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A noble extended stochastic 
logistic model for cell proliferation 
with density‑dependent 
parameters
Trina Roy1, Sinchan Ghosh1, Bapi Saha2 & Sabyasachi Bhattacharya1*

Cell proliferation often experiences a density-dependent intrinsic proliferation rate (IPR) and negative 
feedback from growth-inhibiting molecules in culture media. The lack of flexible models with 
explanatory parameters fails to capture such a proliferation mechanism. We propose an extended 
logistic growth law with the density-dependent IPR and additional negative feedback. The extended 
parameters of the proposed model can be interpreted as density-dependent cell-cell cooperation 
and negative feedback on cell proliferation. Moreover, we incorporate further density regulation 
for flexibility in the model through environmental resistance on cells. The proposed growth law has 
similarities with the strong Allee model and harvesting phenomenon. We also develop the stochastic 
analog of the deterministic model by representing possible heterogeneity in growth-inhibiting 
molecules and environmental perturbation of the culture setup as correlated multiplicative and 
additive noises. The model provides a conditional maximum sustainable stable cell density (MSSCD) 
and a new fitness measure for proliferative cells. The proposed model shows superiority to the logistic 
law after fitting to real cell culture datasets. We illustrate both conditional MSSCD and the new cell 
fitness for a range of parameters. The cell density distributions reveal the chance of overproliferation, 
underproliferation, or decay for different parameter sets under the deterministic and stochastic 
setups.

Cells can recolonize an empty area within a culture plate after being induced by cell-cell interaction for 
proliferation1,2. Such interaction-induced proliferation depends on cell density3–5. A positive interaction 
between two cells depends upon cellular cooperation to avail the resources such as space and food; it facilitates 
proliferation6. On the other hand, a negative interaction between a cell and growth-inhibitory molecules (e.g. 
mitomycin C) reduces cell population in the culture plate as an additional negative feedback apart from exist-
ing contact inhibition7,8. Like ecological populations, cells can experience density regulation through contact-
inhibition due to crowding under a limited resource9. Since the cells react to even slightest fluctuations in the 
environment, there is a high chance to observe noise in cell proliferation for such a case10,11. Thus predicting the 
interaction-induced cell proliferation dynamics through mathematical modeling is challenging and can open 
new avenues in the field of the growth curve.

The widely used logistic growth model has a series of demerits in predicting this intercellular-interaction-
induced proliferation12,13. The logistic model neither incorporates a density-dependent intrinsic growth rate 
(IGR) nor has an additional negative feedback term to separate the effect of growth-inhibiting molecules from 
the contact inhibition and limiting resource12,14,15. A few cooperation models have a density-dependent IGR, but 
the negative feedback term is absent in those growth laws16. On the other hand, the well-established harvesting 
model describes the additional negative feedback term but lacks a parametric representation of cooperation, 
or density-dependent IGR to describe such cell proliferation17. θ–logistic model and some of its variations best 
describe only density regulation due to crowding for any population18–20. Therefore, combining concepts of 
these three modeling frameworks can synthesize a new growth curve for interactive cell-proliferation dynamics. 
Note that Roy et al.15 already incorporated linear density-dependent IGR and additional negative feedback in 
an extended logistic model to capture such cell proliferation. However, that extended model still lacks flexibility 
in terms of regulation in the density-dependence of IGR and contact inhibition under a limited resource. Most 
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importantly, this model ignores the uncertainty present in cell proliferation resulting in an unrealistic scenario 
in cell dynamics.

Experimental scientists can predict and optimize the outcome of cell cultures using such a model based 
on evident properties of cell proliferation. Such a model can predict the stable cell density at the maximum 
sustainable condition and maximum cell-population fitness. Proposal of this evidence based generalized cell 
proliferation model also demands a comparative analysis with its preceeding models12,21,22 to understand its 
ability for portraying data properties. Exploration of a growth models’ property under a stochastic setup extends 
its advantage in the experimental field. It enriches the knowledge of uncertainty, the behavior of equations, and 
the generalized growth models23.

The uncertainty in cell proliferation may come from different sources and mechanisms11. For example, non-
uniform distribution or heterogeneity in growth-inhibiting molecules can cause randomness in proliferation in 
a multiplicative manner, while the fluctuation in micro-environmental components can be an additive noise24–28. 
Also, the association between this heterogeneous and environmental fluctuations may cause a correlation between 
the multiplicative and additive noises11,29. Therefore, a generalized model for intercellular-interaction induced 
cell proliferation must have correlated multiplicative and additive noises. Since the noises and their correlation 
influence the growth rates, the distribution of steady states is an exciting aspect of the generalized growth law 
under the stochastic setup. This aspect is necessary to predict the chance of overproliferation, underproliferation, 
or decay of cells with intercellular-interaction-induced proliferation.

Predicting the chance of different proliferation trends requires to compare the models’ behavior under sto-
chastic and deterministic setups, identifying the distribution pattern of sustainable cell density. For example, 
sustainable cell density may steadily rise if the resources are abundant30, but the distribution can show another 
pattern under random and limited resource31. Since the noise strength can reflect the randomness in a stochastic 
model, checking the similarity in these distribution patterns for strengths and correlation of noises is essential 
from mathematical and application-oriented perspectives. The existing models with stochastic setup mainly focus 
on tumor dynamics with either multiplicative or additive noise. Also, most of these models are multidimensional 
with assigned compartments to represent specific cell types in a given environmental setup. The specific field-
based conceptualization of these models limits their prospective to be applied in a vast field as a generic stochastic 
growth model. The consideration of correlation between noises is also insubstantial in the literature so far.

Based on the lacunae in present growth-curves for the application in intercellular-interaction-induced cell 
proliferation in culture, we propose a generalized model under both deterministic and stochastic setups. We set 
three primary objectives for this study for further understanding the proposed models’ property: (a) To deter-
mine the maximum sustainable stable cell density under stochastic and deterministic setups; (b) To determine 
the cell size for attaining maximum fitness; and (c) To predict trends in proliferation and fitness of cells using 
a real dataset.

Materials and methods
We start with the deterministic setup for the modeling framework and convert the model to a stochastic setup 
using correlated multiplicative and additive noises. We use the power series approximation around the carrying 
capacity on the deterministic model to find the conditional MSSCD. We also verify whether the cell population 
actually wants to stabilize at this conditional MSSCD value through the deterministic potential function. Again, 
using the same approximation technique, we find the cell density with maximum fitness. We use scratch assay 
data from Jin et al.1 to evaluate our proposed model. We fit the model using the grid-search method for evalua-
tion based on the least residual sum of square (RSS). We use “R” and “MATLAB” softwares for simulation-based 
study and figures generation. For analysis of stochastic setup, we use the Fokker-Planck equation and find the 
cell density with maximum steady state probability density function (SSPDF). We check the distribution of 
conditional MSSCD for different noise intensities and correlation using SSPDF. Finally, we predict the nature of 
cell density distribution at steady state for long run through simulation using the determined parameter values 
from the model fitting.

Deterministic model formulation. 
Step I:  We start to form our model from the basic logistic law, i.e., dx(t)dt = rx(t)

(

1−
(

x(t)
K

)

)

 . Here r is the 

constant IGR; x(t) is the density of the population at the time point t and K is the carrying capacity. We shall 
refer IGR as intrinsic proliferation rate (IPR) for cell proliferation from now on as the cell populations’ growth 
considered here is the proliferation only. Due to the inter-cellular interaction (especially cooperation), r must 
be density-dependent. So we consider, r ∝ x(t)α , i.e., r is an allometric function ( r = rpx(t)

α ) of the cell 
density to capture a generic density-dependent form. The parameter α is the regulator of inter-cellular inter-
actions/cell-cell cooperation and rp is the new constant IPR. Thus, the logistic model transforms to 
dx(t)
dt = rpx(t)

(α+1)
(

1−
(

x(t)
K

)

)

 . This equation can be treated as a generalized version of Von-Bertalanffy 

model12,32.
Step II:  Richards20 and Accinelli33 already noted that the x(t)K  of the logistic law represents the environmental 
resistance and crowding effect on cell proliferation. We incorporate the concept of environmental resistance 
and crowding regulation of cells at the culture flask by considering β as the allometric power of x(t)K  . Thus, 
the model now transforms into-
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Step III:  As cells interact with growth-inhibiting molecules alongside other cells, an additional negative 
feedback apart from contact inhibition acts on the proliferation. This negative effect may either be a constant 
or depend upon the cell density. If a cell receives c amount of negative feedback upon interacting with growth-
inhibiting molecules, the total suppression of the cell population becomes cx(t). We consider the c as a further 
allometric density-dependent negative feedback rate per cell for more generalization. Assuming c = nx(t)δ , 
the total suppression becomes nx(t)(δ+1) . The δ represents the regulation rate of interaction between cell and 
growth-inhibiting molecules to produce negative feedback. Therefore, the final deterministic model for the 
intercellular-interaction-induced cell proliferation dynamics is-

Stochastic model with multiplicative and additive noises.  Determining true cell density is impos-
sible due to the stochasticity involved through the heterogeneity in various gases and temperatures in the culture 
flask. The randomness involved in the true data of cell density can be well captured through additive noise. The 
multiplicative noise is introduced to the cell proliferation due to the heterogeneous distribution of growth-
inhibiting molecules, such as streptomycin and penicillin, in the culture media. We transform the proposed 
deterministic model (2) to a stochastic one to understand the proliferation trends under a random environment 
in this sub-section. Noise is one of the well-established ways to introduce stochasticity in the cell proliferation 
model34–39. However, none of the models with noise in the literature consider inter-cellular cooperation, envi-
ronmental resistance, and additional negative feedback. Our proposed final deterministic model (Eq. 2) can 
capture all these phenomena. Also, unlike most existing models, the multiplicative noise is associated with the 
additional negative feedback instead of the proliferation rate in interaction-induced cell proliferation. This asso-
ciation is due to the heterogeneity in the growth-inhibiting molecules in cell culture. Yang et al.40 and d’Onofrio41 
are the first to consider the multiplicative noise in the negative feedback rate. We also consider a similar multi-
plicative noise in the negative feedback rate based on the information on growth-inhibiting molecules. For the 
multiplicative noise, we transform n into n+ ε(t) . So the Eq. (2) becomes dx(t)dt = rpx(t)

(α+1)
(

1−
(

x(t)
K

)β
)

−nx(t)(δ+1) − x(t)(δ+1)ε(t)
 . Additional noises may affect the proliferation due to the fluctuations in environ-

mental conditions. So we consider the additive noise Ŵ(t) in the cell proliferation upon interaction at time point 
t. With both additive and multiplicative noises in the proposed deterministic model, we introduce the following 
stochastic model-

 Equation (3) is a Stratonovich stochastic differential equation. Here, ε(t) and Ŵ(t) are Gaussian white noises 
with the following properties:

Here, D and Q are the multiplicative noise and additive noise strengths, respectively. In other words, D 
increases if the heterogeneity in growth-inhibiting molecules increases. Similarly, Q can increase for a more 
fluctuating environment, leading to Ŵ(t) increment. Here, the additive and the multiplicative noises are delta 
correlated. The association between the distribution of growth-inhibiting molecules and the environment of 
cells supports this correlation. We denote � as the degree of the correlation strength between these two Gauss-
ian white noises.

Remark 1  An empirical researcher must be aware of the uncertainty resulting from a low-cost experiment. The 
multiplicative noise strength of the model provides an idea about the deviation from expected cell density under 
heterogeneity. The additive noise in the model provides an idea about the deviation from expected cell density 
under environmental randomness.

While dealing with cell dynamics data, one may assume the independence between the noises observed at 
two different time points. The errors involved in operating the instruments for cell culture may or may not be 
independent. Note that we must assume an independent error structure for Gaussian white noise. If the same 
experimenter handles the instrument, the system involves colored noise. Let us understand the colored noise 
definition mathematically from the perspective of cell proliferation in the Remark 2.

Remark 2  Let, ∈ (t) and Ŵ(t) are the Gaussian color noises with zero mean and the following properties:

(1)
dx(t)

dt
= rpx(t)

(α+1)

(

1−
(x(t)

K

)β

)

.

(2)
dx(t)

dt
= rpx(t)

(α+1)

(

1−
(x(t)

K

)β

)

− nx(t)(δ+1)
.

(3)
dx(t)

dt
= rpx(t)

(α+1)

(

1−
(x(t)

K

)β

)

− nx(t)(δ+1) − x(t)(δ+1)ε(t)+ Ŵ(t).

�ε(t)� =�Ŵ(t)� = 0,

�ε(t)ε(t′)� =2Dδ(t − t ′),

�Ŵ(t)Ŵ(t′)� =2Qδ(t − t ′),

�ε(t)Ŵ(t ′)� =�Ŵ(t)ε(t ′)� = 2�
√

DQδ(t − t ′).
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Here, the noises ∈ (t) and Ŵ(t) are exponentially correlated. τ1 is the self correlation time of the multiplica-
tive noise and τ2 is the self correlation time of the additive noise. Again, τ3 is the cross correlation time between 
the additive and the multiplicative noises. When the correlation times converges to zero then the colored noise 
become the white noise. If we consider the color noise in our proposed model (2) then the proposed model 
becomes the same model mentioned in (3) but with the above mentioned properties of ∈ (t) and Ŵ(t) as rep-
resented in Eq. (4). Among the two types of noises (white and colored), we consider the white noise for cell 
proliferation for mathematical simplicity. Note that the assumption of independence is not always unrealistic in 
case of dealing the data of cell proliferation.

Remark 3  We can fit the model to the dataset only if stable equilibrium points are present. The equilibrium 
points and the stability analysis of the model are in the result section. In the following subsection, we describe 
the dataset we use for fitting and the parameter estimation procedure through the fitting.

Dataset and fitting methodology.  Jin et al.1 used PC-3 cell line in RPMI-1640 medium with 10% fetal 
calf serum, at 37 °C, in 5% CO2 , 95% air for scratch assay. The data from the assays have three-time series for 
three different initial seeding densities: 12,000, 16,000, and 20,000 cells per well. The components of the culture 
media and its air, flask size, and temperature are the environment of PC-3 cell, which determines the K of our 
model. The 100 U/mL penicillin and 100 μg/mL streptomycin in the culture medium inhibits the unwanted 
fungal and bacterial growths. However, recent studies suggest penicillin can hamper the growth of cancer cells 
by inducing autophagy42. Although Streptomycin is not reported to affect mammalian cell growth directly, it has 
been suspected to alter metabolism of cells in-vitro43. So we consider these two as unintended growth-inhibiting 
factors determining the additional negative feedback. The initial cell population in the experiment prolifer-
ated overnight and started to interact after forming a uniform “scratch” by a wound-maker. The experimenters 
washed the culture twice with the fresh medium and further added 100 μL medium. Placing the plates in the 
incuCyte live cell imaging system, they collected the data with 2 h interval for first 18 h and then 6 h interval up 
to 48 h. So there are three experimental datasets for three initial seeding conditions. Each seeding condition has 
three replicates. The mean of the replicates for each seeding condition therefore makes up a dataset from three 
experimental setups.

Since the data shares the basic conceptions of the proposed model, viz., density-dependent IPR and additional 
negative feedback, we use these datasets to fit our model for evaluation. One way to fit the model into the dataset 
is through standard nonlinear regression. However, the experimental setups generated 15 data points for each 
seeding condition, and our model has six parameters. Therefore, the parameter estimation may not be significant 
through the nonlinear least-square method. Another well established technique for model fitting is grid-search 
technique16,19,44,45. We perform the entire grid search procedure using the following steps- 

1.	 We compute relative proliferation rates (RPR) from the data sets based on the relative growth rate (RGR) 
estimates by Fisher46.

2.	 Choosing the grid value range for each parameter and dividing it into h equal partitions, we run the grid-
search algorithm in “R”. There are (h+ 1) points in the partitioned space of each of the six parameters, 
(h+ 1)6 , where a hexad of rp , K, n, α , β , and δ parameter combinations are available.

3.	 Computing the RSS values at each combination, we choose the hexad corresponding to the minimum RSS 
as the best model fit to the dataset.

Finding the parameters estimate with desired accuracy level is possible by repeated tuning the choice of grid 
values. The choice of parameter grids for the dataset is in Table 1. Besides the density-RPR profile, We fit and 
compare both logistic models as suggested by Jin et al.1 and our newly proposed model through this procedure 
for time series also.

Results
Stability analysis of the deterministic model.  Solving 

(

x(t)×
(

rpx(t)
(α)

(

1−
(

x(t)
K

)β
)

− nx(t)(δ)
))

= 0 , we 
obtain two stable and one unstable equilibrium points for the model. One stable equilibrium is trivial, i.e., 
x(t) = 0 , another stable equilibrium point being the non-zero satisfying 

(

rpx(t)
(α)

(

1−
(

x(t)
K

)β
)

− nx(t)(δ)
)

= 0 . 
Figure 1a shows three different equilibrium points of the model. In addition to the equilibrium, the model has 
two inflection points (Fig. 1a). At these inflection points the absolute growth rates are minimum and maximum. 
The density vs relative proliferation rate (RPR) profile of the model shows that the model can attain negative RPR 
for a positive cell density, suggesting that the model can portray the Allee phenomenon (Fig. 1b). Figure 1c,d 
portray the proliferation and decay phases, respectively through the model.

(4)

�ε(t)ε(t′)� =
D

τ1
exp[−

|t − t ′|
τ1

],

�Ŵ(t)Ŵ(t′)� =
Q

τ2
exp[−

|t − t ′|
τ2

],

�ε(t)Ŵ(t′)� =�Ŵ(t)ε(t′)� =
�
√
DQ

τ3
exp[−

|t − t ′|
τ3

].
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The solution of the deterministic model finally provides two theorems.

Theorem 1  x∗ ≈ K − K









�

βrpK
α+nδKδ

�

−

�

�

βrpKα+nδKδ

�2

−2(2αβrpKα+β(β−1)rpKα+δ(δ−1)nKδ)nKδ

(2αβrpKα+β(β−1)rpKα+δ(δ−1)nKδ)









 is the condi-

tional MSSCD for the intercellular-interaction-induced proliferative cells. The conditional threshold density for 

Table 1.   Grid values for parameter estimation through grid-search.

Seeding 1

rp (0.03, 0.13, 0.23, 0.33, 0.43, 0.53, 0.63, 0.73, 0.83, 0.93)

K (1.03, 1.23, 1.43, 1.63, 1.83, 2.03, 2.23, 2.43, 2.63, 2.83)

n (0.0035, 0.0095, 0.0155, 0.0215, 0.0275, 0.0335, 0.0395, 0.0455, 0.0515, 0.0575)

α (0.90, 1.15, 1.40, 1.65, 1.90, 2.15, 2.40, 2.65, 2.90, 3.15)

β (0.19, 0.59, 0.99, 1.39, 1.79, 2.19, 2.59, 2.99, 3.39, 3.79)

δ (0.2, 1.0, 1.8, 2.6, 3.4, 4.2, 5.0, 5.8, 6.6, 7.4)

Seeding 2

rp (0.01, 0.07, 0.13, 0.19, 0.25, 0.31, 0.37, 0.43, 0.49, 0.55)

K (2.22, 2.61, 3.00, 3.39, 3.78, 4.17, 4.56, 4.95, 5.34, 5.73)

n (0.004, 0.014, 0.024, 0.034, 0.044, 0.054, 0.064, 0.074, 0.084, 0.094)

α (0.22, 0.42, 0.62, 0.82, 1.02, 1.22, 1.42, 1.62, 1.82, 2.02)

β (0.1, 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 2.9, 3.3, 3.7)

δ (0.08, 0.32, 0.56, 0.80, 1.04, 1.28, 1.52, 1.76, 2.00, 2.24)

Seeding 3

rp (0.00, 0.13, 0.26, 0.39, 0.52, 0.65, 0.78, 0.91, 1.04, 1.17)

K (1.00, 2.56, 4.12, 5.68, 7.24, 8.80, 10.36, 11.92, 13.48, 15.04)

n (0.0057, 0.0157, 0.0257, 0.0357, 0.0457, 0.0557, 0.0657, 0.0757, 0.0857, 0.0957)

α (0.30, 0.99, 1.68, 2.37, 3.06, 3.75, 4.44, 5.13, 5.82, 6.51)

β (1.44, 2.38, 3.32, 4.26, 5.20, 6.14, 7.08, 8.02, 8.96, 9.90)

δ (0.025, 0.030, 0.035, 0.040, 0.045, 0.050, 0.055, 0.060, 0.065, 0.070)

Figure 1.   Growth dynamics of the proposed model: (a) Absolute proliferation rate (APR) profile considering 
rp = 0.13 , K = 1.43 , n = 0.0095 , α = 1.15 , β = 0.99 and δ = 0.2 ; (b) RPR profiles for different n and other 
same constant model parameters; (c) Cell population survive for rp = 0.13 , K = 1.43 , n = 0.0095 , α = 1.15 , 
β = 0.99 and δ = 0.2 with the initial cell density 0.1; (d) The population goes to extinction for the initial cell 
density 0.06 with the same constant parameters.
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cell-proliferation upon interaction is x∗ = K − K









�

βrpK
α+nδKδ

�

+

�

�

βrpKα+nδKδ

�2

−2(2αβrpKα+β(β−1)rpKα+δ(δ−1)nKδ)nKδ

(2αβrpKα+β(β−1)rpKα+δ(δ−1)nKδ)









 

(proof is in the supplementary information).

Allee and cooperation models are the only extended logistic law other than our model to provide a threshold 
population size for growth or proliferation. Our proposed model is superior to the Allee and cooperation model 
as it can detect the conditional threshold cell density for proliferation and regulate the density by its different 
parameters. For example, One may reduce the conditional threshold density by either regulating the interac-
tion between growth-inhibiting molecules and cells ( δ ) or reducing the inhibiting molecule concentration (n).

The conditional MSSCD from Theorem 1 is lower than the carrying capacity of the conventional logistic 
model due to growth-inhibiting molecules; it provides the expected cell density during culture in a given envi-
ronment. Theorem 1 also states the set of parameters to control the cell proliferation and get the desired density 
during such cell cultures. A further question arises knowing this set of parameters: which one of the parameters 
in the expression is crucial in terms of application purpose? Since the rp is the constant proliferation rate for a 
given cell line, controlling the conditional MSSCD is not possible through rp . We simulate the distribution of 
conditional MSSCD for other parametric planes to answer this question. For this, we use the parameter values 
obtained from the data.

Theorem 2  The RPR is maximum at the cell density x∗ = K − K
(

rpβK
α−1+nδKδ−1

2rpαβKα−1+rpβ(β−1)Kα−1+nδ(δ−1)Kδ−1

)

 for the 

concave downward profile under the condition rpα(α − 1)x∗(α−2) − rp

Kβ
(α + β)(α + β − 1)x∗(α+β−2) − nδ(δ − 1)x∗(δ−2) < 0 

(proof is in the supplementary information).

The cell density at the maximum RPR measures the fitness of the cell population and its proliferativeness. 
This cell density provides the idea about the extension of the proliferation phase, which is vital to predict the 
duration of culture and the number of observations to be taken during data collection.

Remark 4  The parameter α is the regulator of intercellular interactions/cell-cell cooperation. The parameter δ 
represents the regulator of interaction between cells and growth-inhibiting molecules to produce negative feed-
back. The equality of these two physical parameters indicates that the amount of signal a cell receives for prolif-
eration is exactly the same as the signal of growth inhibition. In such a case, the environmental resistance and 
crowding regulator β plays a key role in controlling the cell proliferation dynamics. The concept of conditional 
threshold cell density is not at all meaningful as the intercellular interactions/cell-cell cooperation regulator 
already reaches the value of growth inhibition regulation when α = δ . This concept can be well understood 
through the usual stability analysis as described below. It is worthy of mentioning that mathematically we have 
only two equilibrium points, viz., one stable and another unstable, when α = δ . For α = δ the proposed deter-
ministic model (2) becomes dx(t)dt = rpx(t)

(α+1)
(

1−
(

x(t)
K

)β
)

− nx(t)(α+1) . This model has two equilibrium 

points with zero as the unstable equilibrium point and K(1− n
rp
)
1

β as the stable equilibrium point under the 
condition rp > n (see the supplementary information). The cell population sustain with any positive initial cell 
density x(t) and try to stabilize at x(t) = K(1− n

rp
)
1

β . Therefore, bimodality vanishes and unimodality is observed 
for the case α = δ rp > n . The RPR profile will be concave downward always with the maximum RPR value is at 
the inflection point x(t) = K(

(rp−n)α

rp(α+β)
)
1

β  . The deterministic potential function in this case is 

U(x) = −
[

(rp − n) x
(α+2)

(α+2)
− rp

Kβ
x(α+β+2)

(α+β+2)

]

 . The minima of this effective potential function will be at 

x(t) = K(1− n
rp
)
1

β which is the maximum stable cell density for rp > n.

Parameter estimation.  The density-RPR and time-density fitting to the scratch assay datasets show a 
lower RSS for our model than the logistic one for each of the three seeding conditions. The estimated parameters 
from the RPR fitting through the grid-search are in Table 2. Although the RSS for the RPR fitting of the seeding 
2 is very low, the data itself is too scattered in both the upper and lower range for the small cell density. Therefore, 
there is a chance that regardless of the low RSS value, the fitting for seeding 2 may not reflect the actual estimates 
of the parameters with the bias in the data set (Fig. 2b). Nevertheless, the density-RPR fittings to the other two 
seeding density datasets do not suffer from bias (Fig. 2a,c).

Jin et al.1 suggested that their two phase logistic model may share similarities with the Allee effect. However, 
they did not fit the Allee model stating seeding 2 and 3 were large enough seeding densities. We calculated the 
conditional threshold density, conditional MSSCD, density at the minimum and maximum RPR for the model 
from our estimated parameters (Table 3). The conditional threshold cell density calculated from our estimated 
parameters confirms that the smallest initial seeding density of the dataset was greater than the conditional 
threshold cell density.

Figure 3 compares the portrayal of the data through our model with the fitting by Jin et al.1. The blue dashed 
line is the time-series fitting of the proposed model, and the red-colored line is the time-series fitting of the 
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logistic model to the scratch assay data sets in the Fig. 3. The carrying capacity values are unexpectedly very high 
in the logistic fit, keeping the model near the exponential phase for the entire dataset. Thus the overall and two 
phase logistic fits are unrealistic compared to the highest cell density observed in the assay. Also, logistic fitting of 
the RPR profiles to the data after 18 h does not capture the whole scenario. The green solid and the violet dashed 
line represent the logistic time-density fit after and before 18 h density profiles respectively. The orange-colored 
lines in the Fig. 3 are the expected population density as per estimated parameters from the RPR fitting after 18 
h data sets. Table 4 enlists all parameters for a comparison between logistic and our model fitting.

Trends in cell densities under deterministic set up.  The rp is fixed for a cell line among all the deter-
mining parameters of the conditional MSSCD. n and K vary together with the culture media, flask, and envi-
ronmental setup. On the other hand, the α , β , and δ vary together with intercellular-interactions and cellular-
interaction with growth-inhibitory molecules, which depend on the medium’s initial cell density per well and 
fluidity. We observe that the distribution of the conditional MSSCD depends more on the K than the n. There is 
a chance of overproliferation in the deterministic setup under low n but high K. The cells may die under high n. 
The cell density at maximum RPR also depends more on K than n (Fig. 4). So the cells should be cultured in the 
larger flask to achieve maximum proliferativeness.

The conditional MSSCD depends more on β than α (Fig. 5a). The cells may tend to overproliferate under both 
high α and β . The conditional MSSCD does not exist for a high δ and low β depending more on δ than β . The 
cells may overproliferate only under a high β and low δ (Fig. 5b). The conditional MSSCD also depends more on 
δ than α showing mostly underproliferation of cells in the δ − α parametric plane. Therefore, the proliferation 
can be controlled via regulating the interaction between the growth-inhibitory molecules and cells followed by 
density-regulation through contact-inhibition and cell-cell cooperation (Fig. 5c).

Table 2.   Estimated model parameters from density-RPR fitting of our model.

Seeding condition r̂p K̂ n̂ α̂ β̂ δ̂ RSS value in RPR profile RSS value in density profile

1 0.13 1.43 0.0095 1.15 0.99 0.2 0.0017 0.0027

2 0.13 3.39 0.074 0.42 1.3 0.08 0.0013 0.0068

3 0.13 2.56 0.0757 0.99 1.44 0.07 0.0058 0.0185

Figure 2.   Our proposed model best fitted the cell density-RPR datasets for all of the seeding conditions 
generated through the grid-search method.

Table 3.   Calculated cell densities from estimated parameters from our model fitting.

Seeding condition Conditional threshold cell density
Conditional maximum sustainable 
stable cell density Density at lowest inflection point Density at heighest inflection point

1 0.0671 1.3507 0.0359 0.9325

2 0.2062 2.1799 0.0897 1.4152

3 0.6549 1.9761 0.3109 1.478
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The new cell fitness measure, i.e. cell density at maximum RPR depends more on the α than the β (Fig. 6a). 
The cells achieve maximum RPR at a great cell density under the high value of these two parameters. Figure 6b,c 
suggest that cell density depends only a little on the δ under high α and β . Under the low value of these two 
regulators, a high δ always reduces the cell density attaining the maximum RPR, resulting a poor cell-fitness.

Stochastic model analysis.  Our proposed stochastic model (3) can be compared with the general stra-
tonovich stochastic differential equation dxdt = f (x)+ g1(x)ǫ(t)+ g2(x)Ŵ(t) . Comparing it with our proposed 
stochastic model we obtain g1(x) = −xδ+1 and g2(x) = 1 . Using the help of47, we get noise induced drift 

A(x) = rpx
α+1

(

1−
(

x
K

)β
)

− nx(δ+1) + D(δ + 1)x(2δ+1) − �
√
DQ(δ + 1)xδ and noise induced diffusion 

coefficient B(x) = Dx(2δ+2) − 2�
√
DQx(δ+1) + Q . The cell density at long run can be obtained from the steady 

state probability density function (SSPDF). The analytical expression of the SSPDF is obtained from the Fokker-

Planck equation. The Fokker-Planck equation is ∂P(x,t)
∂t = − ∂

[

A(x)P(x,t)
]

∂x + ∂2
[

B(x)P(x,t)
]

∂x2
 , where P(x,t) is the 

probability density function of the cell population at the time point t. Solving the Fokker-Planck equation we get 
the SSPDF as Pst(x) = N ′

B(x) exp
(

∫

x
A(x′)
B(x′) dx

′
)

 with the normalizing constant N ′ . The value of N ′ can be obtained 
from 

∫∞
0

Pst(x)dx = 1.
This SSPDF Pst(x) helps to understand the validity of the proposed stochastic model. Since the number of 

the data points is too low to fit the stochastic model to the data directly, validation of the stochastic model is 
challenging in this case. The dataset we used is a time series with 15 data points with three replicates only. An 

Figure 3.   Time series solution of the proposed model and logistic law with comparative RSS for all three 
seeding conditions.

Table 4.   Logistic model fitting with the Jin et al.1 estimates used in Fig. 3 with the specific colors.

Seeding 1

Color r̂ K̂

Red 0.028 2.8× 10
10

Orange 0.04 2.5

Green + violet 0.051 2.1

Seeding 2

Color r̂ K̂

Red 0.029 8.7

Orange 0.05 2.3809

Green + violet 0.059 2.4

Seeding 3

Color r̂ K̂

Red 0.019 1.6× 10
10

Orange 0.07 2.1875

Green + violet 0.048 2.5
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experiment must have many replicates to have a sample with a large sample size so that the SSPDF of cell densi-
ties obtained from theoretical findings can be validated with the real observation of cell densities at the steady 
state. Such datasets with many replicates are rare.

So, we generate 2000 sample paths with the help of numerical simulation based on stochastic model 3. We 
use the parameter values estimated from the fittings of the deterministic model to the seeding condition 1, and 
we consider some particular values for the two noise intensities and correlation strength ( � ) to get a simulated 
dataset. To achieve the stationary state, we consider sufficiently large time points, and the cell densities at the final 

Figure 4.   The distribution of conditional MSSCD and cell density at maximum RPR in n-K parametric plane.

Figure 5.   The distribution of the conditional MSSCD in parametric plane of regulators in the growth law: (a) 
dependence of the conditional MSSCD on α and β parameters; (b) dependence of the conditional MSSCD on δ 
and β parameters; (c) dependence of the conditional MSSCD on α and δ parameters.

Figure 6.   The distribution of cell density at maximum RPR in parametric plane of regulators in the growth 
law: (a) dependence on α and β parameters; (b) dependence on α and δ parameters; (c) dependence on δ and β 
parameters.
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time point are used as the data set for the stationary state. We compare the frequency density of cell densities at 
steady-state of a simulated dataset of 2000 sample paths with the SSPDF obtained from the analytical solution. 
This comparison shows that the cell density distribution at the steady state matches the steady state probability 
density function obtained analytically (Fig. 7).

In addition, we illustrated the time series generated with the help of stochastic model 3 through numerical 
technique (Fig. 8). We have plotted the time series data thus obtained for each of the three seeding conditions and 
in the same figure we also plotted the observed cell densities. The red dots (o) represent the original/experimental 
dataset of Jin et al.1. The blue dots ( ∗ ) represent the simulated dataset obtained from the stochastic model. This 
Fig. 8 clarifies our claim that the proposed stochastic model is in good agreement with the actual observation.

Figures 7 and 8 suggest that the stochastic model is valid. So the model can be further analyzed to meet the 
first objective. Differentiating Pst(x) , we obtain dPst (x)dx = N ′

[B(x)]2 exp
(

∫ A(x)
B(x) dx

)(

A(x)− dB(x)
dx

)

 and d
2
Pst (x)

dx2
=

N ′

[B(x)]2 exp
(

∫ A(x)
B(x) dx

)(

dA(x)
dx − d2B(x)

dx2

)

+ N ′

[B(x)]2

(

A(x)− dB(x)
dx

)

exp
(

∫ A(x)
B(x) dx

)

A(x)
B(x)−

2

[B(x)]3N
′exp

(

∫ A(x)
B(x) dx

)

(

A(x)− dB(x)
dx

)

dB(x)
dx

 . At the extrema of the SSPDF, we must have dPst (x)dx = 0 i.e. 
(

A(x)− dB(x)
dx

)

= 0.

Theorem 3  x∗ ≈ K − K
(

nKδ+1+D(δ+1)K2δ+1−�
√
DQ(δ+1)Kδ

βrKα+1+n(δ+1)K (δ+1)+D(δ+1)(2δ+1)K (2δ+1)−�
√
DQδ(δ+1)Kδ

)

 is the conditional MSSCD due 

to the correlated additive and multiplicative noises under the condition rp(α + 1)x∗α − rp

Kβ (α + β + 1)x∗(α+β)

−n(δ + 1)x∗δ − D(δ + 1)(2δ + 1)x∗(2δ) + �
√
Dαδ(δ + 1)x∗(δ−1) < 0 (proof is in the  supplementary 

information).

Figure 9 visualizes the effect of noise strength and correlation strength on the conditional MSSCD. The condi-
tional MSSCD increases with the additive noise strength (Q) and decreases with the multiplicative noise strength 
(D) when the other model parameters are fixed (Fig. 9a). There is a high chance of overproliferation for a low 
D and a high Q (Fig. 9a). Again, there is a high chance of extinction for the low Q and high D. The conditional 
MSSCD depends more on D than � (Fig. 9b), and more on � than Q (Fig. 9c). The conditional MSSCD increases 
with � and Q; there is a high chance of overproliferation for high � and Q. The extinction risk of cells from the 
culture increases with low � and Q.

Due to the difficulty and complicated expression of the analytical expression of the SSPDF, we use numerical 
simulation to study the steady-state behavior in the long run under correlated noises. We draw a histogram of 
the cell densities based on 500 normal sample paths at the final time points. We use seeding 1 fitting estimates as 
the initial parameter values for this simulation. The cell population is stable and steady at either 0 cell density or 
at the conditional MSSCD. The distribution is symmetric around the conditional MSSCD for � = 1 (Fig. 10a). 
There is a loss in the symmetry for the decreasing � . For � = 0.5 , there is a mode at the zero states with another 
mode at conditional MSSCD (Fig. 10b). The histogram shows a bi-modality for low values of � . The mode at the 
zero state is highest for � = 0 (Fig. 10c). Therefore, the extinction chance increases for zero noise correlation 
between the additive and the multiplicative noises.
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Figure 7.   The histogram shows the distribution of cell densities at steady state under additive and multiplicative 
noises. The blue curve is the SSPDF. The function SSPDF and the distribution of cell densities matches to each 
other.
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The sustainability of the cell population depends on the strength of the two noises, like the correlation 
strength between them. For the zero strength multiplicative noise, the population has the mode at around the 
conditional MSSCD value (Fig. 11). Therefore, the population sustains in this case and tries to stabilize at the 
conditional MSSCD value. For D = 0.02 , there is a bimodality, where the highest mode is at the zero cell density. 
For D = 0.05 , we observe only one mode at x = 0 . Therefore, with the increasing values of the multiplicative noise 
strengths (D), the chance of extinction increases for � = 0.5 , Q = 0.01 , and other constant model parameters 
for the seeding condition 1. Similar things happen for increasing Q values considering D = 0.01 , � = 0.5 , and 
other constant model parameters (Fig. 12).

Remark 5  We have previously discussed the scenario for α = δ for deterministic case in Remark 4. It is important 
to understand the scenario under stochastic case too. For α = δ the proposed stochastic model 3 becomes 
dx(t)
dt = rpx(t)

(α+1)
(

1−
(

x(t)
K

)β
)

− nx(t)(α+1) − x(t)(α+1)ǫ(t)+ Ŵ(t) . For this stochastic model g1(x) = −xα+1 

and g2(x) = 1 . We get, A(x) = rpx
α+1

(

1−
(

x
K

)β
)

− nx(α+1) + D(α + 1)x(2α+1) − �
√
DQ(α + 1)xα and 

Figure 8.   The red dots (o) in each sub-figures represent the experimental data of Jin et al.1. The blue dots ( ∗ ) 
are obtained from the stochastic model (3) considering: (a) The seeding 1 estimated model parameters with 
D = 0.002 , Q = 0.06 and � = 0.4 . (b) The seeding 2 estimated model parameters with D = 0.01 , Q = 0.15 and 
� = 0.6 . (c) The seeding 3 estimated model parameters with D = 0.002 , Q = 0.2 and � = 0.4.

Figure 9.   The change in the conditional MSSCD value for different noise strengths and correlation strength 
using the parameters estimated for seeding 1: (a) the conditional MSSCD values in D − Q noise strength plane 
with highest correlation ( � = 1 ); (b) the conditional MSSCD values in D − � noise plane with Q = 0.01 ; (c) the 
conditional MSSCD values in Q − � noise plane with D = 0.01.
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B(x) = Dx(2α+2) − 2�
√
DQx(α+1) + Q . The extrema of the SPDF 

(

x(t) = x∗
)

 must satisfy the growth equation 
rpx

∗α+1 − rp
Kβ (x

∗)α+β+1 − n(x∗)α+1 − D(α + 1)(x∗)2α+1 + �
√
D Q(α + 1)(x∗)α = 0.

Therefore, for α = δ the conditional MSSCD is x∗ = K − K
nK

(α+1)+D(α+1)K(2α+1)−�
√
DQ(α+1)Kα

βrpK
(α+1)+nK(α+1)(α+1)+D(α+1)(2α+1)K(2α+1)−α�

√
DQ(α+1)Kα

 
u n d e r  t h e  c o n d i t i o n  

(rp − n)(α + 1)(x∗)α − rp

Kβ (α + β + 1)(x∗)(α+β) − (α + 1)(2α + 1)D(x∗)2α

+�
√
DQ(α + 1)α(x∗)(α−1) < 0

.

Remark 6  It is meaningful to understand the mathematical difficulties involved with colored noise scenario. To 
observe the effect analytically, we must know the value of f ′(x) at the conditional MSSCD 

x(t) = K − K









�

βrpK
α+nδKδ

�

−

�

�

βrpKα+nδKδ

�2

−2(2αβrpKα+β(β−1)rpKα+δ(δ−1)nKδ)nKδ

(2αβrpKα+β(β−1)rpKα+δ(δ−1)nKδ)









 to find the functional 

Figure 11.   Distribution of cell density for rp = 0.13 , K = 1.43 , n = 0.0095 , α = 1.15 , β = 0.99 , δ = 0.2 , 
� = 0.5 , Q = 0.01 , and variable strength of multiplicative noise: (a) D = 0.05 , (b) D = 0.02 and (c) D = 0.

Figure 12.   Distribution of cell density for rp = 0.13 , K = 1.43 , n = 0.0095 , α = 1.15 , β = 0.99 , δ = 0.2 , 
� = 0.5 , D = 0.01 , and variable correlation between multiplicative noise: (a) Q = 0.05 , (b) Q = 0.02 and (c) 
Q = 0.

Figure 10.   Distribution of cell density for rp = 0.13 , K = 1.43 , n = 0.0095 , α = 1.15 , β = 0.99 , δ = 0.2 , 
D = 0.01 , Q = 0.01 , and variable correlation between additive and multiplicative noises: (a) � = 1 , (b) � = 0.5 
and (c) � = 0.
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form of the noise induced drift A(x) and the noise induced diffusion coefficient B(x) of the Fokker-Planck equa-
tion as depicted in the stochastic model analysis section. After finding these functional forms, one can similarly 
observe the effect of the Gaussian colored noise like the white noise. However, for the proposed deterministic 
model (2), observation of the colored noise is quite difficult. Therefore, for simplicity, we discuss the effect of the 
Gaussian white noise on cell proliferation and avoid the effect of the correlation times.

Discussion and conclusion
We have formed a model with density-dependent IPR, regulation of environmental resistance (e.g., contact 
inhibition), and a mortality term similar to the harvesting but with regulatory parameter based on the concept 
of intercellular-interaction-induced cell proliferation and growth inhibitory molecules in the culture. This gen-
eralized extended logistic model can successfully portray the Allee effect, cooperation, and additional negative 
feedback for cell population. To the best of our knowledge, we are the first to introduce correlated additive and 
multiplicative noises in the single-dimensional generalized model for the cell proliferation. Such a correlated 
noise structure in the stochastic framework helps to understand the proliferating mechanism of cells in the cul-
ture where the heterogeneity in growth-inhibiting molecules may originate due to environmental fluctuations. 
The incorporation of regulatory parameters enables the model to be more explanatory for any cell proliferation 
dataset with the underlying inter-cellular cooperation, environmental resistance through contact inhibition, 
and the interaction between cell and growth-inhibitory molecules; it also detects the conditional MSSCD under 
a given environment.

In our new model, conditional MSSCD actually replaces the carrying capacity as the determinant of prolif-
eration statuses: regular, under, and overproliferation. The theoretical exploration of the model provides a new 
measure of fitness. Fisher46 showed how the RGR (RPR for proliferating cells) could measure a population fitness. 
Combining the Fishers’ RGR concept and the cell proliferativeness, our proposed measure states that the fitness 
of proliferating cells is the density at maximum RPR. So this new fitness is no more the cell population’s inherent 
property only. It depends on the interaction rates of cells in between themselves or with environmental resources, 
growth-inhibiting factors, and inherent constant proliferation rate through the parameters. Observation of cells 
often showing different proliferativeness in two different setups can support this new measure of fitness.

The evaluation of our model through the scratch assay data reassures the flexibility and superiority of our 
proposed model over the logistic one to portray cell proliferation. The comparison of the model with previous 
fits to the dataset reveals that the estimated parameters are more realistic for the newly proposed model than 
logistic one; especially the carrying capacity is closer to the last observed data point for our model than the one 
used by Jin et al.1. The simulations using our estimated parameters explain how overproliferation, underprolifera-
tion, and regular proliferation may occur with varying parameters. Although, controlling our model’s constant 
inherent proliferation rate for a cell population is impossible, we find that manipulating the conditional MSSCD 
is plausible through the culture media amount, composition, flask size, growth-inhibiting molecule, and most 
importantly, the cellular-interaction rates. According to our findings, the regulator of growth-inhibitor uptake 
and associated negative feedback is the first target to get desired conditional MSSCD. Other interacting molecules 
that bind with inhibitors can be introduced for this purpose.

Another way can be to culture cells in a larger flask with a continuous flow of fresh new media. This technique 
may reduce the interaction time between cells and growth-inhibiting molecules, resulting in a greater value of δ 
followed by a greater conditional MSSCD. The distribution of the conditional MSSCD on the parametric plane 
changes its Kurtosis and direction after moderate cellular-cooperation, environmental resistance, and negative 
feedback regulation. A reason for such an observation may be hidden in cells’ changing signaling procedures 
affected by the environmental interaction. More research is necessary for the field of epigenetic signaling to 
justify the observation from simulation thoroughly. Similar to the conditional MSSCD, the simulation also 
detects the cell density at maximum RPR, i.e., the new fitness measure has a changing Kurtosis in the α–δ and β
–δ parametric planes. The high Kurtosis near the low value of α and β suggests that the regulation of interaction 
growth-inhibiting molecules and cells can only affect cell fitness if the interactions between cells are low. An 
explanation of this observation is that the cells share the proliferative signal upon interacting between them to 
nullify the effect of growth-inhibiting molecules.

Introduced noises do not alter the effect of new parameters on the conditional MSSCD. In addition, the 
stochastic setup of the model further examines the trend in cell density distribution pattern and the conditional 
MSSCD for different strengths of multiplicative and additive noises and their correlation strength. Since experi-
ments are always prone to error, the stochastic setup portrays the final and true nature of generalized growth law 
for cell proliferation. The finding from the stochastic modeling provides a fair idea about the chance to achieve 
the desired conditional MSSCD. Sacrificing in the costs of scratch assay always introduces multiplicative and 
additive noises in the negative feedback rate and APR, respectively48–50. The additive noise or the environmental 
fluctuation possibly causes cells to form overproliferating patches in parts of the culture plate, where they can 
proliferate more and eliminates from parts where the environment is adverse for proliferation. As a result, the 
overproliferating patch numbers are high under low multiplicative noise strength implying that the total cul-
ture is likely to experience overall overproliferation. The multiplicative noise, correlated to the additive noise, 
concentrates the growth-inhibiting molecules in parts of the culture flask, where the cells are decaying or under-
proliferating. The overproliferating patches may have diluted growth-inhibiting molecules due to the correlation 
between the two noises. For example, there can be heterogeneity in streptomycin and penicillin throughout the 
culture associated with uneven temperature in the culture flask. Thus, a high correlation strength between the 
noises plays a vital role in regulating conditional MSSCD to an amount near K or carrying capacity.

The regulatory parameters in the deterministic and stochastic models are crucial to controlling cell prolifera-
tion in empirical research. For example, cooperation or cell-cell interaction increases cell density. The plating of 
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cells at first can be distant to reduce this interaction. Two distantly placed cells will need more time to interact 
and signal each other. Therefore, the distance between two cells during empirical research controls the cell-cell 
interaction rate parameter. The crowding regulator of the cell is also governed by the distance between two cells 
during plating. If the cell density is low during plating, the crowding effect will be automatically low for cells. 
Otherwise, regular wash with fresh media may help empirical scientists to avoid the crowding pressure. For 
empirical scientists, the regulation of growth-inhibiting molecules and cells may be difficult to control. This 
regulation depends on the cell’s property to intake the growth-inhibiting molecules and its ability to respond. 
So this regulation varies with growth inhibitor types and cell lines. An empirical scientist may determine the 
regulation rate of growth inhibition by changing the inhibitor types mainly.

An empirical researcher may aim to reduce the randomness in the scratch assay. There are several challenges 
in reducing this randomness in the assay. The empirical researcher needs good control of the cell culture environ-
ment, a good quality homogeneous media, and homogeneous plating of cells to avoid errors. Note that improving 
these criteria to reduce randomness may increase the cost of the experiment. Controlling the correlation strength 
( � ) between two noises is not possible manually. However, the intensities of both the additive and multiplicative 
noises are possible to be reduced by experimental scientists. The multiplicative noise can be reduced by making 
the media and cell plating more homogeneous. The growth-inhibitor molecules should be immensely vortexed 
in order to prevent multiplicative noise (D) due to heterogeneous growth inhibitor molecules. The additive 
noise occurs due to a random environment. Therefore, an experimental scientist must use better equipment to 
control the environment of cell culture. Otherwise, scientists can regularly monitor the environment to avoid 
any fluctuations in it. Also, the experimenter may perform more replicates for each experiment. We advise taking 
more data points after the cells reach the steady state in order to confirm that the cells have reached the steady 
state with the least effect of noises.

Our model, through its Theorem 3, can determine the expected conditional MSSCD in cost-effective cultures. 
This model serves as a tool for experimenter biologists to predict the health of a cell population and the chance 
of overproliferation/underproliferation. As per our objective, we have successfully determined the cell density 
attaining the maximum fitness and predicted the trend in conditional MSSCD for deterministic and stochastic 
setups using a real dataset.

Data availability
The datasets analysed during the current study are available in the Tables 4, 5, and 6 of the supplementary mate-
rial of published work1. The link to the data is https://​static-​conte​nt.​sprin​ger.​com/​esm/​art%​3A10.​1007%​2Fs11​
538-​017-​0267-4/​Media​Objec​ts/​11538_​2017_​267_​MOESM1_​ESM.​pdf. The softwares used in this study are R 
(version 4.1.3) and MATLAB (version- R2012b).

Code availability
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