced by bagging and random forests can be con-
ducted in a parallel manner, meaning that each individual learner is
trained independent of the results from others.

Here, we developed a new ensemble learning approach used in QTL
analyses, referred toasa thinningandaggregating (TAGGING)method.
We thinned linkagemapmarker sets into submapswith equally reduced
intermarker density, built QTL mapping models upon the thinned
marker sets as based learners in parallel, and aggregated by averaging
the predictions from the base learners to predict the test data (Figure 1).
The TAGGING method shares some aspects of model averaging with
bagging and random forest, as they all generate multiple predicted
values and aggregate prediction by averaging. In contrast to random
forests and bagging, however, TAGGING uses stratified sampling of
the linkage map to create disjoint marker sets to generate independent
discrete QTL models upon the unchanged set of observed mapping
lines so that prediction variance is expected to decay faster and bias is
not affected by bootstrapping samples. By comparison, bagging uses the
original marker set to build predictionmodels on bootstrapped samples
of lines, and random forests uses randomly sampled linkage markers
and bootstrapped samples of lines.

QTL mapping has proven useful for detecting major QTL with
relatively large effects but may lack power in accurately modeling small
QTL effects or polygenic background effects (Heffner et al. 2009). QTL
models typically underestimate the number and overestimate the
effects of QTL, reducing the accuracy of QTL-based predictions (Beavis
1998; Schön et al. 2004). Predictability and interpretability are two
competing goals and usually compromise each other for predictive
machines. The parameters in some genomic prediction (GP) models
are not easily interpretable in terms of genetic theory, and this problem
is compounded in nonparametric models (Gianola and Van Kaam
2008; Crossa et al. 2010). Such models may serve as good prediction
machines but may provide no insights into the locations of important
QTL or their gene actions. The TAGGING method presented here is
a compromise method that aims to improve the prediction ability of
QTL models while maintaining some of their interpretability in terms
of QTL locations and effect sizes. Furthermore, the ensembling concept
is fully general, so predictions can be obtained by ensembles of models
that capture distinct components of the true genetic architecture, for

example, ensembles of QTL models that are best at identifying genes
with larger effects and polygenic models that capture the “background”
effects of many genes of small effect distributed throughout the ge-
nome. Models that can account for two hypotheses may better approx-
imate the true biological mechanism better than either of the two
models individually.

In this study, twoQTLmappingmodels, joint-family (JF) linkage
analysis for multifamilymapping populations and single-family (SF)
QTL analysis for biparental mapping populations (Ogut et al. 2015),
were tested within the TAGGING framework for maize complex
traits. The new ensemble QTL models were examined for the num-
ber of QTL detected and proportion of genotypic variance explained
by the detected QTL. We expect that for a high-bias base learner
(e.g., QTLmodels based on sparse linkage maps), subset aggregation
ensures model flexibility and therefore protects against high bias-
ness in the ensemble predictions. For high-variance base learners
(e.g., models in which QTL are included at low selection stringency
with dense maps), ensembling might provide a reduction in vari-
ance of predictions.

The objectives of this study were to: (1) develop a thinning and
aggregating (TAGGING)method as a new ensemble learning approach
for QTL analysis; (2) compare prediction abilities of TAGGING, QTL
models, and standard GP genomic best linear unbiased prediction
(GBLUP) models; and (3) test whether useful complementarity occurs
betweenQTL-basedandpolygenicmodels in their ensemble learning for
GP.We tested thesemodels using a cross-validation strategy on data for
three complex traits previously reported for themaizenestedassociation
mapping population (Buckler et al. 2009; McMullen et al. 2009). At all
QTL selection stringency thresholds and thinning intensities we tested,
the TAGGING strategy resulted in a better prediction result than con-
ventional QTL methods, implying the robustness of this new method.
Results indicate that TAGGING provides information on the position
and effect sizes of QTL (including their precision) while improving
prediction ability compared with traditional QTLmapping procedures.
With very high density linkage maps becoming increasingly available,
we expect the TAGGINGmethod will find use in genetic investigations
and genetic prediction.

MATERIALS AND METHODS

Plant phenotypes and genotypes
Themaizenestedassociationmapping (NAM)populationcomprises a set
of ~5000 recombinant inbred lines (RILs) derived from crosses between
a reference parent, inbred line B73, and 25 other diverse founder inbred
lines of maize (McMullen et al. 2009). Three complex traits, resistance to
southern leaf blight (SLB), plant height (PHT), and days to anthesis
(DA), were previously studied for genetic architectures, and the predicted
mean values for NAM RILs across multiple environments were previ-
ously reported (Buckler et al. 2009; Kump et al. 2011; Yang et al. 2013;
Bian et al. 2014b; Peiffer et al. 2014) (Supporting Information, File S1, File
S2, File S3, File S4, File S5, and File S6). A second-generation NAM
linkage map consisting of 7386 imputed pseudomarkers with a uniform
0.2-cM intermarker distance generated from genotyping-by-sequencing
followed by full-sib family haplotype imputation (Swarts et al. 2014) was
used for linkage analysis.

Realized genomic relationshipmatrices (Gmatrices)were developed
for each NAM family separately using the linkage map markers based
on the first method described in (VanRaden 2008), which track within-
family identity-by-descent (IBD) for genome segments (Table 1). The
linkage map marker scores do not reflect IBD between families, how-
ever, so a separate relationship matrix for the whole NAM panel
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developed from the maize HapMap v1 of 1.6 million single-nucleotide
polymorphisms (SNPs) (Peiffer et al. 2014) also was used here (Table 1
and File S7). ThisGmatrix measured the pairwise relationships among
all lines with reference to the hypothetical population that would result
from intermating all of the mapping population F1’s. To maintain
identical numbers of markers for both the within-family relationship
matrices and the matrix for the whole panel, we extracted 7386 Hap-
Map v2 markers polymorphic in NAM and closest to the 7386 linkage
marker in terms of the AGP v2 coordinates (File S8, File S9, and File
S10) to construct an identity-in-state (IIS)Gmatrix for the wholeNAM
panel. A total of 4354, 4359, and 4359 RILs with both genotypic and
phenotypic data were available for analyzing SLB, PHT, and DA,
respectively.

Prediction accuracy calculation
Prediction abilities of models were evaluated both for the whole NAM
panel and forwithin eachof the 25biparentalmappingpopulationusing
a cross-validation procedure. Training sets were created by randomly
sampling 80%ofRILs fromeachof the 25NAMfamilies. The remaining
lines constituted the validation sample for the SF and JF QTL models
created using the training data set. Within-family predictions were
evaluated, and prediction abilities were measured as the proportion
of total trait variance explained by the model (R2) in the validation set.
The R2 was used to enable direct comparison to heritabilities and was
estimated by averaging squared Pearson’s correlations (r2) between the
observed and predicted BLUP values. We converted the value of R2 to
have a negative sign for a few cases of negative correlations between
predicted and observed line values.

QTL models
Multiple linear regression models were first fit within each family
independently (SF models; Table 1). For a given linkage maps s, the
SF model for family f is:

Yf ¼ 1mf
s þ Xf

sbs
f þ es

f ;

where Yf is a vector of Nf length referring to the trait phenotypic
values in a given family, 1 is an Nf · 1 intercept vector of 1’s,mf

s is the
intercept, Xf

s is a N
f · Kf

s matrix of marker genotypes, bs
f is a Kf

s · 1
column vector of the additive effects relative to B73, Kf

s is the number
of significant loci in stepwise selection, and es

f is a Nf · 1 column
vector of errors. The stepwise incorporation and exclusion of markers
were based on predefined alpha threshold (p). After including as
many markers as possible based on their P-values, the model was
then reduced by split-sample cross-validation. Specifically, the model
selection step with minimum prediction error variance was chosen in
five-fold split-sample cross-validation within the training set, using
the ‘choose = CV cvMethod = split(5)’ option in SAS Proc GLMSelect
(SAS Institute 2013). The RIL phenotype values were predicted from
the linear model.

JF linkage models were trained in all 25 families of NAM populations.
For a given linkage maps s, JF analysis for the multifamily connected
populations can be described as:

Y ¼ Ams þ
XKs

i¼1

Xsibsi þ es;

where Y is a vector ofN length referring to the trait phenotypic values
for all RILs, A is an N · P incidence matrix relating RILs to their
corresponding family, ms is a P · 1 column vector for the family
effects, Xsi is a N · P matrix relating each RIL’s genotype at locus i
to its corresponding family-specific allele effect, bsi is a P · 1 column
vector of the family-specific additive effects associated with locus i,Ks

is the number of significant loci in stepwise selection based on pre-
defined p, es is a N · 1 column vector of errors. The prediction ability
was then evaluated for each family separately to make a comparable
comparison with biparental scenarios.

TAGGING method for QTL analyses
TheTAGGINGQTLanalysismethod canbe summarized as thinningof
densemarkermaps into a set of disjointmaps of lower density and then
aggregating predictions from paralleled QTL models on the same

Figure 1 Data sampling, map thinning, model build-
ing, and ensemble schemes. The cross validations
were repeated 10 times for Figure 2, Figure 3, and
Figure 4 and 50 times for Figure 5. Step 1: Take
a stratified random sample 80% of recombinant in-
bred lines of each nested association mapping family
to use as a training set and 20% as test set. Step 2:
Thin the original 0.2-cM resolution map into s sets of
reduced maps with intermarker distance 0.2�s cM,
and calibrate joint-family (JF) and single-family (SF)
models as base learners on the same training sets
with various combinations of reduced maps and p
thresholds. Step 3: Independently predict the same
test sets with the parameter estimates obtaining from
training data. Step 4: Generate ensemble predictions
for ensemble single-family (ESF) and ensemble joint-
family (EJF) models by taking arithmetic means. Step
5: Generate ensemble learning and prediction of
QTL-based and GP models. Step 6: Evaluate predic-
tion R2 for all models, including individual quantitative
trait locus (QTL) models, thinning and aggregating
(TAGGING)-assisted QTL models, ensembles of QTL
and genomic best linear unbiased prediction models,
as well as subbagging models (see text for details).
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training data sets (Figure 1). The method begins by conducting a strat-
ified sampling of themarkers on the linkagemap, which is simplified in
the case of the maize NAM linkagemap which has a uniform density of
0.2 cM between each pair of adjacent linked markers. The original map
is thinned into s disjoint sets of markers, maintaining the linkage map
position information for the markers, starting with the first marker on
the first linkage group. This procedure was then repeated by starting
selection at the second marker to create a new sample map and con-
tinuing to initiate selections at subsequent markers until the sth marker.
The result is s disjoint maps, each with s�0.2 cM distance between
adjacent markers. Thinning is expected to reduce the extent of covari-
ance and collinearity that otherwise occur in base QTL analyses with
the dense maps and/or relaxed selection stringencies.

JF and SF models for multifamily and biparental mapping popula-
tions were fit using each thinnedmap separately, and phenotype values
for the validation set lines were predicted separately for each reduced
map (File S11 and File S12). The two types of QTL base learners were
constructed with each subset of markers for the same training samples
to estimate the regression coefficients, and then the s sets of SF and JF
predicted values for the test sets were aggregated to form the ensemble
prediction (Figure 1). The ensembles of QTL models proposed here
were named “ensemble joint-family linkage” (EJF) analyses for multi-
family mapping populations and “ensemble single-family” (ESF) anal-
yses for biparental mapping populations, respectively. The ensemble
learner F̂ðxÞ is formed as some linear combination of predictions of

each base learner: F̂ðxÞ ¼ a0 þ
XS
s¼1

asfsðxÞ, with fasgS0 being the coef-
ficients for f fsðxÞgS1. For both EJF and ESF modeling, the coefficients
were set to a0 ¼ 0 and fas ¼ 1=sgS1. Essentially, we averaged predic-
tions over s map subsets for each training set, and the ensemble pre-
dictions were an arithmetic mean of those base learners.

To estimate precision of QTL localization, the frequencies of QTL
positions detected in JF and EJF across the resampled training sets were
summarized to elucidate the QTL architectures for the three complex
traits. Resamplemodel inclusionprobability (RMIP) (Valdar et al.2009)
was computed to measure the power of detection for the trait-marker
associations across NAM panel. The RMIP was calculated for each
marker as the proportion of data samples in which the marker was
tested and selected in the model of interest at the given selection p.

To compare the efficiency of the TAGGING ensemble learning
method with existing ones, we implemented subsample aggregating
(subagging) of both JF and SF analyses using the same base learning

algothrims as in TAGGING. Subagging is a sobriquet for subsample
aggregating where simple random sampling is used instead of aggre-
gation of bootstrapped samples implemented by bagging. The basic
difference between TAGGING and subagging is that TAGGING
averages over subsamples of markers on a fixed set of RILs, while
subagging (subsample aggregating) averages over samples of RILs for
a fixed set of markers. Subagging instead of bagging was used here
because subbaging is more efficient in computation, because of re-
duction in sample size compared with bagging, and it avoids collin-
earity problems induced or aggravated from the increased relatedness
among bootstrapped samples, which is a concern with the dense
linkage map used here. We formed 10 simple random sampling
subsamples with sample size equal to 80% of each family from each
original training set. We implemented subbagging of both SF and JF
analyses upon the same training and test sets as used by all other
analyses.

SF and ESF models were constructed using selection thresholds
ranging from P = 1e-4 to P = 0.05, and P = 1e-5 to 0.01 for JF and EJF.
Map resolutions used ranged from 0.2 to 20 cM intermarker distances
for both. Because P = 1e-05 was too stringent for SF, and P = 0.01 or
greater were too relaxed for JF using 0.2-cM density map (Ogut et al.
2015), we did not include them in this study.

Prediction error decomposition
The cross-validation experiments allow us to evaluate themean squared
prediction error and to decompose this into terms due to the bias and
variance in prediction. Suppose there is some underlying true function
f ðxÞ estimated from ensemble or discrete QTL models on the training
set T by hðx;TÞ. Given a new data point in test set x�; y� ¼ f ðx�Þ þ e
where e is normally distributed with zero mean and variance s2,
a function of 12 heritability. The expected pointwise prediction error
can be decomposed in a familiar form:

ET½ð y�2hðx;TÞÞ2� ¼ ET½ð y�2ET ½hðx;TÞ�Þ2�
þ ET½ðhðx;TÞ2ET ½hðx;TÞ�Þ2�; (1)

where ET denotes expectation over resampled training sets drawn
from the same distribution to estimate y�. Whereas the second part
of the right hand side of (1) is prediction variance, the first part of the
right hand side of (1) is the sum of bias2 and irreducible error variance
and decomposed as:

n Table 1 Description of prediction models compared

Type Model Model Description Genotypic Input Analysis

QTL model JF/EJF (Ensemble) joint linkage
analysis

subset(s) of linkage marker
genotypes in one consensus map

(Ensemble of) joint multiple-family
linkage analysis

SF/ESF (Ensemble) single family
analysis

subset(s) of linkage marker
genotypes for each of 25 families

(Ensemble of) SF analysis

EJF+ESF Ensemble of EJF and
ESF models

As above Average prediction of the
two above

Genomic
prediction model

SGBLUP linkage map-based GBLUP
model (within-family IBD)

25 G matrices from 25 sets
of linkage marker genotypes

SF GP one family at a time

JGBLUP Allele calling-based GBLUP
model (cross-family IIS)

One G matrix based on the actual
genotypes most adjacent to
linkage marker positions

JF GP

HGBLUP Allele calling-based GBLUP
model (cross-family IIS)

One G matrix based on 1.6 M
HapMap v1 SNPs

JF GP

QTL, quantitative trait locus; JF, joint family; EJF, ensemble joint family; SF, single family; ESF, ensemble single family; SGBLUP, single family genomic best linear
unbiased prediction; JGBLUP, joint family genomic best linear unbiased prediction; HGBLUP, HapMap v-1–based genomic best linear unbiased prediction; SNP,
single-nucleotide polymorphism.
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ET
�ðy�2ET ½hðx;TÞ�Þ2

� ¼ ET
h
ð f ðx�Þ2ET ½hðx;TÞ�Þ2

i

þ ET
h
ð y�2f ðx�ÞÞ2

i

¼ ET
h
ð f ðx�Þ2ET ½hðx;TÞ�Þ2

i
þ s2;

(2)

TheTAGGINGmethod estimatedhðx;TÞ by averaging over spredictions
from s sets of thinned marker maps based on a training set T used and
estimated ET ½hðx;TÞ� by averaging over all test sets that contain the data
point in question. Finally, averaging over all points predicted throughout
all test sets for their bias and variance gives the more accurate estimates.
We refer to ET

h
ð y�2ET ½hðx;TÞ�Þ2

i
in (1) as “bias2” in our results,

because the true underlying genetic mechanism is unknown and thus
the irreducible error variance could not be disentangled from the bias2

in (2). The bias2 and variance in prediction were compared between single
and TAGGING-based models all of which used the same 7386 linkage
marker genotypes. In addition, a few predicted values representing the
most severe outliers in prediction ability were excluded from prediction
error calculation in order to guard against artifactual inflation of the pre-
diction error variance simply due to high collinearity that occasionally
occurred in few cross-validations. The cutoff for excluding an outlier was
the mean predicted value6 100 times the standard error of the mean.

GBLUP models using IIS and IBD genotypes
TheGmatrix derived from 1.6million SNPs inHapMap v1 was used to
create a GBLUP model for the entire NAM population HapMap v1–
based genomic best linear unbiased prediction (HGBLUP) models,
Table 1) in the same cross validation setup as in QTL analyses. single-
family genomic best linear unbiased prediction (SGBLUP; Table 1)
model were developed for each NAM biparental mapping family using
the 25 disjoint G matrices developed from the original linkage map of
7386 markers. We also extracted the same number of allele calls as close
as possible to the physical positions of the 7386 linkage map pseudo-
markers, and with the IIS G matrix across whole NAM panel derived
from that, we conducted the joint-family genomic best linear unbiased
prediction (JGBLUP) models (Table 1) to compare the efficiencies of
using the same amount of genotypic information in different models.

Ensemble learning of TAGGING-assisted QTL models
and GP models
Tocapture thecomplementarystrengthsofSFandJFanalyses,weaveraged
predictions fromEJFandESFandreferredtothisensembleas theEJF+ESF
model.AllpairsofQTLandGPmodelsusing the samenumberof7386 loci
were then combined in ensemble learning in a linear fashion.We explored
ensemble learning by averaging predictions from either EJF, ESF, or EJF +
ESFQTLmodelswithpredictionsfromSGBLUPorJGBLUPmodels totest
thehypothesis thatmixtureofmodelswithcontrastinggeneticassumptions
can improve genetic prediction by better mimicking genetic architectures
(File S13). For simplicity, the coefficients in ensembles of two component
models were set to 0.5. Finally, we attempted ensemble learning that
combined QTL and GBLUP models derived from both 7386 marker
genotypes and 1.6 M HapMap1 SNP genotypes. We evaluated the im-
portance of the four participating models to their ensemble prediction R2,
EJF + ESF, SGBLUP, JGBLUP, and HGBLUP, by analysis of variance in
a 24 – 1 factorial experiment, in which 15 possible combinations of the
four models’ presence or absence were included.

Pseudooptimal ensemble coefficients
Wetestedwhether additional tweakingof the coefficients of thebase leaners
in the ensemble model can improve the ensemble prediction. The base

learners can be considered as input variables to amultiple regressionmodel
aimed at predicting the unknown trait values. Here we introduced pseu-
dooptimal coefficients for giving relativeweights to eachcomponentmodel,
which we estimated from using cross-validation with respect to the true
phenotypic data of test sets to identify a fixed set of ensemble coefficients
to minimize the least-square errors for the test data. The ensemble
coefficients were tuned using the Nelder–Mead optimization technique
(Nelder and Mead 1965), in which average prediction R2 values were
dynamically recorded for tested sets until they (as objective functions)
converged to a plateau. The sum of coefficients was scaled to one, under
nonnegativity constraints, as recommended by Breiman (1996b). The
pseudooptimal accuracies should be considered as an idealistic upper limit
and not likely to occur in a real prediction scenario, as those predictions
were obtained using the phenotypic values in test sets to optimize the
ensemble coefficients. Finally, two sets of natural coefficients were attemp-
ted in ensembles of the aforementioned three componentmodels, EJF, ESF,
and SGBLUP: equal weights of 1/3 for each, and equal weights between
QTL-based models (0.25 for EJF and ESF) and SGBLUP models (0.5).

Data availability
Seeds of NAM lines have been deposited at USDA Maize Genetics
CooperationStockCenter (http://maizecoop.cropsci.uiuc.edu/nam-rils.
php). File S1, File S2, File S3, File S4, File S5, File S6, File S7, File S8, File
S9, File S10, File S11, File S12, and File S13 are available for download at
http://downloads.figshare.com/article/public/1517823.

File S1 (NAMSLB.RData) contains mean values for Southern leaf
blight disease scores and linkage map marker scores for NAM RILs
formatted as an R data object. File S2 (SLB_genopheno.sas7bdat) con-
tains mean values for Southern leaf blight disease scores and linkage
map marker scores for NAM RILs formatted as a SAS data set. File S3
(NAMPHT.RData) contains mean values for plant height and linkage
map marker scores for NAMRILs formatted as an R data object. File S4
(PHT_genopheno.sas7bdat) contains mean values for plant height and
linkage map marker scores for NAM RILs formatted as a SAS data set.
File S5 (NAMDA.RData) contains mean values for days to anthesis and
linkagemapmarker scores for NAMRILs formatted as an R data object.
File S6 (DA_genopheno.sas7bdat) contains mean values for days to
anthesis and linkage map marker scores for NAM RILs formatted as
a SAS data set. File S7 (relMat.RData) contains the realized additive
genomic relationship matrix for NAM lines based on 1.6M HapMap I
markers (courtesy of Dr. Jason Peiffer). File S8 (NAMSLB_IIS.RData)
contains mean values for Southern leaf blight disease scores and Identity
In State (IIS) calls for HapMap markers closest to NAM linkage map
markers forNAMRILs formatted as anRdata object. File S9 (NAMPHT_
IIS.RData) contains mean values for plant height and Identity In State
(IIS) calls for HapMap markers closest to NAM linkage map markers
for NAM RILs formatted as an R data object. File S10 (NAMDA_IIS.
RData) contains mean values for days to anthesis and Identity In State
(IIS) calls for HapMap markers closest to NAM linkage map markers
forNAMRILs formatted as an R data object. File S11 (ESF.sas) contains
SAS code to conduct ensemble single familyQTL analysis. File S12 (JSF.
sas) contains SAS code to conduct ensemble joint family QTL analysis.
File S13 (GBLUP and ensemble model prediction SLB.R) contains R
code to ensemble GBLUP and ensemble-QTL-based predictions.

RESULTS

TAGGING of QTL models improves QTL
model prediction
EJF models had substantially better prediction R2 compared with the
individual JF models using either the original or reduced maps for the
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three traits (Figure 2, Figure S1, Figure S2, Table S1, Table S2, and Table
S3). Using the thinned maps of 10 ~15 cM intermarker distances at
selection P = 0.01 generated the best prediction R2 in EJF for SLB (R2 =
0.475), PHT (0.476), and DA (0.445); those best EJF models outper-
formed the best JF model substantially [1 cMmaps under P = 0.0001 for
SLB (R2 = 0.385) and PHT (0.371), and 1 cMmaps under P = 0.001 for
DA (0.332)]. The improved prediction abilities of EJF over JF indicated
that the genetic architecture can be better depicted by averagingmultiple
independent QTL models developed from disjoint subset maps as
achieved by TAGGING. TAGGING of SF analyses also improved the
predictions for the biparental mapping populations substantially com-
pared with the regular SF analyses. The prediction R2 values generated
by the optimal ESFmodels outperformed those from the best SF models
by an average of 0.118, 0.123, and 0.116 across 25 families for SLB, PHT

and DA, respectively (Figure 2, Figure S1, Figure S2, Table S1, Table S2,
and Table S3). Among the pure linkage models (SF, JF, ESF, and EJF)
and across all traits, map densities, and selection p thresholds tested, EJF
models had the greatest prediction abilities, whereas SF models always
had lowest prediction ability (Table S1, Table S2, and Table S3).

The performances of both discrete and TAGGING QTL models
varied with the densities of maps and selection p. In general, for EJF,
sparse maps and relaxed p were favorable in prediction, and for JF,
dense maps and stringent p were favorable. Prediction abilities from
EJF increased with decreasing p thresholds and decreasing map densi-
ties until the map density reduced down to 15220 cM intermarker
distances (Figure 2, Figure S1, and Figure S2). In contrast, for biparental
mapping populations, moderate map densities along with relaxed p
were advantageous in prediction using both SF and ESF analyses. In

Figure 2 Prediction R2 for resistance to southern leaf blight in biparental and multiple-family prediction, comparing joint-family (JF), single-family
(SF), and the thinning and aggregating (TAGGING)-assisted quantitative trait locus (QTL) analyses using multiple map densities and under
multiple selection p. The number at the top of and dot within each boxplot present the mean R2 among 25 nested association mapping families
for that boxplot. The x-axis represents the densities of linkage maps used for the JF, SF, and TAGGING-assisted QTL methods.
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addition, using linkage maps of 1 cM or 0.2 cM density made little
difference in prediction abilities for both JF and SF QTLmodels (Figure
2, Figure S1, and Figure S2).

The efficiency of TAGGING was compared with the previously pro-
posed ensemble learning method subbagging, both of which were applied
in the same inputs and cross validation schemes. The best prediction R2

values were 0.452, 0.440, and 0.405 using subbagging of JF models under
selection P = 0.001 and 0.396, 0.378, and 0.391 using subbagging of SF
models under selection P = 0.01 for SLB, PHT, and DA, respectively
(Table S1, Table S2, and Table S3). In all cases, the optimal prediction
abilities of TAGGING-assisted QTL models were superior to the corre-
sponding subbagging predictions (Table S1, Table S2, and Table S3).

Bias and variance
For all traits and under all selection p thresholds, TAGGING substantially
reduced prediction variance in both JF and SF models (Figure 3 and
Figure S3). Variance in prediction was basically eliminated when a large
($25) number of thinned maps were averaged in TAGGING. TAG-
GING of JF models always reduced the bias compared with the single
JF models, and the magnitude of bias in EJF models was roughly equal
across a large range of thinning intensities, even when the map density
was as low as 100markers per map. The prediction bias in TAGGING of
SF analyses can fluctuate comparedwith that of the individual SFmodels,
depending on the thinned map densities (Figure 3 and Figure S3). When
SF models suffered from severe collinearity at the relaxed selection strin-
gency (P = 0.01), thinning reduced covariance among markers and alle-
viated model bias. When SF models were based on high stringency of
marker selection (P = 1e-04), aggregating of the appropriately thinned
maps (2 ~5 cM inter-marker distances) seemed to slightly improvemodel
fit by incorporating more predictors in the ensemble. In general, TAG-
GING seemed to be more protective against high bias for JF than SF
models (Figure 3 and Figure S3). By examining the error compositions,
we found that the prediction advantages of TAGGING of JFmodels over
that of SF models were related to the lower level of bias before using
TAGGING and more stable reduction of bias after using TAGGING
(Figure 3 and Figure S3). In addition, when comparing across P-value
thresholds, prediction bias in both TAGGING models decreased with
more relaxed P-values because of greater model flexibility.

Genetic architecture revealed by marker-
trait associations
To better understand the trait QTL architectures, the probability of
inclusion of a marker in a JF or EJF models was estimated across the

resampled training sets (resample model inclusion probability, RMIP;
Valdar et al. 2009). RMIP plots visualized the enrichment of marker-
trait associations within particular genomic regions (Figure 4, Figure
S4, and Figure S5). In general, with the decrease in the thinned map
densities used in EJF (which also reflects the increase in the number of
JF models combined by TAGGING), RMIP values increased substan-
tially and the regions containing marker associations expanded (Figure
4, Figure S4, and Figure S5). As the selection p relaxed, the RMIP values
in EJF increased and the enriched regions expanded, especially for
sparse maps (Figure S6).

GBLUP model prediction performance
The same marker data used for SF and ESF models also were used to
construct within-family realized genomic relationship matrices. These
relationship matrices were used to implement SF GPmodels (SGBLUP
model) (Table 1). Average within-family prediction R2 values were
0.460, 0.465, and 0.450 for SLB, PHT, and DA, respectively, using the
SGBLUP model. The JGBLUP model, which used an integrated re-
lationship matrix calculated based on IIS information of the same
number of marker genotypes that were closest to the linkage marker
physical positions, generated best prediction results among EJF, ESF,
SGBLUP, and JGBLUP models (Table S4). Similarly, a previous report
showed that joint analyses of several half-sib families in GPmodels can
increase prediction abilities over family-specific GPmodels (Lehermeier
et al. 2014). In addition, the NAM panel was also analyzed using
HGBLUP model for which the relationship matrix was calculated
based on the 1.6 M HapMap v1 SNPs. HGBLUP generated the best
prediction abilities of all component models (Table S4) probably
because of the enormous amount of genotype information used.

Ensemble of TAGGING-assisted QTL models and
GBLUP models
The SF and JF QTLmodels were based on different genetic assumptions
of genetic heterogeneity and allele effects, and may be considered
complementary in describing QTL architectures (Ogut et al. 2015). To
test the hypothesis that the combinedQTLmapping results can improve
prediction, we ensembled by model averaging to combine results from
EJF and ESF. The EJF + ESF models did not noticeably improve pre-
diction abilities over the EJFmodels (Figure 2, Figure S1, and Figure S2).
The EJF + ESF results indicated that the selection P = 0.001 and 0.01 in
EJF and ESF analyses resulted in the optimal prediction R2 when 1 cM
reducedmaps were used, and P = 0.01 and 0.05 for 20 cM reducedmaps
(Figure 2, Figure S1, Figure S2, Table S1, Table S2, and Table S3). We

Figure 3 Prediction bias2 and
variance in thinning and aggre-
gating (TAGGING)-assisted and
single quantitative trait locus (QTL)
models for resistance to south-
ern leaf blight (SLB). X-axes de-
note the intermarker distances
for the genetic maps used:
“0.2” for single joint-family (JF)
or single-family (SF) models, and
others for TAGGING methods.
Dot radius was scaled to within-
family R2 calcualted based on all
recombinant inbred lines in the
test sets to permit comparisons
of both mean error measures
and mean prediction R2.
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then restricted our modeling to using those P thresholds for the most
thinned 20-cM maps in further ensemble learning.

For ensemble learning between TAGGING-assisted QTL and
GBLUPmodels, first, we attempted pairwise combinations of the three
QTL models and two GBLUP models that used the same underlying
7386 marker genotypic information. Adding EJF or EJF + ESF models
substantially increased within family predictionR2 and generated better
prediction results for at least 21 (P-value , 0.0005) out of 25 NAM
families, compared with their ensemble partner SGBLUP or JGBLUP
models (Figure 5, Figure S7, and Table S4). Second, the best ensemble
combinations of QTL and GBLUP models that used the same limited
genotypic information improved prediction abilities, resulting in com-
parable performance relative toGBLUPmodels usingmuch larger scale
genotypic information. Specifically, (EJF + ESF) + JGBLUP models
outperformed HGBLUP models (based on .200 times more marker
information) by 0.01 ~0.02 in within-family prediction R2 for SLB and
PHT (Figure 5, Figure S7, and Table S4).

The high consistency of model prediction abilities between individual
componentmodels and their ensemblemodels suggested that the ensemble
learning performance is likely predictable. Indeed, linear models involving
terms of HGBLUP and JGBLUP or (EJF + ESF)�JGBLUP explained ~72%
to~84% (Table S5) of the variance inwithin family predictionR2 among all
combinations of the four tested component models (EJF + ESF, SGBLUP,
JGBLUP, and HGBLUP). The (EJF + ESF) + HGBLUP + JGBLUPmodel
(based on equal weights of 1/3 for the three components) resulted in the

best predictionR2 (0.516 for SLB, 0.515 for PHT, and 0.512 forDA), which
was 0.02 better for SLB and PHT and marginally better for DA than the
HGBLUPmodel; it also predicted better in significantlymore families than
the HGBLUP model (Table S4). The magnitude of the increase in pre-
dictionR2 from ensembling TAGGING-assistedQTLmodels andGBLUP
models was small but consistent across families. The traits studied are
highly multigenic, so the results may be considered as a conservative case
for evaluating the utility of the additional QTL information in GP models.

Pseudooptimal ensemble coefficients
Wefurther searched for afixed set of optimal coefficients that canmaximize
the accuracy from the EJF, ESF, and SGBLUP predictions. The prediction
accuracy reached plateau after several rounds of Nelder–Mead optimiza-
tions. The resulting average within family prediction R2 based on the
“pseudooptimal” ensemble coefficients differed by less than 0.01 from the
two sets of simple coefficients (1/4)EJF + (1/4)ESF+ (1/2)GBLUPand (1/3)
EJF + (1/3)ESF + (1/3)GBLUP we developed (Table S6). The results im-
plied that the current ensemble learning to combine QTL-based and GP
models was efficient in capitalizing on the model complementarities.

DISCUSSION

Optimizing QTL mapping parameters
Determining the optimal prediction model for a collection of multiple
biparental families, as is commonly encountered in both academic

Figure 4 Marker-trait associations identified by joint-family (JF) and ensemble joint-family (EJF) models across 10 chromosomes, using different
map densities under selection p at 0.001 for maize SLB resistance in nested association mapping panel. Blue, cyan, and gray peaks denote
associations with resample model inclusion probability (RMIP) values greater than 0.5, 0.320.5, and less than 0.3, respectively. X-axes deonte the
genetic positions (cM) across 10 chromosomes. RMIP values are summarized at the individual marker (every 0.2 cM) basis.
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genetic studies and commercial breeding programs, is important for
maximizing precision of QTLmapping and accuracy of genome-enabled
prediction. Our results demonstrate that there is an interaction between
map density and QTL significance threshold on model prediction per-
formance.Theoptimal threshold foragivenanalysis canvaryaccording to
map density. In earlier studies of prediction accuracy within biparental
families fromQTLmodels, accuracy was optimal at quite relaxed P-value
thresholds (Hospital et al. 1997; Bernardo 2004). Those studies were
conducted by the use of linkage maps with substantially lower marker
density than the current study. As genomics technology has made in-
creasingly dense linkage maps available, however, marker colinearity
becomes problematic for QTL mapping and the relaxed threshold is
no longer optimal. For example, when P = 0.05 were adopted in SF
analysis at the greatest map density, average prediction ability was 0.21,
and this improved to 0.31 by increasing the selection stringency to P =
0.01 (the first column of Figure 2). Using appropriately chosen selection p
reduced the propensity to overfitting or underfitting resulting from the
impropermarker densities. Nevertheless, an overly sparsemap used in JF
or SF models may fail to capture the QTL information or compromise
the precision of QTL positioning because the markers are not in tight
linkage to many QTL and therefore lead to omitted-variable bias (Figure
S8). Our JF and SF model results suggest that a 1-cM density is appro-
priate for the level of linkage disequilibrium (LD) that exists within a bi-
parental RIL family in maize. By comparison, previous research reported
that marker densities increasing from 5 to 1 cM in a doubled haploid
maize population improved neither the overall QTL detection power nor
the proportion of genotypic variance explained by the detected QTL
(Stange et al. 2013). Finally, our results confirmed that the optimal se-
lection threshold also differs by QTL mapping design. SF models are
more prone to underfitting (high bias) problems than JF models, and
more stringent selection threshold should be used in multiparental anal-
ysis (Blanc et al. 2008). To conclude, it is important to consider the
dynamics among map density, QTL analysis method and QTL detection
stringency, the optimization is important to gain the best performance in
QTL analysis based prediction (Figure 2, Figure S1, and Figure S2).
Performances of both traditional and TAGGING-assisted QTL models
variedwith the densities ofmaps and selection p. However, the prediction

ability of TAGGING models was greater than the respective traditional
QTLmapping methods for all selection p and thinning intensities tested.

Bayesian GP models represent an important class of models to
consider, but the computational difficulty of conducting on many
repeated samples with the millions of markers used in this study (for
the HGBLUP models) precluded their inclusion in the model compar-
isons in this study. In addition, Bayesianmodels have shown little or no
advantage over GBLUP models in many plant breeding scenarios
(Heslot et al. 2012; Guo et al. 2012).

Marker-trait association and genetic architecture
TheEJFmodelsmayreflect the truegeneticarchitecturebetter thandiscrete
models concerning only a few strong associations. Indeed, the greater
numberofmarker associations contributing to ensemblepredictions is one
of the bases for the improved prediction ability. By using the TAGGING
method,associationarchitectures in theEJFmodelswereequippedwiththe
polygenic feature thatcanincludemanymoremarkers linkedtoQTL,while
it also involved marker selection and differential weighting of marker
information. The precision of QTL mapping, however, can be compro-
mised inensemblemapping.Forexample,previousdatahad indicatedwith
high confidence the presence of two linked QTL on chromosome 3 for
genetic resistance to SLB (Bian et al. 2014b), but the blurring of QTL
positions in EJF resulted in a merging of the two QTL into a single broad
peak in the RMIP visualizations (Figure 4). The larger number of marker
effects that are ensembled in the TAGGING method may offer a useful
compromise between QTL detection and predictions. We focused on
cross-validation comparisons based on real data here, but simulation
studies would be required to determine the accuracy of QTL positition
and effect estimates from the TAGGING method.

Ogut et al. (2015) suggested that JF models (which assume common
QTL positions among families) and SF models (which assume inde-
pendent QTL positions among families) can complement one another
by capturing different aspects of the overall genetic architecture. We
tested this hypothesis by ensembling predictions from the two QTL
models in a single EJF + ESF model. The ESF + EJF model appeared to
offer little advantage over EJF: the relatively poor predictive ability of
ESF negated any advantage of complementarity between ESF and EJF
models when they were ensembled. A single integrated base learner
model that more flexibly fits allele effects only within families where
they are significant may more effectively achieve the goal of taking
advantages of both models in depiction of genetic architectures. Devel-
opment of such a model is underway.

Marker-trait associationsare foundhighlyenrichedinsomegenomic
regions, as indicated by the disjoint TAGGING scans. For a particular
region of interest a priori, the RMIP information surrounding that
region indicates its importance and the resolution of QTL information.
The association-enriched regions might represent probable intervals of
QTL effects, that is, QTL or the cluster of QTL may reside in the multi-
locus regions or in linkage with the loci in the regions. Leveraging
association-enriched regions may better explain the underlying genetic
architectures compared to the traditional point estimates of single QTL
peaks, although further research remains needed to effectively define
and set boundaries for the regions or factor in their kernel density. We
suspect that the association-enriched regions might be important to
reveal hidden genetic variation. Further research will be required to
develop this method and test the model efficiency.

Bias and variance in TAGGING prediction
The prediction ability of ensemble learning is usually stronger than that
of a single learner. The first reason is that the training sample sizemight
not be sufficient for determininga singlebest basemodel. InTAGGING,

Figure 5 Ensemble between thinning and aggregating (TAGGING)-
assisted quantitative trait locus (QTL) and genomic best linear unbiased
prediction (GBLUP) models showed their complementary effects on
prediction ability. The mean within-family prediction R2 values for QTL
and GBLUP models were shown in first row and column, and other cells
show the R2 values for ensembles with equal weights for the two models in
the corresponding rows and columns. The thinned maps of 20-cM inter-
marker distances were used for the QTL models, under the best selection
stringency [P = 0.01 for ensemble joint family (EJF); 0.05 for ensemble
single family (ESF)]. �P-value, 0.0005 in the one-sided binomial tests with
the null hypothesis that the ensemble model predicted the same as the
corresponding row GBLUP model ($21 of 25 families). The R2 values were
estimated from 50 replicates of cross validation. Standard errors of pre-
diction ability based on variation among families ranged from 0.016 to
0.018. JGBLUP, joint-family genomic best linear unbiased prediction;
HGBLUP, HapMap v1-based genomic best linear unbiased prediction.
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the reduced maps provide similar information, because they only differ
by consecutivemarkers. The base learners should perform similarly well
on searching those slightly different hypothesis spaces to fit the same
training data sets. Thus, combining these learners can join the marker
information that would otherwise not be obtained by searching in the
original hypothesis space with a single algorithm (Rokach 2010). The
second reason is that the search processes of the learning algorithms
might be imperfect, especially in the “small N, large P” situations that
have become common in genomics. Even if there exists a unique best
set of predictors (actual functions of genes underlying the studied
traits), the high dimensionality of dense linkage maps may hinder this
set from being selected by efficient search algorithms. Thus, ensembles
can compensate for such imperfect search processes by reducing the
hypothesis space. The third reason is that, the model specification
(linear models here) being tested might not contain the true target
function, but ensembles can nevertheless provide better approxima-
tions to the true function than a single base learner function can.

The proposed TAGGING framework was successful at strengthen-
ing “weak learners” (two types of QTL models) by first reducing the
hypothesis space and then aggregating by averaging the base models. A
rule of thumb for optimizing TAGGING in QTL-based prediction is to
conduct EJF based on heavily thinned maps (more sets to aggregate)
under relaxed selection p thresholds. Thinning alleviates the collinearity
within each marker set, and this allows the selection threshold to be
relaxed without overfitting. In addition to thinning, aggregating across
predictions from multiple models also decreases the prediction vari-
ance. For example, averaging N identical independent model predic-
tions would reduce the resulting prediction variance by a factor of 1/N.
In most ensemble learning, including TAGGING, reduction is obvi-
ously less than 1/N because of dependent base predictions. Thinning by
stratified sampling of markers from the linkage map takes advantage of
the consistent ‘spatial’ pattern of correlation among markers, such that
the subset hypothesis spaces defined by thinning represented disjoint
representations of the linkage map. By decomposing the prediction
error variances, we showed that the contribution of variance among
prediction sets was reduced to almost zero with large samples of sparser
subset maps (Figure 3). Finally, the TAGGING strategy tracks the
linkage structure exactly in our case of a perfectly uniform marker
density. In more typical QTL mapping situations in which the markers
are not evenly spaced in the linkagemap, it is important to stratifymaps
accounting for the original marker correlations, instead of just even
sampling across chromosomes. Similarly, in genome-wide association
studies for which the correlation structure of marker set is always not
constant, the LD between marker genotypes does not decays mono-
tonically as their physical distances extend. Special attention needs to be
paid to appropriate marker stratification schemes for these more gen-
eral situations of uneven marker spacing for QTL mapping and com-
plex LD structure for association mapping when TAGGING.

The minimum density required for TAGGING to work was around
20 cM in the thinned maps, and further thinning caused decreased
prediction ability in TAGGING. Because densemaps are expected to be
more easily available for many species, the applicability of TAGGING
will only increase over time. Furthermore, most crop plants regularly
dealwithmapswith density greater than onemarker per 20 cM, so there
is already general applicability at this time.

In addition to reducing the variance by model averaging, another
motivation of TAGGING was to alleviate bias in prediction. First, a large
collection of disjoint predictors can be considered and weighted when
ensembling them, and therefore more genotypic information (Figure 4,
Figure S4, and Figure S5) contributes to the ensemble prediction, resulting
in reduced bias in prediction. Moreover, when a few dominating predic-

tors consistently perform better than their correlated competitors (for
example, markers within the same LD block), they will tend to be selected
in prediction models at the expense of those weaker competing predic-
tors, some of which may provide information about local features of the
data. TAGGING thins the map into equally spaced disjoint maps, pro-
viding more opportunity for predictors to be considered without compe-
tition from the dominant predictors, possibly increasing the chance that
weak local features will be represented by some of the base learners.

We expect that bootstrapping of data samples in addition to
TAGGING to generate even greater numbers of base learners will not
result in a substantial decrease in the prediction error, as the variance is
already nearly eliminated by TAGGING, whereas biasmay increase due
to the use of smaller effective training samples for each base learner. As
observed here (Figure 3 and Figure S3) and found in many other
ensemble studies, the dominating error source turns out to be the bias2

and irreducible error (Bauer andKohavi 1999), which suggests necessity
of bias reduction in ensemble learning. A better approach may be to
implement TAGGING upon greater variable (lower bias) base learners.
Moreover, bias corrected estimators (Efron 1987) can be further in-
corporated into TAGGING, which may help reduce the prediction bias
due to finite-sample bias in base learner estimators (Horowitz 2001;
Zhang and Lu 2012). Similar to bagging and random forest, TAGGING
applied a natural model averaging weight to combine base learners and
did not require a tuning process. Another direction of future work could
be related to exploring sophisticated ensemble learning algorithms.
Regularized linear regression on the base learners can be easily imple-
mented (Friedman and Popescu 2008). Alternatively, meta-learning
strategies such as stack regressions (Breiman 1996b) are approaches
based upon the parallel training ofmultiple learning programs, followed
by a meta-learning stage to stack them in a principled fashion.

The prediction ability of TAGGING models is not sufficient to
outperform current standard GPmethods, such as GBLUP. Our results
suggest, however, that TAGGING can simultaneously match the pre-
diction ability of the GBLUPmodel (with a bit of complementarity that
can be exploited in additional ensembling) while also providing in-
formation on important genomic regions, which can be utilized in gene
discovery. The improved prediction ability of the ensemblemodels over
conventional QTL mapping imply they can better model the true QTL
architecture, for example, by highlighting important genomic regions
instead of relying on point estimates of QTL effects and by ameliorating
collinearity in dense genetic maps.

Oligogenic and polygenic model complementation
Thehighheritabilities (more than85%, linemeanbased)of the three traits
implied a great proportion of trait variation should be attributable to
differences between maize lines after accounting for known environ-
mental effects (Buckler et al. 2009; Kump et al. 2011; Peiffer et al. 2014).
Traditional additive QTL models nevertheless provide only moderate
prediction ability. This indicates that the genetic factors underlying these
high heritable traits are complex or might not be approximated well
without consideringmore complexmodel hypothesis. No strong specific
digenic interaction was found inNAMpopulations for the studied traits,
although it is still possible that polygenic additive by additive effects are
important, even if we have not mapped specific interactions so far.
Considering the epistasis may be one piece of the missing components,
fitting feasible epistasis effects that can account for moderate or large
effects seems practical in improving prediction accuracy, especially in
our TAGGING framework where the hypothesis spaces can now be
more easily searched. Previous studies showed that infinitesimal GP
model (GBLUP or ridge regression models) outperformed QTL-based
model in predicting complex traits for both multifamily populations
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(Peiffer et al. 2014) and biparental segregating populations (Lorenzana
and Bernardo 2009; Guo et al. 2012). The opposite results were found
for traits with major QTL (Zhao et al. 2014). In a plant breeding appli-
cation, linear combinations of different GP (including Bayesian) models
did not result in noticeable gain in GP accuracy (Heslot et al. 2012). Our
results showed that the ensemble learners amongwell-tunedTAGGING-
assisted QTL models and GBLUP models that come from the same
genotypic information improved prediction, which suggests their use-
ful complementation in prediction of complex traits. Furthermore,
the factorial experiment of combining varied model predictions sug-
gest that aggregating models that use different genotypic information
is advantageous in GP in the tested NAM populations. Leveraging the
complementary effects among model assumptions and/or genetic in-
formation provides one more possible solution to achieve a better
model specification to approach the ideal heritable variation.
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