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Abstract. Female sex is a leading risk factor for developing Alzheimer’s disease (AD). Sexual dimorphism in AD is gaining
attention as clinical data show that women are not only more likely to develop AD but also to experience worse pathology and
faster cognitive decline. Pre-clinical AD research in animal models often neglects to address sexual dimorphism in evaluation
of behavioral or molecular characteristics and outcomes. This can compromise its translation to a clinical setting. The triple-
transgenic AD mouse model (3xTg-AD) is a commonly used but unique AD model because it exhibits both amyloid and tau
pathology, essential features of the human AD phenotype. Mounting evidence has revealed important sexually dimorphic
characteristics of this animal model that have yet to be reviewed and thus, are often overlooked in studies using the 3xTg-AD
model. In this review we conduct a thorough analysis of reports of sexual dimorphism in the 3xTg-AD model including
findings of molecular, behavioral, and longevity-related sex differences in original research articles through August 2020.
Importantly, we find results to be inconsistent, and that strain source and differing methodologies are major contributors to
lack of consensus regarding traits of each sex. We first touch on the nature of sexual dimorphism in clinical AD, followed by
a brief summary of sexual dimorphism in other major AD murine models before discussing the 3xTg-AD model in depth. We
conclude by offering four suggestions to help unify pre-clinical mouse model AD research inspired by the NIH expectations
for considering sex as a biological variable.

Keywords: Alzheimer’s disease, mouse models, sex as a biological variable (SABV), sexual dimorphism, triple transgenic,
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INTRODUCTION

Sexual dimorphism has recently come into focus
in the Alzheimer’s disease (AD) community as clin-
ical data show that women are not only more likely
to develop AD but also to experience more rapid
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cognitive decline [1–3]. This finding is even more
pronounced in those who are carriers of the �4
allele of apolipoprotein E (APOE4), the strongest
and most prevalent known genetic risk factor for AD
[4, 5]. Reasoning behind sexual dimorphism in AD
suggests that it is due to intrinsic risk factors like
genetics, sex hormones, and differing inflammatory
responses, in addition to the longer life expectancy
of females [1]. Moreover, females are documented to
respond better than males to two acetylcholinesterase
inhibitors (donepezil and rivastigmine), 2 out of 4 of
the only currently FDA-approved drugs for treatment
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of AD symptoms [6, 7]. Despite this evidence of sex-
ual dimorphism in AD, there is a lack of sex-stratified
data from clinical trials of AD as well as in pre-clin-
ical and basic research using animal models [7–9].

Scrutiny over the utility of animal models for
therapeutic discovery in AD has intensified over
the last decade [10, 11]. One animal model, the
triple transgenic AD (3xTg-AD) mouse, has been
widely used for almost 20 years because it is
one of the only two mouse models in which
interventions against both human amyloid and tau
pathology can be studied simultaneously [12]. The
3xTg-AD mouse overexpresses three human trans-
genes throughout the central nervous system th-
at contribute to the AD-like phenotype of this model.
Two of these transgenes cause early-onset AD in pa-
tients, namely the amyloid precursor protein with the
Swedish familial double mutation (APPKM670/671NL)
and the presenilin 1 with a substitution mutation (PS
1M146V). Together, these mutations accelerate pro-
duction of pathological A� and deposition into
amyloid plaques [12, 13]. The third transgene is mic-
rotubule associated protein tau (MAPT) with a P301L
mutation that causes increased aggregation of hyper-
phosphorylated tau into neurofibrillary tau tangles
[14]. While this is the major AD mouse model in
which both human amyloid and tau pathology can be
studied simultaneously, it is important to note that the
MAPT mutation is a familial determinant for ear-
ly-onset frontotemporal dementia [15]. We have sum-
marized the evidence confirming that male and
female 3xTg-AD mice are sexually dimorphic in both
the presentation of AD molecular pathology and in
behavioral studies examining short-term recognition
and spatial memory. Surprisingly, we could not iden-
tify any well-powered studies that compared total
transgene expression levels between sexes.

Both the amyloid and tau pathologies are required
for a confirmed diagnosis of AD; however, they are
not the only factors that contribute to neurodegenera-
tion and memory loss; neuroinflammation, cell death,
and widespread metabolic changes are concomitant
[16, 17]. Concerns regarding the consistency of the
data obtained from this animal model have recently
arisen and have yet to be reviewed, including colony
drift and considerable sexually dimorphic presen-
tation of AD pathology and cognitive deficits [18,
19]. Understanding sexually dimorphic responses to
preclinical therapeutic interventions will elucidate
mechanisms of both the disease and the interven-
tions. Despite the noted sexual dimorphism of this
mouse model, there are a limited number of studies
that use both sexes (Fig. 1), and even fewer that re-
port results separately by sex or directly compared
results between males and females. Preclinical ani-
mal models should be considered on the basis of their
ability to recapitulate both the universal hallmarks of
AD as well as the sexually dimorphic nature of AD
[20]. In this review, we evaluate the literature regard-
ing sexual dimorphism in molecular and behavioral
presentations of disease progression in the 3xTg-
AD mouse model along with sexually dimorphic
responses to preclinical therapeutic interventions.

SEXUAL DIMORPHISM IN THE
CLINICAL PRESENTATION OF
ALZHEIMER’S DISEASE PATIENTS

Although the mechanisms behind sexual dimorp-
hism in AD are the subject of ongoing investigations,
it has been well-documented that AD disproportion-
ately affects women, at a ratio of approximately two
to one [21]. One explanation for the higher preva-
lence in females may be the link to APOE4, an allele

Fig. 1. Graph of 613 original publications using 3xTg-AD mice by sex over time.
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variant believed to affect mechanisms associated with
clearance of amyloid-� (A�), hyperphosphorylation
of tau, microglial activation, and synaptic plasticity.
APOE4 is strongly correlated to risk for sporadic and
late-onset familial AD, and this correlation is more
prominent in women than men [4]. Studies in human
subjects have shown that female APOE4 carriers
have worse performance in memory tasks and more
rapid cognitive decline than men, even in non-AD
cohorts [22]. It has also been suggested that APOE4
allele carriers respond differently with respect to
safety and efficacy in clinical trials [23]. Clinically,
sex differences in A� plaque burden are still being
studied, with some trials reporting an increase in
women [24, 25], while others have found no sex dif-
ferences in A� deposition [26]. Studies comparing
tau between males and females are also finding a
greater burden in women. Oveisgharan et al. analyzed
postmortem brains from AD patients and report sig-
nificantly higher densities of tau tangles in women
[27]. Another study, in a cohort of individuals at risk
of developing AD based on A� load, tau deposits (as
measured by positron emission tomography; PET) in
the entorhinal cortex appeared earlier in women com-
pared to men, further supporting the notion that sex
influences AD risk [28]. Taken together, this recent
literature points towards a trend of worse pathology
in women.

Behind these discrepancies between sexes in AD
pathology are several inherently sex-based differ-
ences including sex hormones, epigenetics, immune
response, and lifespan. One hypothesis for the higher
prevalence of AD in women lies in the drastic changes
in sex hormones women experience as they tra-
verse menopause, resulting in a depletion of estrogen
post-menopause [29]. In addition to the reported neu-
roprotective aspects of estrogen [30], female estrogen
and male androgen act upon gene expression through
epigenetic modifications such as methylation and
acetylation [31]. These sex hormone-based epige-
netic effects may influence susceptibility to certain
disease or possibly response to drug therapies. How-
ever, their impact in AD pathology remains largely
elusive.

Studies have shown significant differences in
immune system activation between the sexes,
specifically in innate and adaptive immunity [32].
Importantly, immune response has been implicated
as a critical factor in AD development, with inflam-
matory cytokines, chemokines, and gliosis increased
in AD patients [33]. Autoimmunity differs between
sexes in clinical presentation and prevalence, with

women representing almost 80% of all known cases
of autoimmunity in the US [34]. Furthermore, men
and women show different responses to vaccines, as
measured by antibody response [35]. For example,
females, compared to males, had a better humoral
response to influenza vaccines and hepatitis vaccines,
but a worse response to vaccines for measles and
yellow fever. The mechanisms behind these sex dif-
ferences are still under investigation but are thought
to be a combination of differences in genetics and
gonadal hormones. This is of interest to AD research
as vaccines against A� are under investigation in clin-
ical trials [36, 37].

Lifespan is also a confounding variable. Women,
on average, live longer than men, increasing the
probability of developing AD. However, longitudi-
nal and epidemiological studies that have controlled
for this have concluded a higher lifetime risk for
women compared to men [38]. These factors are,
of course, not mutually exclusive and influence each
other significantly, which makes distinguishing a pre-
cise mechanism behind sexual dimorphism in AD
unrealistic but makes sex-based stratifications all the
more important.

Sex differences in clinical trial outcomes are often
overlooked and underreported, making it difficult to
determine how sex differences influence AD and pos-
sibly other neurodegenerative diseases. In fact, there
was a strong male bias in clinical trials until it was
required by law in 1993, that female enrollment must
be included in phase III clinical trials [39]. There
are widespread reports of differences in therapeutic
response between sexes, yet stratification of results
remains limited [40]. Among 54 clinical trials for the
AD therapeutics cholinesterase inhibitors (donepezil,
rivastigmine, and galantamine) and the N-methyl-
D-aspartate receptor agonist memantine, 48 did not
report data separately by sex [41]. This lack of strati-
fication in clinical data may be problematic since sex
differences have been reported in the Mini-Mental
State Examination [42], verbal memory tests [43],
cholinergic systems [44], and drug metabolism [45].
A similar lack of stratification is found in preclinical
studies, as described below.

SEXUAL DIMORPHISM IN THE 3xTg-AD
MOUSE MODEL

Overall, sex differences are underreported in pre-
clinical AD research as most studies do not equally re-
cruit animals from each sex, especially not in numbers
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large enough to reach statistical power [7]. Sexual
dimorphism has been reported in many of the most
commonly used AD mouse models, which employ
various familial mutations in human amyloid-beta
protein precursor (A�PP or APP) and presenilin 1
(PS1). Reports include increased A� plaque burden
in females of the APP/PS1 [46–49], TASTPM [50],
and Tg2576 [1, 51, 52] mouse models, and sex dif-
ferences in tau phosphorylation in the P301L mouse
[53, 54].

Sex differences in behavior have also been noted
in various AD models including stress response in
5xFAD [55, 56], impaired reference memory in
female Tg2576 [52], and impaired spatial learning
in female TgCRND8 mice [57]. However, the 3xTg-
AD mouse has been particularly noted for the mod-
el’s variable sex differences, which have yet to be
reviewed [19]. These sex differences in AD mouse
models often do not correlate, and sometimes even
contradict differences seen clinically, which could

hinder the development of AD treatments if they are
not accounted for.

Sexual dimorphism in AD pathology

Accumulation of A� in serum and brain tissue is
reported to occur earlier and progress at an acceler-
ated rate in female 3xTg-AD mice in the majority of
studies that compare sex (Table 1) [58–70]. A sig-
nificant difference in A� pathology in this mouse
model proves problematic for the pre-clinical screen-
ing of A�-targeted therapies, since the age of onset
and subsequent A� plaque accumulation both differ
between males and females. The Mufson laboratory
reported A� immunoreactive-plaque deposition in
the subiculum of females at an age of 8-9 months
and males at 11-12 months [59, 62]. Hebda-Bauer et
al. saw A�PP/A� immunoreactivity in the hippocam-
pus of both males and females at 3 months, yet also
reported greater immunoreactivity in females [70].

Table 1
Summary of sex differences in molecular and behavioral studies using the 3xTg-AD model

Age (mo) Molecular summary Behavioral summary Author Year

4, 12, 18 F ↓ NLGN1 F ↔ M performance in Y-maze, Dufort-Gervais et al. [115] 2020
SOR, and MWM

12 F ↑ A�42 M ↑ impairment in OR; Creighton et al. [66] 2019
F ↔ M impairment in OLM

6 F ↑ A� F ↑ impairment in spatial Stimmell et al. [58] 2019
reorientation

12 F ↑ A� and p-tau F ↑ impairment in MWM Yang et al. [71] 2018
9 F ↑ A�40 and A�42 Omori et al. [69] 2017
12 and 18 F ↑ A�40 and A�42 Vandal et al. [68] 2015
2, 6, 12, 15 M ↑ impairment in RAM Stevens et al. [92] 2015
6 M ↑ impairment in CFC; F ↔ M Stover et al. [88] 2015

performance in NOR and Y-maze
4 F ↑ impairment in PM, Cañete et al. [91] 2015

HB, DLB, TM, and ACT
12 and 15 F ↑ impairment in MWM, M ↑ Blazquez et al. [89] 2014

inhibition in CT and OF
3-4 F ↑ A� Hebda-Bauer et al. [70] 2013
12 and 18 F ↑ A�40 and A�42 Bories et al. [67] 2012
2-3, 13–15, 18–20 F ↑ A� Perez et al. [59] 2011
6 F ↑ A�40 and A�42 Gimenez-Llort et al. [61] 2010
12 to 14 F ↑ A� F ↑ impairment in Y-maze Carroll et al. [60] 2010
8-9 and 18–20 F ↑ A� and p-tau Oh et al. [62] 2010
2, 3, 4, 6, 9, 12 F ↑ A� Rodriguez et al. [63] 2008
9, 16, 23 F ↑ A�40 and A�42; Hirata-Fukae et al. [64] 2008

F ↔ M tau
2, 4, 6, 9, 12, 15 F ↔ M A� and p-tau F ↔ M performance in MWM, Clinton et al. [72] 2007

IA, NOR at 2, 4, 12 months;
F ↑ impairment in MWM
and IA at 6 and 9 months

10 F ↑ A�; M ↑ tau F ↔ M performance in MWM and OF Nelson et al. [65] 2007

↑ = increase,↓ = decrease,↔ = no change or difference. F, female; M, male; A�, amyloid-�; p-tau, phosphorylated tau; NLGN1, Neuroligin-1;
ACT, spontaneous circadian motor activity test; CFC, cued fear conditioning; CT, corner test; DLB, dark-light box; HB, Boissier’s hole-board
test; IA, inhibitory avoidance; MWM, Morris water maze; NOR, novel object recognition; OF, open field; OLM, object location memory;
PM, elevated plus maze; RAM, radial arm maze; SOR, spatial object recognition; TM, tunnel-maze.
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Stimmell et al. and Yang et al. also found significantly
greater A� (6E10) immunopositive-plaque deposi-
tion in the hippocampus of female mice at 6 months
and 12 months, respectively [58, 71]. Creighton et
al. report nearly 4-fold greater A�42 deposition in
the hippocampus, as measured by ELISA, in female
compared to male 3xTg-AD [66]. Omori et al. report
A�42 levels approximately 20-fold higher in females
than males using ELISA [69]. The LaFerla labora-
tory, which described the generation of the 3xTg-AD
model, found no sex differences in whole brain A�40
and A�42 at 2, 6, 12, and 15 months of age [72]. We
identified only one other study that measured cor-
tical A�40 and A�42 at 6 months and observed no
difference between sexes [73]. Notably, no study has
reported a significantly greater amount in A� levels in
male 3xTg-AD mice compared to females. Recently,
Russo-Savage et al. measured greater levels of human
APP in the somatosensory cortex of females at 3
months old using western blot [74]. However, this was
only evaluated between a single mouse from each sex
and no analysis was performed on A�PP processing
enzymes or A� production.

Sexually dimorphic tau burden has received less
attention and studies that have addressed it produced
variable and inconclusive results [61, 62, 64, 65, 71].
Gimenez-Llort et al. did not report sex-based differ-
ences in PHF-tau immunostaining in hippocampus
and amygdala [61]. Oh et al. on the other hand, used
four different immunohistochemical stains for dif-
ferent tau residues (MC1, AT8, AT180, and PHF-1)
and found greater tau staining in 18- to 20-month old
females compared to males [62]. Additionally, Yang
et al. report increased phospho-tau (T231) positive
cells in the hippocampus of 12-month-old females
[71]. In two of the studies that reported greater A�
burden in females, the authors did not observe a
correlation between sex and tau burden [61, 64]. Nel-
son et al. reported less hippocampal and amygdala
tau in 5-month-old females relative to males using
HT7 immunostaining, although A� ELISA uncov-
ered A�40 to be three-fold greater in females than
males [65].

Sexual dimorphism in physiological responses

Kapadia et al. report worse autoimmunity in male
3xTg-AD mouse model, including reduced CD+T-
splenocytes, higher serum autoantibody levels, and
greater splenomegaly in 6-month-old males com-
pared to females [73]. They hypothesize that early
autoimmunity in the males may protect them from

plaque deposition and go on to suggest that the
observed sex-related immune differences might be
linked to differences in behavior. Of note, no sex dif-
ferences were observed in cortical tau, A�, or BDNF
levels in these mice. An investigation of immunoen-
docrine aging in 3xTg-AD mice reported a worse
neuroimmunoendocrine network in males, involving
lower splenic lymphocyte chemotaxis and prolifer-
ation and lower thymic natural killer cell activity
[75, 76].

Adding further complexity to the observed patho-
logical sex differences in 3xTg-AD mice are the
effects of sex and stress hormones. Studies using
ovariectomized (OVX) 3xTg-AD mice report earlier
and accelerated AD pathology and impaired learning
compared to sham-operated mice, while 17�-estra-
diol treatment was enough to prevent the acceler-
ated decline [77–79]. Gonadectomized (GDX) male
3xTg-AD mice also show increased A� and increased
memory-related behavioral deficits, which are atten-
uated with testosterone treatment [80–82]. Together,
these studies suggest that androgen and estrogen
pathways may influence regulation of A� and tau pat-
hology in 3xTg-AD mice. Furthermore, studies have
found sex-specific corticosteroid responses in 3xTg-
AD mice. Clinton et al. report that 9-month-old 3x
Tg-AD females, but not males, have an elevated cor-
ticosterone response following stressful tasks, which
consequently affects their performance in memory-
related tasks [83]. A recent study corroborates this
finding, reporting increased corticosterone response
to restraint stress in 4-month-old females compared
to males and wild type females, proposing that this
increased stress response may precede and contribute
to AD pathology in these mice [84]. Given that chr-
onic stress is a risk factor for AD [85], these stud-
ies suggest that sex-specific stress responses may
help explain sex differences in AD pathology. Influ-
ences of the neuroendocrine system on AD pathology
are of great importance in the context of AD sexual
dimorphism and should be considered in pre-clinical
research.

Despite worse pathology described by many of the
studies discussed here, female 3xTg-AD mice typ-
ically outlive their male counterparts. Kane et al.
measured survival of 3xTg-AD mice and found
females to live an average of 130 days longer than
males [86]. This study also described males to have
higher frailty index scores than females and con-
cluded frailty index to be an adequate predictor of
health span in this model. Rae and Brown tested lifes-
pans of a number of AD mouse models and found
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female 3xTg-AD mice had an average lifespan of 744
days while males lived an average of 469 days [87],
suggesting that lifespan should be taken into account
when predicting health span of a particular mouse
model. According to their findings, age-related dis-
orders in mice should consider sex differences in life
expectancy, so that the relative age of female mice in
the 3xTg-AD model is “younger” than males given
the females longer life expectancy. This, however,
contradicts studies that note worse molecular and
cognitive responses in females compared to males.

Sexual dimorphism in behavior

Non-memory-related behavioral discrepancies
between 3xTg-AD males and females are not robust
and are often influenced by the background strain.
At 6.5 months of age, one study reported that 3xTg-
AD females displayed higher average velocity than
males in the Barnes maze test [88]. These authors also
performed fear conditioning and demonstrated that
6.5-month-old 3xTg-AD females spend more time
freezing than males. However, this was true for the
wild type strain as well. Additionally, Blázquez et
al. reported that 3xTg-AD males and their wild type
strain exhibit higher behavioral inhibition/fearfulness
than females as measured in both the Corner and in
the open field (OF) tests at 12 and 15 months of age
[89]. In contrast, Fertan et al. showed that female
3xTg-AD mice, regardless of treatment, had longer
latency to fall times in the rotarod task compared to
males and this was independent of the background
strain [90].

Novel object recognition (NOR) tasks assessing
working memory appear to be weak discriminators of
possible sexual dimorphism for recognition memory
as Clinton et al. did not detect any evidence of sexual
dimorphism at 2, 6, 9, and 12 months of age in either
short-term (3 h) or long term (24 h) intertrial interval
(ITI) NOR paradigms [72]. Creighton et al. detected
slightly greater impairments in males than females
with an ITI of 5 min which disappeared when groups
were tested using a 90 min ITI [66]. Importantly, the
NOR apparatus used in this study had clear walls,
allowing the mice to use spatial cues which may have
affected these results.

Multiple studies assessing spatial memory obs-
erved that females perform overall worse in the Mor-
ris water maze (MWM) task assessing spatial mem-
ory. This is supposedly linked to the often-advanced
amyloid pathology of female 3xTg-AD mice. Young
(4–6 mo) and old (12–15 mo) females show poorer

place learning acquisition than males in the MWM
and the older female mice also displayed impaired
reference memory during platform removal [71, 72,
89, 91]. 12–14 month-old females are shown to per-
form worse than males in the Y-maze task assessing
working spatial memory [60]. In a novel test of spa-
tial memory, the spatial reorientation task, only at
6 months of age were deficits noticeable between
female 3xTg-AD mice and non-Tg controls. This
deficit was not observed in male mice at 3, 6,
nor 12 months of age and also not observed in fem-
ale mice at 3 months of age. This study also demon-
strated lesser staining for A� in the dorsal CA1 re-
gion of the hippocampus in males compared to
females [58].

In contrast, Stover et al. found that 6.5-month-old
females performed better during both the acquisition
phase and the reversal phase of the Barnes maze task,
making fewer errors and exhibiting a lesser latency to
goal time [88]. Additionally, in the radial arm maze
(testing working and reference spatial memory), 3x
Tg-AD male mice commit more errors than female
mice beginning at 2 months of age. Importantly, in
this task, separate cohorts of increasingly older mice
did not perform worse than younger mice and there
were no noticeable sex differences in the background
strain, B6129SF2/J [92].

Sexual dimorphism in therapeutic response

Lastly, we identified only two studies that were suf-
ficiently powered (n = 10–19 /treatment/sex) to detect
sex differences in response to a preclinical therapeutic
intervention. In 2016, Sawmiller et al. reported that
the naturally occurring flavenoid, diosmin, reduced
cerebral A� oligomers only in female 3xTg-AD
mice while it improved markers of phospho-tau
and neuroinflammation in both sexes [93]. Addi-
tionally, diosmin was shown to improve memory
in both sexes of the 3xTg-AD model in the fear
conditioning task with no reports of sexual dimor-
phism in the B6129SF2/J background strain. In 2019,
Fertan et al. showed that a novel Indolamine 2,3-
dioxygenase (IDO) inhibitor, DWG-1036, exerted
sex-dependent side effects and behavioral changes
[90]. They reported that DWG-1036 caused exces-
sive weight loss in females of both WT strain
(B6129SF2/J) and the 3xTg-AD strain but not in
males. In the trace fear conditioning task of working
memory, Fertan et al. observed improved memory
(measured by increased duration of freezing) only
in DWG-1036-treated 3xTg-AD males. DWG-1036
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inhibits IDO, an essential enzyme in kynurenine syn-
thesis pathway which is modulated by sex hormone
levels [94]. Interestingly, publicly available studies of
anti-amyloid antibody therapies, which are the most
recent clinical therapeutic candidates for AD, have
mostly been conducted in only female 3xTg-AD mice
[95–104]. The only exceptions to this do not present
sex-stratified data or comment on sexual dimorphism
in AD or the 3xTg-AD model [105–108].

SUMMARY

Sexual dimorphisms are commonly observed in
patients and pre-clinical models yet are often ove-
rlooked when critically interpreting results. In hum-
ans, the incidence, pathology, and presentation of
AD differs strikingly between the sexes, yet sex-str-
atification of data is often performed as an afte-
rthought. In smaller Phase I and II trials, this may
potentially veil both sexually dimorphic improve-
ment and exacerbation of disease condition. In an-
imal models of AD, sex differences in A� plaque
load, immune response, lifespan, memory, and non-
memory-related behavior are observed. However,
few studies report, or have the power to report, these
differences.

The literature reviewed here evaluates the hetero-
geneity in neuropathology, lifespan, and memory-
and non-memory-related behavioral performance
reported between sexes of the 3xTg-AD mouse
model. In some cases, this sexual dimorphism mimics
clinical observations; however in others, the AD-like
phenotypes are opposite. There are multiple poten-
tial reasons for this large variability, one of which
includes the source and maintenance of the mouse
colony. Our review of the literature indicated that
there are two major sources where researchers pro-
cured their 3xTg-AD models: purchased from Jack-
son Laboratory (JAX) and the Mutant Mouse
Resource and Research Center (MMRRC) or donated
from the originating colony at the laboratory of Dr.
LaFerla. We did not observe a correlation between
severity of pathology and source of the 3xTg-AD
mice used in these studies. In 2014, the developing
laboratory communicated to JAX that male 3xTg-
AD mice “may not exhibit the phenotypic traits
initially described” [109]. This finding, along with
the dimorphisms highlighted above, warrants copy
number, transgene expression validation, and base-
line behavioral analysis in future applications of this
model. These measures are rudimentary yet integral

to yielding informative and reproducible outcomes.
Additionally, male mice from both the 3xTg-AD
and background strain exhibit increased potential for
aggressiveness that may warrant housing in isolation
which has known effects on immune and endocrine
signaling as well as non-memory and memory-related
behavior [110]. This should be considered when
deciding how to house the animals depending on what
types of data are being collected.

Another possible cause of the heterogeneity is
methodological variations in the biochemical anal-
yses. For example, there are at least four common
methods to measure amyloid load in the brain
including western blotting, ELISA, Luminex, and
immunofluorescence. Adding a further layer of com-
plexity is the wide array of antibodies available for
A� detection. Many studies analyzed A� deposition
by immunohistochemistry using antibodies that react
to varying regions of A� or A�PP including abnor-
mal isoforms and precursor forms of A� [59, 62, 70,
71]. Even among antibodies specific for the A�40 or
A�42 end residues, there are multiple products avail-
able. Behavior protocols vary widely between groups
as well.

Some studies justify their use of one sex over
the other, citing reasons including that females are
reported to develop amyloid plaques earlier than
males, or that females have a more homogenous
pathology than male 3xTg-AD mice. The main rea-
son cited for using only males in many of studies
is to avoid the metabolic, hormonal, and behavioral
changes that accompany the female estrous cycle.
Studies that do utilize both sexes do not always com-
pare sexes separately due to low power. Of the 613
original research articles published since the creation
of the 3xTg-AD mouse model in 2003, 23% of the
articles do not indicate the sex of the animal used
in the study. This causes problems when comparing
or recreating these studies, especially given the large
differences between sexes seen in some of the studies
discussed above [66, 69].

In order to rectify and unify our research efforts
moving forward, preclinical and clinical studies need
to be well powered so that independent statistical
analyses on males and females can be performed
within each treatment group. Although this may
increase the duration and cost (monetary and in
animal lives) of a study, it will help account for
the variability observed when analyzing results and
improve translatability of the findings. The NIA has
acknowledged the need for more unified and trans-
parent communication of AD research by creating
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an easily searchable, peer-reviewed database to sub-
mit published and unpublished data from preclinical
studies, the Alzheimer’s Disease Preclinical Effi-
cacy Database (AlzPED) [111]. Moving forward, it
is highly encouraged to utilize this database both
when designing a study and when sharing results. It
will help lay the groundwork to synthesize emerging
reports of sexual dimorphism, including less studied
areas of the AD landscape like synaptic transmis-
sion [112, 113], ultrastructural analysis of plaque and
tangle morphology [62], and disruptions in circadian
rhythm [114].

When choosing and applying mouse models to
preclinical research, we make four recommendations
that aid consideration of sex as a biological variable
(SABV) in accordance with NIH expectations: 1)
a thorough understanding of the published charac-
terizations of the model, 2) highly powered studies
where males and females can be analyzed indepen-
dently within each treatment group, 3) independent
validation of transgene expression, and 4) at least par-
tial validation of previously published molecular and
behavioral hallmarks to be assessed, including base-
line behavior and biometrics. Incorporating these four
recommendations into future animal model research
will aid the continuity between animal model studies
and improve the quality of their findings, leading to a
stronger understanding of how and which therapeutic
approaches hold translational potential.
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