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Abstract
Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the
influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest
that attention produces a general enhancement of neural responses to important target sounds versus irrelevant
distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal
suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to
masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We
recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention
decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors.
This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally
suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience
consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the
same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate
effects of attention and effort in A1.
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Introduction
Humans and other animals are able to focus attention on 1 of
multiple competing sounds in order to resolve details in behavior-
ally important signals (Cherry 1953; Dai et al. 1991; Shinn-
Cunningham and Best 2008). Studies in humans have found that
when attention is directed to 1 of 2 competing auditory streams,
local field potential (LFP), MEG, and/or fMRI BOLD responses to
task-relevant features are enhanced, and responses to distractor
stimuli are generally suppressed (Ding and Simon 2012;
Mesgarani and Chang 2012; Da Costa et al. 2013). However, little is
known about the effect of attention when distractors compete in
the same spectral band as target sounds, an important problem

for hearing in natural noisy environments (Shinn-Cunningham
and Best 2008). Human behavioral studies suggest auditory atten-
tion does not uniformly suppress all distractor sounds, but
instead preferentially suppresses distractors near the locus of
attention (Greenberg and Larkin 1968; Kidd et al. 2005).

A small number of studies in behaving animals have found
that attention improves coding of task-relevant versus irrelevant
features at the population level, observed through changes in
multiunit and LFP synchrony (Lakatos et al. 2013) and interneu-
ronal correlations (Downer et al. 2017). As with the human stud-
ies, this work did not distinguish between features near and far
from the locus of attention, and it is not known if the same
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mechanism operates in both cases. Sounds of similar frequency
are encoded by topographically interspersed neurons in cortex
(Bizley et al. 2005), and analysis at the level of single-neuron
responses is important for understanding their representation.

Several studies have identified changes in single-neuron
activity in primary auditory cortex (A1) during behavior.
Neurons can enhance or suppress responses to task-relevant
spectral or spatial sound features. However, most of this work
has relied on comparisons between passive listening and
behavioral engagement (Fritz et al. 2003; Atiani et al. 2009;
Otazu et al. 2009; Lee and Middlebrooks 2011; David et al. 2012;
Niwa et al. 2012; Kuchibhotla et al. 2016) or between behaviors
with different structure (Fritz et al. 2005; David et al. 2012;
Rodgers and DeWeese 2014). It is difficult to attribute changes
in neural activity to selective attention because other aspects
of internal state also change between conditions, including
arousal, effort, rules of behavior, and associated rewards.
Moreover, the specific acoustic task has differed between stud-
ies, ranging among tone detection, modulation detection, tone
discrimination, and tone-in-noise detection. Changing task
sound features could recruit different feedback systems or
require different auditory areas with specialized coding proper-
ties (Tian et al. 2001; Bizley et al. 2005), making a comparison
between these studies difficult.

To link specific aspects of behavioral state to changes in
auditory coding, we developed an approach that isolates the
effects of selective attention to sound frequency from general
task engagement (Fritz et al. 2003; Otazu et al. 2009) and behav-
ioral effort (Atiani et al. 2009). We trained animals to perform a
tone-in-noise detection task in which they heard the same
sound sequences but switched attention between target tones
at different frequencies. To compare effects of attention and
listening effort, we manipulated target salience while requiring
detection of the same target tone (Atiani et al. 2009). We
recorded single-unit activity in A1 during behavior. During
manipulation of selective attention, we observed suppression
specifically of responses to distractors near the target fre-
quency rather than a generalized suppression of all distractors.
When task difficulty was varied, we saw changes in tonic spike
rate, rather than sound-evoked activity.

The noise stimuli developed for these behaviors contain
natural temporal dynamics and were designed to permit char-
acterization of the sensory filter properties of neurons reflected
in their sound-evoked activity (David and Shamma 2013). We
used these spectro-temporal receptive field (STRF) models to
compare the encoding properties of A1 neurons between
behavior conditions. This analysis revealed changes in neuro-
nal filter properties consistent with changes in the average
spontaneous and sound-evoked activity.

Materials and Methods
All procedures were approved by the Oregon Health and Science
University Institutional Animal Care and Use Committee and
conform to the National Institutes of Health standards.

Animal Preparation

Young adult male ferrets were obtained from an animal supplier
(Marshall Farms). A sterile surgery was then performed under
isoflurane anesthesia to mount a post for subsequent head fixa-
tion and to expose a small portion of the skull for access to audi-
tory cortex. The head post was surrounded by dental acrylic or
Charisma composite, which bonded to the skull and to a set of
stainless steel screws embedded in the skull. Following surgery,

animals were treated with prophylactic antibiotics and analge-
sics under the supervision of University veterinary staff. The
wound was cleaned and bandaged during a recovery period.
After recovery (~2 weeks), animals were habituated to a head-
fixed posture for about 2 weeks.

Auditory Selective Attention Task

Behavioral training and subsequent neurophysiological recording
took place in a sound-attenuating chamber (Gretch-Ken) with a
custom double-wall insert. Stimulus presentation and behavior
were controlled by custom software (Matlab). Digital acoustic sig-
nals were transformed to analog (National Instruments), ampli-
fied (Crown), and delivered through 2 free-field speakers (Manger,
50-35 000Hz flat gain) positioned ±30 degrees azimuth and 80 cm
distant from the animal. Sound level was equalized and cali-
brated against a standard reference (Brüel & Kjær).

Three ferrets were trained to perform an auditory selective
attention task modeled on studies in the visual system (Moran
and Desimone 1985; McAdams and Maunsell 1999; David et al.
2008), in which they were rewarded for responding to target
tones masked by 1 of 2 simultaneous, continuous noise
streams and for ignoring catch tones masked by the other
stream (Fig. 1). The task used a go/no-go paradigm, in which
animals were required to refrain from licking a water spout
during the noise until they heard the target tone (0.5 s duration,
0.1 s ramp) at a time randomly chosen from a set of delays (1,
1.5, 2, … or 5 s) after noise onset. To prevent timing strategies,
the target time was distributed randomly with a flat hazard
function (Heffner and Heffner 1995). Target times varied across
presentations of the same noise distractors so that animals
could not use features in the noise to predict target onset.

Noise streams were constructed from narrowband noise
(0.25–0.5 octave, 65 dB peak SPL) modulated by the envelope of
1 of 30 distinct ferret vocalizations from a library of kit distress
calls and adult play and aggression calls (David and Shamma
2013). The envelope fluctuated between 0 and 65 dB SPL, and its
modulation power spectrum was low-pass with 30 dB attenua-
tion at 10 Hz, typical of mammalian vocalizations (Singh and
Theunissen 2003). Thus the spectral properties of the noise
streams were simple and sparse, while the temporal properties
matched those of ethological natural sounds. To maximize per-
ceptual separability (Shamma et al. 2011), the streams were
generated using different vocalization envelopes, centered at
different frequencies (0.9–4.3 octave apart) and presented from
different spatial locations (±30 degrees azimuth).

In a single block of behavioral trials, the target tone matched
the center frequency and spatial position of 1 noise stream. It
was switched to match the other stream in a subsequent block.
The majority of trials (80–92%) contained a “cue tone” target
with relatively high signal-to-noise ratio (SNR, 5 to −5 dB peak-
to-peak, relative to reference noise). For all tones, SNR was cal-
culated locally in period of the noise that overlapped the tone.
This definition of SNR produced relatively stable performance
at a given SNR. The remainder of trials contained “probe tone”
targets with low SNR (−7 to −12 dB), requiring focused attention
on the target stream. The exact target SNR was adjusted for
each animal and target frequency so that the cue tone was
super-threshold (>90% hit rate) and the probe tone was closer
to threshold (70% hit rate). The large number of high-SNR cue
targets provided a cue for attention and were important to
maintain motivation, which flagged if animals were subjected
to a large number of low-SNR probe targets. A random subset
of trials (8–15%) included a “catch tone” in the nontarget
stream, occurring before the target and identical to the probe
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tone in the opposite trial block (−7 to −12 dB SNR). To avoid per-
ceptual grouping of the target and catch tone, the interval
between the 2 tones was jittered on each trial that contained
both a target and catch. Responses to the cue and probe tones
were rewarded with water (response window 0.1–1 s following
tone onset). Responses to the catch tone or to the reference
before the target resulted in no reward and were punished with
a brief timeout (5–10 s) before the next trial. A preferential
response to the probe versus catch tone indicated selective
attention to the target stream (Moran and Desimone 1985;
McAdams and Maunsell 1999; David et al. 2008). Trial blocks
began by requiring correct behavior on 5 trials with only the
cue target to direct attention to a single stream. Cue trials were
discarded from subsequent analysis.

Behavioral performance was quantified by hit rate (correct
responses to targets vs. misses), false alarm rate (incorrect
responses prior to the target), and a discrimination index (DI)
that measured the area under the receiver operating character-
istic (ROC) curve for hits and false alarms (Fig. 1C–D, Yin et al.
2010; David et al. 2012). To compute DI, each time when a target
could occur was identified in each trial. The first lick during
each trial was treated as a hit (response following target onset)
or false alarm (response to noise at a time when a target could
occur), depending on whether it fell in a bin before or after tone
onset. Trials with licks prior to any possible target window
were punished as false alarms but classified as invalid and

excluded from behavioral analysis. The probability of a hit was
computed as a function of the latency after tone onset, and the
probability of a false alarm was computed for latency relative
to times when targets could occur. These probabilities were
then used to construct the ROC curve. A DI of 1.0 reflected per-
fect discriminability and 0.5 reflected chance performance.

Behavioral statistics were computed separately for the 3 tones
(cue, probe, and catch). Target responses at the last possible time
(5 s) were discarded, as catch responses and false alarms never
occur at that latency. Only sessions with above-chance perfor-
mance on cue tones (DI > 0.5, P > 0.05, jackknife t-test) were
included in analysis of neurophysiology data. During about 30% of
behavior blocks, animals’ behavioral state lapsed at some point
(indicated by missing 5–10 cue targets in a row, usually later in the
day), and the experimenter provided a reward manually following
a target tone to re-engage behavior. Typically, a single reminder
trial was adequate. If animals failed to re-engage after multiple
reminders (up to 10), the behavioral block was ended. These
reminder trials were excluded from the analysis of neurophysiol-
ogy data. Truncating all data acquired after reminder trials to con-
trol for long-term effects of the reminder increased noise in the
analysis of neurophysiology data but did not significantly change
any of the results observed across the neural population. Selective
attention to the target stream was confirmed by larger DI for the
probe tone than the catch tone across 2 behavioral blocks with
reversed probe and catch tones.

Figure 1. Selective attention behavior in ferrets. (A) Configuration of selective attention behavior. Head-fixed ferrets were presented with simultaneous, continuous

noise streams from 2 locations 30 degrees left and right of midline. A target tone was presented at the center frequency and location of the attended noise stream

1–5 s after noise onset. Animals were rewarded for licking following target onset. Responses prior to target onset were punished with a short timeout. (B) Top shows

spectrogram representation of stimuli during a single selective attention trial. Two narrowband (0.25 octave) noise streams with different center frequency were pre-

sented from different spatial locations (3000Hz, left; 700 Hz, right). Noise level fluctuated from quiet (white) to loud (black) with dynamics drawn from natural vocali-

zations. The target tone (green) appeared at a random time, centered in the attended stream (in this case the high frequency stream). To control for selective

attention, a catch tone (red) appeared in the nonattended stream on a minority (8–15%) of trials. Bottom shows the time course of noise, catch and target stimuli, as

well as the time course of false alarm and hit windows during the same trial. (C) Cumulative probability of hit or false alarm following onset of each task stimulus

during 1 behavioral block. False alarms were measured during windows when a target could occur (vertical lines in B). (D) DI was computed as the area under the

ROC, calculated from lick probability curves in D for each target and catch tone during 4 sequential behavioral blocks. Between blocks, the low-SNR probe

target alternated between 8 kHz/contra and 1 kHz/ipsi, and was reversed with the catch tone. DI was higher for the probe than the catch tone in all blocks, consistent

with shifts in selective attention. Trial block order (attend RF versus attend away) was randomized during neurophysiology experiments to prevent any bias from

changes in motivation, which could produce a gradual decrease in DI across blocks. (E) Bar plot shows average DI for each tone category (cue, probe, catch), broken

down by animal and attended location, indicating the accuracy with which animals reported the presence of a tone versus the noise. DI was consistently highest for

a tone with high signal-to-noise ratio (SNR, −4 to 5 dB peak relative to noise) used to cue animals to the attended location. DI was lower for low-SNR probe targets (−7
to −12 dB), but consistently greater than for low-SNR catch tones, indicating that animals consistently allocated attention to the target stream (**P < 0.01, sign test).
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As expected, animals were better able to report the cue
tone, but also responded preferentially to the probe tone versus
the catch tone (Fig. 1E). The combination of spatial and spectral
streaming cues maximized behavioral attention effects.
Animals were also able to perform tasks with only spectral sep-
aration between streams, but behavioral effects were weaker
(data not shown). If only spatial cues were used, the 2 streams
were fused, producing a strong percept of a single noise stream
moving in space. This effect produced a spatial release from
masking, increasing the salience of probe and catch tones and
eliminating the need for selective attention. Animals were not
tested on a spatial-only task because it appeared that attention
would not be required for probe detection.

Variable Effort Task

Two animals were trained on a variant of the tone-in-noise
task, in which the frequency and location of the target tone
was fixed, but target SNR was varied between blocks. For this
task either 1 or 2 noise streams were used (defined as above),
but the target was always masked by the same stream. In the
high-SNR condition, the target tone level was well above
threshold on 80–90% of trials (10 to −5 dB SNR, measured by
peak-to-peak amplitude). For a small number of trials (10–20%),
a low-SNR probe target (0 to −15 dB SNR, 10 dB below high SNR)
was used to measure behavioral sensitivity to a near-threshold
target. Detection threshold varied according to the frequency of
the target tone, and probe targets were chosen to be 10 dB
above threshold. In the low-SNR condition, the majority of
trials (80–90%) used low-SNR targets, and the remainder used
high-SNR targets. While the exact level of high- and low-SNR
targets varied across days, they were always fixed between
blocks on a given day, so that performance could be compared
between identical stimuli.

Behavioral performance was assessed using DI, as for the
selective attention task. A change in effort was indicated by
comparing DI for the low-SNR target between low-SNR and
high-SNR conditions. Greater effort in the low-SNR condition
was indicated by higher DI, reflecting adjustment of behavioral
strategy to detect the difficult, low-SNR targets more reliably.

Neurophysiological Recording

After animals demonstrated reliable selective attention behavior
(DI > 0.5 for at least 3 successive sessions), we opened a small
craniotomy over primary auditory cortex (A1). Extracellular neuro-
physiological activity was recorded using 1–4 independently posi-
tioned tungsten microelectrodes (FHC). Amplified (AM Systems)
and digitized (National Instruments) signals were stored using
open-source data acquisition software (Englitz et al. 2013).
Recording sites were confirmed as being in A1 based on tono-
topy and relatively reliable and simple response properties
(Shamma et al. 1993; Atiani et al. 2014). Single units were
sorted offline by bandpass filtering the raw trace (300–6000 Hz)
and then applying PCA-based clustering algorithm to spike-
threshold events (David et al. 2009).

Upon unit isolation, a series of brief (100-ms duration, 100-
ms interstimulus interval, 65 dB SPL) quarter-octave noise
bursts was used to determine the range of frequencies that
evoked a response and the best frequency (BF) that drove the
strongest response. If a neuron did not respond to the noise
bursts, the electrode was moved to a new recording depth. For
the selective attention task, 1 noise stream was centered at the
BF and at the preferred spatial location (usually contralateral).

The second stream was positioned 2 octaves above or below BF,
usually outside of the tuning curve. Occasionally, neurons
responded to noise bursts across the entire range of frequen-
cies measured, and a band with a very weak response (<1/2 BF
response) was used for the second stream. Thus, task condi-
tions alternated between “attend RF” (target at BF and preferred
spatial location) and “attend away” (target in the nonpreferred
stream). For the variable effort task, the noise configuration
was the same, but the target was always centered over neuro-
nal BF.

The order of behavior conditions (attend RF and attend
away blocks for selective attention, low- and high-SNR blocks
for variable effort) was randomized between experiments to
offset possible bias from decreased motivation during later
blocks (note gradual decrease in DI across blocks in Fig. 1D). We
recorded neural activity during both behavior conditions and
during passive presentation of task stimuli pre- and post-
behavior. Thirty identical streams, with frozen noise carriers
were played in all behavior conditions. Of the 30 noise streams,
29 were repeated 1–2 times in each behavior block. One stream
was presented 3–10 times, permitting a more reliable estimate
of the PSTH response during neurophysiological recordings.
Noise stimuli presented on incorrect (miss or false alarm) trials
were repeated on a later trial, and a repetition was complete
only when all the noise stimuli were presented on correct (hit)
trials. Data from the repeated stimuli were used as the valida-
tion set to evaluate encoding model prediction accuracy (see
STRF analysis, below).

Evoked Activity Analysis

Peri-stimulus time histograms (PSTHs) of spiking activity were
measured in each behavioral condition, aligned to reference
and target stimulus onsets (Fig. 2). Because target and catch
tones were embedded in the reference sound at random times,
reference responses were truncated at the time of tone onset.
We compared the PSTH during 3 epochs (Fig. 3): spontaneous
(0–500ms before reference onset), reference-evoked (0–2000ms
after reference onset, minus spontaneous) and target-evoked
(0–400ms after target onset minus 0–500ms before target
onset). A longer target window did not affect changes mea-
sured in the target response, but the short target window mini-
mized potential confounds from motor signals associated with
licking, which typically had latency >400ms for probe tones.

To measure changes in mean spontaneous and evoked activ-
ity for single neurons, we measured a “behavior modulation
index” (BMI), the fraction change (Otazu et al. 2009) in spontane-
ous activity and evoked responses between behavior conditions:

= ̅ − ̅
̅ + ̅

( )d
r r
r r

1A B

A B

The subscripts A versus B refer to experimentally controlled
behavioral conditions (e.g., attend RF vs. attend away, active vs.
passive, low SNR vs. high SNR). Significant differences between
behavior conditions were assessed by a jackknife t-test, and
significant average changes across a neural population were
assessed by a Wilcoxon sign test. We compared results of the
sign test for population data to a jackknife t-test, and found
similar results.

To measure changes in baseline rate and response gain, we
modeled the time-varying response to a stimulus in behavior
condition A, rA(t), as the response in condition B, rB(t), scaled by
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a constant gain, g, plus a constant offset, d (Slee and David
2015),

( ) = [ ( ) − ] + + ( )r t g r t r r d 2A B B B,0 ,0

The gain term was applied after subtracting the spontane-
ous rate, rB,0, so that it impacted only sound-evoked activity.
We used least-square linear regression to determine the opti-
mal values of d and g that minimized mean squared error over
time:

∑= [ ( )− [ ( ) − ] − − ] ( )d g argmin r t g r t r r d, 3
t

A B B B,0 ,0
2

Identical noise stimuli were presented in each behavioral
condition, but variability in performance did not always permit
presentation of a complete stimulus set in all behavioral

conditions. To control for any possible difference in sound-
evoked activity, these analyses were always applied to the sub-
set of data with identical stimuli in both behavior conditions
for a given experiment. For comparison of average PSTH (Figs
2C, 6C), responses were normalized by mean noise-evoked
activity in the passive condition before averaging.

We used signal detection analysis to measure neural
discriminability (d’) of task-relevant sounds, based on single-
trial responses to tone and reference noise stimuli (Niwa et al.
2012),

σ σ
′ = ̅ − ̅ ( )d

r r
4T

T

N

N

where ̅rT and ̅rN were the average response to tone and noise
stimuli, respectively, and σT and σN were the standard devia-
tion of responses across trials. For the selective attention data,

Figure 2. Sound-evoked activity during selective attention behavior. (A) Comparison of spike raster plots and average PSTH responses to reference noise for 1 neuron,

aligned to trial onset in different behavior conditions. Evoked activity was suppressed when the animal engaged in the task (passive vs. attend RF or attend away).

When attention was directed toward the noise stream that fell in the neuron’s receptive field (attend RF) responses were further suppressed, relative to attention

directed to the stream out of the RF (attend away). BMI (Eq. 1) for attend RF versus away is −0.17. (B) Responses of a second neuron are enhanced during task engage-

ment, but again show relative suppression in the attend RF versus attend away condition (BMI −0.24). (C) Average PSTH response to distracter noise across signifi-

cantly modulated units (34/54 units) in the different behavior conditions (P < 0.05 spontaneous or noise response change, Bonferroni corrected jackknife t-test).

Dashed lines show the average PSTH difference between active and passive conditions (red) and between attend RF and attend away (blue). Spontaneous rate

increases during task engagement; reference-evoked activity is suppressed for attend RF versus attend away conditions. (D) Average PSTH response aligned to probe

target onset in the 3 conditions reflects pre-target differences in noise-evoked activity, but the magnitude of the target-evoked response does not change.

Attention Suppresses Distractor Responses in Auditory Cortex Schwartz and David | 327



d’ was computed for the probe tone in the attend RF condition
and compared to d’ for the catch tone in the attend away condi-
tion. For the variable SNR data, d’ was compared between the
low-SNR target in the low-effort (high-SNR) and high-effort
(low-SNR) blocks. Neural responses to probe and catch tones
were computed as the mean spike rate during 0–400ms follow-
ing tone onset. This relatively short window avoided possible
motor artifacts from licking during behavior. Reponses to noise
were computed during 400ms windows prior to probe or catch,
during which time a tone could occur on a different trial.

Only data from correct trials were analyzed, although no sig-
nificant differences were observed for data from incorrect trials.
The majority of incorrect trials were false alarms with relatively
short duration. Because stimuli were terminated immediately
after a false alarm, their relative contribution to the overall
data set size was limited. Probe and catch tones were relatively
rare during selective attention behavior (8–20% of trials). This
limitation, combined with their low SNR, made it difficult to
measure reliable probe responses in some neurons. Only 43/54
neurons with at least 5 presentations of probe and target tones
during behavior were included in the d’ analysis. In addition,
during early experiments, probe tones were not presented dur-
ing passive listening (7/43 neurons), and these were also
excluded from the target behavioral modulation index (BMI)
analysis (Fig. 3C).

STRF Analysis

Vocalization-modulated noise was designed so that the ran-
dom fluctuations in the 2 spectral channels (noise stream
envelopes) could be used to measure spectro-temporal encod-
ing properties. The linear STRF is a current standard model for
early stages of auditory processing (Aertsen and Johannesma
1981; Theunissen et al. 2001; Machens et al. 2004; David et al.
2009; Calabrese et al. 2011). The linear STRF is an implementa-
tion of the generalized linear model (GLM) and describes time-
varying neural spike rate, r(t), as a weighted sum of the preced-
ing stimulus spectrogram, s(x,t), plus a baseline spike rate, b,

∑( ) = ( ) ( − ) + ( )r t h x u s x t u b, , 5
x u,

The time lag of temporal integration, u, ranged from 0 to 150
ms. In typical STRF analysis, the stimulus is broadband and vari-
able across multiple spectral or spatial channels, x. Here, the
stimulus is composed of just 2 time-varying channels, and a
spectrally simplified version of the STRF can be constructed in
which x = 1…2 spans just these 2 channels. The encoding model
for a single spectral band is referred to simply as a temporal
receptive field (TRF, Ding and Simon 2012; David and Shamma
2013), but because the current study included 2 bands, we con-
tinue to refer to these models as STRFs. Analytically, this simpli-
fied STRF can be estimated using the same methods as for
standard STRFs. For the current study, we used coordinate
descent, which has proven effective for models estimated using
natural stimuli (David et al. 2007; Willmore et al. 2010; Thorson
et al. 2015). Spike rate data and stimulus spectrograms were
binned at 10ms before STRF analysis.

The ability of the STRF to describe a neuron’s function was
assessed by measuring the accuracy with which it predicted
time-varying activity in a held-out validation data set that was
not used for model estimation. The “prediction correlation”
was computed as the correlation coefficient (Pearson’s R)
between the predicted and actual average response. A

prediction correlation of R = 1 indicated perfect prediction accu-
racy, and a value of R = 0 indicated chance performance.

To measure effects of behavioral state on spectro-temporal
coding, we estimated “behavior-dependent STRFs”, by estimat-
ing a separate STRF for data from each behavioral condition
(attend BF vs. attend away or high-SNR vs. low-SNR). Thus 2 sets
of model parameters were estimated for each neuron, for exam-
ple, in the case of selective attention data, filters hRF(x,u) and
haway(x,u), and baseline rates bRF and baway. Predication accuracy
was assessed using a validation set drawn from both behavior
conditions, using each STRF to predict activity in their respective
behavioral state. Significant behavioral effects were indicated by
improved prediction correlation for behavior-dependent STRFs
over a “behavior-independent STRF” estimated using data col-
lapsed across behavior conditions. Behavior-dependent changes
in tuning were measured by comparing STRF parameters, h(x,u)
and b, between conditions.

Competing behavior-dependent and -independent models
were fit and tested using the same estimation and validation
data sets. Significant differences in prediction accuracy across
the neural population were determined by a Wilcoxon sign
test.

Results
Ferrets can Selectively Attend Among Competing
Auditory Streams

We trained 3 ferrets to perform an auditory selective attention
task requiring detection of a tone in one of 2 simultaneous
noise streams. Task stimuli were composed of 2 simultaneous
tone-in-noise streams (Fig. 1A–B). During a single block of trials,
animals were rewarded for responding to tones masked by one
stream (the “target stream”) and punished for responding to
the other (the “nontarget”). Reward contingencies were
reversed between blocks. The task therefore allowed compari-
son of neural responses to identical sensory stimuli while ani-
mals reported targets occurring in only 1 of the 2 streams
(Moran and Desimone 1985).

Spectral, spatial, and temporal cues were used to maximize
perceptual separability of the streams. Both streams consisted
of tones embedded in narrowband noise (0.25–0.5 octave) mod-
ulated by the temporal envelope of natural vocalizations (David
and Shamma 2013). To facilitate perceptual segregation, the
streams differed in center frequency (0.9–4.3 octave separation),
location (±30 degrees azimuth) and temporal envelope dynam-
ics (1 of 30 envelopes from a vocalization library, chosen ran-
domly on each trial).

The task employed a go/no-go paradigm (David et al. 2012;
Slee and David 2015). Ferrets initiated each trial by refraining
from licking a water spout for a random period (1–3 s). They
were then simultaneously presented with the target and non-
target noise streams (Fig. 1B). On each trial, a target tone at the
center frequency and spatial location of the target stream was
presented at a random time after noise onset (1–4 s). The
majority (80–92%) of trials contained a high signal-to-noise
ratio (SNR, 5 to −4 dB) cue tone, while the remaining trials con-
tained a low-SNR probe tone (−7 to −12 dB). On a random subset
of trials (8–15%), the target was preceded by a low-SNR “catch
tone” at the frequency and location of the nontarget stream,
with SNR matched to the probe tone. The specific SNR was
manipulated between experiments to produce near-threshold
behavior, but probe and catch tones were presented at identical
SNRs within a single experiment. Licks that occurred before
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target tone onset (including catch tone periods) resulted in ter-
mination of the trial and punishment with a brief timeout
(5–10 s). Licks that promptly followed target tone onset were
rewarded with water (0.1–1 s following target onset).

A behavioral session consisted of 2 blocks, with the
attended stream switching between blocks. The frequency,
location, and level of the noise bands and the probe and catch
tones remained the same across blocks. Only the reward con-
tingencies, indicated by the frequency of the cue tone, were
reversed: the target stream became the nontarget, and the
behavioral meaning of the probe and catch tones was reversed.
The task therefore allowed comparison between responses to
identical noise and tone stimuli under different internal states,
a key requirement of a selective attention task (Moran and
Desimone 1985; McAdams and Maunsell 1999).

We verified selective attention by comparing behavioral
responses to the probe and catch tones. In humans, knowledge
of the location or frequency of an attended sound affects the
speed and accuracy with which the sound is detected relative
to distractors (Greenberg and Larkin 1968; Scharf et al. 1987; Dai
et al. 1991; Spence and Driver 1994; Woods et al. 2001; Kidd
et al. 2005). We expected a similar improvement in behavioral
discriminability for the target over catch tone. To test this pre-
diction, we calculated a DI, which quantified the area under the
ROC curve for discrimination of each tone class from the nar-
rowband noise background (Fig. 1C–D, Yin et al. 2010; David
et al. 2012). A DI of 1.0 reflected perfect discriminability and 0.5
reflected chance performance. As expected, animals were able
to report the cue tone more reliably than the low-SNR tones,
but they also responded preferentially to the probe tone versus
the catch tone. Mean performance of all 3 ferrets showed sig-
nificantly greater DI for the probe tone versus catch tone and
no difference between attention to left and right streams
(Fig. 1E).

The order of behavioral conditions was randomized across
days, but we considered the possibility that increased satiety
might lead to a decrease in DI over the course of behavior dur-
ing a single day. We did observe a decrease in overall DI
between the first and second behavioral block for one animal
(mean DI, animal 1:86.4 vs. 82.7**, animal 2:78.0 vs. 78.3, animal
3:76.1 vs. 74.8, **P < 0.01, jackknife t-test, p > 0.05), but the ran-
dom ordering of behavioral blocks controlled for this trend. We
also considered the possibility of changes in DI over the course
of a single behavioral block. One animal showed a trend toward
decreased DI in the second half of each block (animal 1:86.7 vs.
83.2), while 2 showed a trend toward increased DI (animal
2:77.1 vs. 80.6, animal 3:74.6 vs. 76.7). However, none of these
within-block changes was significant (jackknife t-test, p > 0.05),
and performance was broadly stable over time.

A1 Single-Unit Responses Are Selectivity Suppressed
for the Attended Distractor Stream

We recorded single-unit activity in primary auditory cortex (A1)
of the 3 trained ferrets during selective attention behavior to
determine how neural activity changed as attention was
switched between noise streams. For each unit, one noise
stream was centered over its BF and was presented from a loca-
tion contralateral to the recording site. The other stream was
presented in a frequency band outside the neuron’s frequency
tuning curve (0.9–4.3 octaves from BF) and ipsilateral to the
recording site. Thus, the task alternated between an “attend
receptive field (RF)” condition (target stream in the RF) and
“attend away” condition (target stream outside the RF). We

recorded activity during both behavior conditions and during
passive presentation of task stimuli (n = 54 neurons). The order
of attend RF and attend away blocks was randomized across
experiments to avoid bias from changes in overall motivation
over the course of the experiment.

Changes in behavioral state can influence spontaneous
spike rate and/or the sound-evoked activity of single-units
(Ryan et al. 1984; Rodgers and DeWeese 2014). We measured
the effects of selective attention by comparing spontaneous
and noise-evoked activity (after subtracting spontaneous rate)
between attend RF and attend away conditions. We measured
the effects of task engagement by comparing activity between
behaving and passive conditions. Because identical noise sti-
muli were played in all behavioral conditions, this controlled
for any difference in sound-evoked responses. We measured
noise-evoked responses only during the periods prior to the
occurrence of target and catch tones.

When animals attended to a noise stream in a neuron’s RF,
the response of many neurons to the noise stimuli decreased
(Fig. 2A–B). Of the 54 neurons with data from both attend-RF
and attend away conditions, 16 showed significant changes in
baseline rate and 26 showed significant changes in noise-
evoked response (P < 0.05, jackknife t-test). The average PSTH
response computed from the activity of neurons that under-
went a change in either spontaneous or evoked activity fol-
lowed a pattern consistent with the examples, showing no
consistent change in spontaneous rate but a decreased evoked
response (Fig. 2C). The change in evoked activity was roughly
constant over time, occurring with about the same latency as
the sensory response itself.

We quantified behavior-dependent changes in neural activ-
ity using a BMI (Eq. 1), computed as the ratio of the difference
in neural activity between conditions to the sum of activity
across conditions (Otazu et al. 2009). For selective attention
comparisons, BMI was calculated as the difference between
attend RF and attend away. Thus, BMI greater than zero indi-
cated greater neural activity in the attend RF condition, and
negative BMI indicated greater activity in the attend away con-
dition. A value of 1 or −1 indicated complete suppression of
responses in the attend away or attend RF condition, respec-
tively. For the 16 neurons showing significant changes in spon-
taneous activity, median BMI was not significantly different
from zero (P > 0.5, sign test, Fig. 3A,D, shaded bars). However,
for the 26 neurons showing significant changes in noise-evoked
response, BMI was significantly decreased in the attend RF con-
dition (−0.12, P = 0.005, approximately 20% suppression, Fig. 3B,
E). A decrease in the noise-evoked response was also observed
across the entire selective attention data set (median BMI
−0.06, P < 0.001, n = 54). Because the stimuli were designed so
that only the RF stream evoked a neural response, this change
reflected suppression of responses to the noise stream that
masked the attended target. In addition to measuring changes
in the mean evoked response, we also compared changes in
the gain of noise-evoked responses (Slee and David 2015),
which showed a similar suppression in the attend RF condition
(median gain change −14%, P < 0.001, Fig. 4).

There was no systematic effect of selective attention on
responses to the probe tone (target during attend RF vs. catch
during attend away), indicating that suppression was selective
for the masking noise in the attended stream (Fig. 2D, 3C).
Across the entire set of recordings with a sufficient number of
probe and catch tones to measure responses in both conditions
(n = 36 neurons with at least 5 presentations of probe and catch
tones in passive and both active conditions), the tone response
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changed significantly between attention conditions in 12 neu-
rons, but median BMI was not significantly different from zero
(P > 0.5, Fig. 3F).

These attention-related effects were distinct from changes
in neural activity related to task engagement. When compared
with passive listening, the median spontaneous spike rate and
noise-evoked response both increased significantly (Fig. 3G–I,
spontaneous: median BMI 0.17, P = 0.002; noise-evoked: median
0.11, P = 0.005; probe-evoked: median 0.14, P = 0.09; sign test).
Because the magnitude of spontaneous rate changes was the

same for both attention conditions, there was no difference
between attend RF and attend away conditions (Fig. 5A). Thus,
the suppression of noise-evoked activity between selective
attention conditions contrasted with a general increase in
spontaneous activity and excitability during task engagement.

The effects of selective attention and task engagement var-
ied substantially across neurons. To better understand the
interplay of these effects across the population, we compared
the BMI for the noise-evoked response between behavior (aver-
aged across attention conditions) and passive listening to the

Figure 3. Summary of selective attention and task engagement effects on A1 evoked activity. (A–C) Scatter plot of average spontaneous rate (A), noise-evoked

response (spontaneous rate subtracted, B), and target-evoked response (noise-evoked response subtracted, C) for each A1 neuron between attend RF and attend away

conditions. Black circles indicate neurons with a significant difference between attention conditions for any of the 3 statistics (P < 0.05, jackknife t-test with

Bonferroni correction). Target data are shown for the subset of neurons with adequate presentations of probe and catch tones (n = 36/54). (D–F) Histograms show BMI

(Eq. 1), reflecting fractional change in spontaneous rate, noise-evoked response, and target-evoked response between attention conditions for each neuron. Neurons

with a significant increase are indicated in red, and those with a significant decrease in blue (P < 0.05, jackknife t-test). Median BMI was significant only for noise-

evoked responses; spontaneous rate: −0.14 (P = 0.38, n = 16/54, sign test), noise-evoked response: −0.12 (**P = 0.005, n = 26/54), target-evoked response: 0 (P > 0.5, n =

12/36). (G–I) Histograms comparing changes between active and passive conditions for the same neurons, plotted as in D–F. For the active condition, data were com-

bined from the 2 attention conditions. In all comparisons, responses to an identical set of stimuli were used to compute the difference between behavior conditions.

Median BMI increased for spontaneous rate and noise-evoked response: spontaneous rate: 0.17 (**P = 0.002, n = 27/54), noise-evoked response: 0.11 (**P = 0.005, n = 38/

54), target-evoked response: 0.14 (P = 0.09, n = 13/36).
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Figure 4. Effect of selective attention on A1 response gain. (A) Example of noise-evoked gain changes between the passive and attend RF conditions (same unit as

Fig. 2A). Scatter plot compares responses to identical epochs of the noise stimulus between behavior conditions. The majority of points fall below the line of unity

slope (dashed) indicating a general suppression when attention was directed toward a target in the neuron’s RF. The slope of the line fit to the scatter plot (solid) is

0.76, indicating suppression of 24% during the attend RF condition. (B) Comparison between passive and the attend away condition for the same neuron reveals a

slight gain enhancement (slope 1.04). (C) Each point compares noise-evoked response gain for a single neuron between attend RF and attend away conditions, com-

puted relative to passive listening. Across all neurons, mean gain was higher during attend away than attend RF (1.11 vs. 0.99, P < 0.001, sign test). For neurons show-

ing significant changes in mean response (black points, see Fig. 3E), mean gain was also different (1.11 vs. 0.97, P < 0.001).

Figure 5. Effect of selective attention on A1 neural discriminability. (A) Mean fraction change in spontaneous rate, noise-evoked response and target-evoked response

between the passive listening and attend RF (black) or attend away condition (white), for neurons showing significant effects of attention (n = 34, Fig. 3D–F). Error bars

indicate one standard error (**P = 0.005, sign test). (B) Scatter plot compares BMI for the noise-evoked response of each neuron between active and passive conditions

and between attend RF and attend away conditions. Most neurons fall in the lower right quadrant (increased response during behavior and decreased response dur-

ing attend RF), but there is no correlation between the magnitude of the effects across cells (r = 0.031, P > 0.5, permutation test). (C) Model for enhanced discriminabil-

ity following suppression of noise response at attended location. Curves represent the distribution of single-trial responses to a tone at the neuronal BF embedded in

noise (solid line) and to noise alone (dashed lines). If noise responses are suppressed when attention is directed to BF, then the distributions become more discrimina-

ble, as measured by d’. (D) Scatter plot compares d’ for the discriminability of neural responses to probe or catch tones (the same stimulus, respectively, in attend RF

or attend away conditions) and the reference noise during time windows when the target could occur. Only units with at least 5 probe and catch tone presentations

were included in order to obtain stable d’ measures (n = 43). Filled circles indicate experimental sessions when DI for probe tones was significantly greater than for

catch tones (P < 0.05, n = 21/43, permutation test). (E) Histogram of change in d’ between attend RF and attend away conditions. For sessions in which DI was signifi-

cantly greater for probe targets (filled bars), mean d’ increased (0.10, P = 0.02, permutation test). The mean change for all sessions was smaller (0.03, P = 0.02).
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BMI between attention conditions (Fig. 5B). We found no corre-
lation between these effects (r = 0.031, P > 0.5, jackknife t-test),
consistent with a system in which effects of selective attention
and task engagement operate on different subsets of A1 neu-
rons. We also considered the possibility that the magnitude of
behavior effects might depend on tuning bandwidth or the
recording depth in cortex. However, no significant relationship
was observed (data not shown).

Distractor Suppression Enhances Neural
Discriminability of Target Versus Distractors

We hypothesized that if responses to the distractor noise were
suppressed relative to the probe tone when attention was
directed to the neuronal BF, then the neural response to the
noise versus tone-plus-noise stimuli should be more discrimi-
nable when attention was directed to the RF (Fig. 5C). To assess
discriminability of these responses, we computed a neuro-
metric d’ for discrimination of the RF (probe/catch) tone from
distractor noise, based on single-trial neural responses during
attend RF versus away conditions (Fig. 5D–E). Previous work has
used this approach to measure improvements in neural
discriminability following engagement in a temporal modula-
tion detection task (Niwa et al. 2012). Across all behavioral ses-
sions, neural d’ increased slightly between the 2 attention
conditions (median change 0.03, P = 0.02, sign test). The

selective attention task was difficult for animals to perform
during neurophysiological recordings, and behavioral perfor-
mance varied between experiments. If we considered only ses-
sions in which animals showed a significantly greater DI for
the probe target than for the catch tone (P < 0.05, jackknife t-
test), this subset of neurons showed a greater increase in d’ in
the attend RF condition (median change 0.1, P = 0.02, sign test,
Fig. 5E). This larger change in d’ suggests that selective atten-
tion improves neural discriminability in A1 during the tone-in-
noise detection task, and the degree of improvement depends
on the animal’s performance.

A1 Spontaneous Activity, But Not Response Gain, is
Consistently Modulated by Changes in Task Difficulty

Previous work has suggested that behavioral effort, driven by
changing task difficulty, can also modulate neuronal activity in
A1 (Atiani et al. 2009) and other sensory cortical areas (Chen
et al. 2008). To assess the effects of changing effort in the current
tone-in-noise context, we recorded A1 single-unit activity during
a variant of the tone-detection task. In this case, the target
streamwas fixed, but the task varied from easy to hard by chang-
ing the SNR of the target tone relative to the noise stream from
high (10 to −5 dB) to low (0 to −15 dB) between behavioral blocks
(Fig. 6A). To probe differences in effort associated with changes
in difficulty, the high-SNR condition included a small number of

Figure 6. Effects of varying target SNR on behavioral effort and A1 evoked activity. (A) Configuration of variable SNR behavior for manipulating listening effort.

Ferrets were presented with vocalization-modulated noise streams, configured as for the selective attention task. A target tone appeared at a random time, always in

a stream contralateral to the recording site and centered over BF of the recorded neuron. In high-SNR blocks, the target tone was presented at high SNR (10 to −5 dB
relative to the noise) for 80–90% of trials and at low SNR (10 dB lower) for the remaining trials. Conversely, in low-SNR blocks, the target tone had low SNR for 80–90%

of trials. Tone levels were adjusted between experiments to span super- and near-threshold behavior, which varied across target frequency and animals. SNR values

were always identical during all recordings from a single neuron. (B) To test for changes in effort, behavioral performance was compared for identical target tones

between behavior conditions. Bar chart compares mean DI for high- and low-SNR targets, broken down between high- and low-SNR blocks and between animals. DI

was significantly greater for the low-SNR target in low-SNR blocks when the more difficult target was likely to occur, consistent with an increase in effort (**P < 0.01,

permutation test). DI did not improve for high SNR targets for Animal 1, possibly due to a ceiling effect in performance for the easy target. (C–D) Average population

PSTH for noise-evoked (C) and high-SNR target-evoked responses (D) compared between passive listening, high-SNR and low-SNR behavior conditions, for all neurons

showing any significant difference between SNR conditions (n = 65/88, P < 0.05, jackknife t-test, Bonferroni correction).
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low-SNR targets (10–20%, Spitzer et al. 1985). We could then
assess listening effort by comparing performance for identical
low-SNR targets between the 2 conditions. In both animals, DI
was consistently higher when the low-SNR target was more
likely to occur, consistent with greater effort during blocks when
target detection was more difficult (Fig. 6B Spitzer et al. 1985).

We recorded from 88 neurons from 2 ferrets in both effort
conditions and from 122 neurons in at least one effort condi-
tion. Mean PSTHs showed an increase in spontaneous activity
during low- versus high-SNR blocks but no change in the
average response evoked by noise or targets (Fig. 6C–D). The

spontaneous rate of 47/88 units was significantly modulated by
task difficulty (P < 0.05, jackknife t-test). Among these cells, the
spontaneous rate showed a significant decrease during low-
SNR blocks (median BMI −0.16, P = 0.008, sign test, Fig. 7A).
Many neurons also showed an effect of task difficulty on the
evoked responses to noise (n = 51) or tones (n = 35). However,
there was no consistent average change in either sound-
evoked response (Fig. 7B–C, P = 0.4 and 0.09, respectively, for
noise and tone responses). As in the case of selective attention,
we observed increases in spontaneous activity and sound-
evoked responses during behavior relative to passive listening

Figure 7. Summary of variable SNR effects on A1 evoked responses. (A–C) Histograms of BMI for spontaneous rate (A), noise-evoked response (B) and target-evoked

response (C) between high-SNR and low-SNR blocks, plotted as in Figure 3D–F. Median spontaneous rate is suppressed (−0.16, P = 0.008, n = 47/88 significantly modu-

lated neurons, sign test), but there is no change in noise-evoked (0.05, P = 0.4, n = 51) or target-evoked responses (0.04, P = 0.09, n = 35) D–F. Histograms comparing

active versus passive BMI for the variable SNR task. High- and low-SNR data were combined for the active condition. Task engagement leads to increased spontane-

ous activity (0.11, P < 0.0001, n = 43) and noise-evoked responses (0.06, P = 0.005, n = 63) but no change in target-evoked response (0.04, P = 0.11, n = 57). (G) Bar chart

shows mean fraction change in activity between passive listening and low-SNR (black) and high-SNR conditions (white), for neurons showing significant change in

the corresponding statistic in A–C. (H) Scatter plot compares change in noise-evoked response between active and passive conditions (horizontal axis) and the change

in spontaneous rate between high- and low-SNR behaving conditions (r = −0.53, P < 0.001, permutation test). (I) Histogram comparing the change in d’ between low

SNR and high SNR conditions. The mean d’ across all sessions showed a small increase in the low SNR condition (0.04, P = 0.05, n = 88, sign test). For sessions in which

DI was significantly greater for low SNR targets in low SNR blocks (filled bars), the change was not significant (0.07, P = 0.06, n = 55).
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(Fig. 7D–F). Thus, task engagement effects were similar to those
of the selective attention task, but unlike selective attention,
changing task difficulty impacted average spontaneous rate
rather than the noise-evoked response (Fig. 7G).

As in the case of selective attention, effects of task difficulty
varied substantially across neurons. To better understand the
interplay of task engagement and effort across the neural pop-
ulation, we compared the change in noise-evoked activity dur-
ing task engagement (active vs. passive) to the change between
difficulty conditions (Fig. 7H). In this case, we observed a signifi-
cant negative correlation in BMI (r = −0.45, P = 0.004). Neurons
whose response increased during task engagement tended to
be suppressed in the more difficult, low-SNR condition.
Conversely, neurons whose response decreased during engage-
ment tended to produce an enhanced response in the low-SNR
condition. Thus, although no consistent effects of effort on
average evoked activity were observed, neurons affected by
changes in difficulty were the same as those affected by task
engagement.

The pattern of changes in neural activity associated with
changes in task difficulty did not suggest an obvious impact on
neural discriminability. For a complete comparison with the
selective attention data, however, we also tested whether
engaging in the more difficult, low-SNR task increased neural
discriminability of target versus noise (Fig. 7I). We used the
same measure of d’ as for the selective attention data. Across
the entire set of 88 neurons in the variable SNR data set, we
observed a small increase in d’ (median change 0.04, P = 0.05,
sign test). When we considered only the subset of neurons for
which DI for the low-SNR tone significantly improved in the
low-SNR versus high-SNR condition, we observed a trend
toward a greater increase in d’, but this change was not signifi-
cant (median change 0.07, P = 0.06). Thus, the change in effort
may be accompanied by increased neural discriminability
between target and noise, but any effects were weaker than in
the selective attention data.

Selective Attention and Task Difficulty Effects are
Reflected in Neuronal Filter Models

To investigate the effects of changing behavioral state on sen-
sory coding in more detail, we computed STRF models for each
single-unit, fit using activity evoked by the distractor noise
under the different behavioral conditions (Fig. 8A). The linear
STRF typically describes spectro-temporal tuning as the
weighted sum over several channels of a broadband stimulus
spectrogram (see Eq. 5 and Aertsen and Johannesma 1981;
Thorson et al. 2015). For vocalization-modulated noise, we
employed a spectrally simplified version of the STRF that
summed activity over just the 2 spectral channels that com-
prised the noise stimulus. Because one noise band was posi-
tioned outside of the neuron’s RF, the STRF typically showed
tuning to only one of the 2 stimulus channels (see examples in
Fig. 8A).

To investigate the interaction between attention and
spectro-temporal tuning, we calculated separate STRFs for data
from each behavior condition. Model performance was
assessed by measuring the accuracy (correlation coefficient,
Pearson’s R) with which the STRF predicted the neuron’s time-
varying spike rate. Effects of behavioral state were identified by
comparing the predictive power of these behavior-dependent
STRFs to performance of behavior-independent STRFs, for
which a single model was fit across all behavior conditions. A
neuron was labeled as showing a significant effect of attention

if the behavior-dependent STRF predicted neural responses sig-
nificantly better than the behavior-independent STRF (P < 0.05,
permutation test). Prediction accuracy was measured using a
held-out validation data set, so that any difference in predic-
tion accuracy could not reflect overfitting to noise (Wu et al.
2006; David et al. 2009). Identical noise sounds were presented
during passive listening and different task conditions. Thus,
each STRF for a single neuron was estimated using identical
stimuli, avoiding potential stimulus-related bias between esti-
mates (Wu et al. 2006; David et al. 2007).

For the selective attention data, the behavior-dependent
STRF performed significantly better in 26/54 neurons, and the
mean prediction correlation was significantly greater for the
behavior-dependent model (mean R = 0.31 vs. 0.25, n = 54, P <
0.0001, sign test, Fig. 8B). We then compared the fit parameters
of STRFs for neurons showing a significant improvement for
the behavior-dependent model. For these neurons, peak gain of
the STRF’s temporal filter was lower for the attend RF versus
attend away condition (Fig. 8C–D, P = 0.007, permutation test).
Baseline firing rate, which would reflect a change in spontane-
ous rate, did not change between attention conditions (P = 0.3).
Thus, we observed changes in STRFs that were consistent with
changes in mean spontaneous and evoked firing rates (Fig. 3E).
Moreover, there was no consistent change in the shape of the
temporal response (Fig. 8C), indicating that selective attention
primarily affected the magnitude of A1 noise-evoked
responses, but not temporal tuning.

For the variable SNR task, we also observed improved pre-
diction accuracy for the behavior-dependent model in a subset
of neurons (51/88), and an overall improvement in mean pre-
diction accuracy (mean R = 0.34 vs. 0.29, n = 88, P < 0.0001, per-
mutation test). For neurons with significantly better behavior-
dependent STRFs, baseline firing rate increased during the less
difficult, high-SNR task (P = 0.02, permutation test), and there
was no change in the STRF’s temporal filter (P > 0.5, Fig. 8E–F).
Thus, as in the case of the selective attention data, the
behavior-dependent changes observed in mean spike rate were
reciprocated by changes in the STRF baseline, again with no
systematic change in temporal filter properties.

Discussion
This study demonstrates that auditory selective attention sup-
presses the responses of neurons in primary auditory cortex (A1)
to distractor sounds that compete with an attended target. In
nearly 50% of A1 neurons, responses to distractor noise centered at
the frequency of a target tone were suppressed relative to distrac-
tors in a different frequency band. Responses to the target tone
were not suppressed, leading to an improvement in its neural
detection threshold. Selective attention effects differed from those
of task engagement and changing task difficulty, which produced
more systematic changes in spontaneous rather than evoked
activity and tended to affect a different population of A1 neurons.

A primary goal of this study was to isolate mechanisms pro-
ducing task-related plasticity previously reported in A1 when
animals engaged in auditory behavior (Fritz et al. 2003; Lee and
Middlebrooks 2011; David et al. 2012; Niwa et al. 2012). The cur-
rent data demonstrate that task-related effects can in fact be
broken down into components that reflect task engagement,
selective attention, and effort. These behavior-related changes
have a similar total magnitude to those reported following task
engagement in A1 (Fritz et al. 2003; Niwa et al. 2012). The same
approach can be applied to measure the composition of
behavior-related changes in more central belt and parabelt
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areas, where overall behavior effects are generally larger (Niwa
et al. 2013; Atiani et al. 2014; Tsunada et al. 2015).

Mechanisms of Auditory Selective Attention

Distractor suppression may be a general strategy used by the
auditory system to perform a variety of tasks, including those
that require selective attention. At face value, these results are
inconsistent with human studies of attention during streaming
of simultaneously presented sounds. When human subjects

attend to one of 2 speech or non-speech streams, the neural
representation of the attended stream is enhanced over the
nonattended stream (Ding and Simon 2012; Mesgarani and
Chang 2012; Da Costa et al. 2013). LFP and fMRI recordings in
nonhuman primates show similar enhancement for selective
attention between 2 auditory streams (Lakatos et al. 2013) or
auditory versus visual streams (Rinne et al. 2017).

Several factors could explain this difference from the sup-
pression observed in the current study. First, previous studies
used field recordings that sum the activity of large neural

Figure 8. Effects of attention and variable SNR on neuronal filter properties. (A) Comparison of behavior-dependent STRFs for 3 neurons from selective attention

experiments, estimated separately using data from attend RF and attend away conditions. In both attention conditions, the temporal filter for the RF channel (solid

lines, for the stimulus channel centered in the neuron’s RF) showed excitatory tuning with 0–50ms time lag. Gain was lower for this channel in the attend RF condi-

tion (black vs. gray lines). The non-RF channel (dashed lines) typically showed weaker gain, if any, and no consistent change between attention conditions. (B) Scatter

plot comparing prediction accuracy of behavior-independent versus behavior-dependent STRFs across the selective attention data set. Filled dots correspond to neu-

rons with a significant difference in prediction accuracy between models (P < 0.05, sign test). Mean prediction accuracy was higher for the behavior-dependent model

(mean r = 0.24 vs. 0.28 for behavior-dependent vs. independent, P < 0.001, n = 54, sign test). (C) Average temporal response function at BF for behavior-dependent

STRFs in the attend RF versus attend away condition (n = 26/54 neurons with significant improvement for behavior-dependent model). (D) Mean baseline and peak

gain for behavior-dependent STRFs in attend RF versus attend away conditions show a significant difference in gain (**P = 0.007, sign test). (E) Average temporal

response functions of behavior-dependent STRFs estimated separately for low- and high-SNR conditions (n = 51/88 with significant benefit for behavior-dependent

model). (F) Mean baseline and peak gain for behavior-dependent STRFs in low-SNR and high-SNR conditions shows a significant difference in response baseline (*P =

0.02, sign test).
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populations, and the contribution of single-neuron activity to
these signals is not well understood. For example, the magni-
tude of evoked field potentials can be influenced the synchrony
of local neural populations, independent of their firing rate
(Telenczuk et al. 2010). Thus, a change in the amplitude of one
signal does not necessitate a change of the same sign in the
other. Second, several of the human studies focused on non-
primary belt and parabelt areas of auditory cortex that may not
undergo the same changes as A1. Finally, and perhaps most
importantly, these differences may be explained by task struc-
ture. In the tone-in-noise task used in the current study, the
noise does not provide useful information to the subject per-
forming the task. A strategy of suppression thus may be helpful
for enhancing contrast with the masked target tone (Durlach
1963; Dai et al. 1991; de Cheveigné 1993). Streaming speech, in
contrast, requires a much different listening strategy in which
the semantic content of the signal must be encoded rather
than suppressed. An alternative task in which animals must
detect specific features in the noise stream (e.g., modulation
patterns) may reveal enhanced responses similar to those
observed in the speech studies. Neural populations encoding
targets and spectrally similar maskers are difficult to isolate in
large-scale field recordings, which may explain why the effects
of attention on masker stimuli have not been characterized
previously.

The distractor suppression we observed may be a neural cor-
relate of a phenomenon observed in psychophysical studies of
tone-in-noise detection. Humans can attend to a narrow fre-
quency band surrounding a tone target: when listeners are cued
to expect a tone at a given frequency, their ability to detect tone
targets more than one critical bandwidth from the expected fre-
quency dramatically decreases, effectively attenuating off-target
sounds by 7 dB (Greenberg and Larkin 1968; Scharf et al. 1987;
Dai et al. 1991). More generally, the hypothesis that the auditory
system suppresses neural responses to predictable distractors in
order to amplify target signals is widespread in studies of psy-
choacoustics (Durlach 1963; de Cheveigné 1993; Shinn-
Cunningham 2008). We observed suppression of responses to a
½-octave noise distractor during a tone detection. This suppres-
sion may reflect sharpening of frequency tuning curves when
attention was shifted into the neuron’s RF. If so, then the noise
suppression would increase the neural representation of the
tone target at the expense of sounds at nearby frequencies.

Some aspects of our experiment suggest caution before
adopting this interpretation. First, our acoustic stimuli sampled
frequency tuning very sparsely and did not permit direct mea-
surement of changes in frequency tuning bandwidth across
attention conditions. Second, it is not certain that animals used
frequency as the dominant cue to direct their attention, since
our stimuli also provided spatial and envelope cues to distin-
guish the attended and nonattended stream (Nelson and
Carney 2007). Specific interactions between attention and spec-
tral coding can therefore only be resolved by future studies that
require attention exclusively to spectral cues and probe a larger
range of stimulus frequencies.

Separability of Engagement and Attention Effects

Previous studies of tone-detection behavior have identified
changes in the selectivity of A1 neurons specific to the frequency
of a target tone (Fritz et al. 2003; Atiani et al. 2009; David et al.
2012; Kuchibhotla et al. 2016), but it has remained unclear how
much these changes in neural tuning reflect selective attention
to the target frequency versus more global processes of task

engagement. Here, we have isolated these effects and shown
that selective attention produces frequency-specific suppression
of responses evoked by distractors. Task engagement also pro-
duced changes that were independent of the locus of attention.
Engagement was equally likely to produce enhancement or sup-
pression of sound-evoked activity. This overall stability of aver-
age evoked activity suggests that changes in cortical network
activity are tempered by a homeostatic mechanism that main-
tains stability in the level of spiking activity across auditory cor-
tex. The selective suppression of noise responses at the locus of
attention, thus, may be accompanied by enhancement at nonat-
tended locations (Fritz et al. 2005).

Changing behavioral effort also influenced noise-evoked
responses in A1. However, effects were not consistent, and a
change in effort was equally likely to increase or decrease
responses. Instead, greater behavioral effort lead to a decrease in
spontaneous spike rate. The distinct effects of attention and effort
on evoked versus spontaneous activity suggest that different
modulatory circuits mediate these changes. Task engagement
and adjusting effort could reflect large-scale changes in brain
state that do not depend on the acoustic features of task stimuli.
The influence of these global state variables may arise from cir-
cuits that mediate effects of arousal (Issa and Wang 2008;
McGinley et al. 2015). In contrast to changes in global state, selec-
tive attention requires differential processing of acoustic features,
and its effects cannot be uniform across the auditory system.
Consistent with a system containing distinct global versus local
modulatory top-down circuits, the neuronal populations affected
by selective attention and task engagement are not correlated.

While we did observe a correlation in the magnitude of
effects of task engagement and effort, there was substantial
additional variability of behavioral effects across neurons that
could not be explained by tuning properties or recording depth.
Future studies that identify the location of neurons in the corti-
cal circuit more precisely, either by genetic labels (Natan et al.
2015; Kuchibhotla et al. 2016) or network connectivity (Schneider
et al. 2014) may explain more of this variability. These approaches
may also be used to confirm whether engagement and effort
effects derive from the same source.

Effects of selective attention and effort could emerge at differ-
ent stages of the auditory network. Multiple populations of inhib-
itory interneurons have been implicated in behavioral state
modulation in A1, and signals reflecting different aspects of
behavioral state could arrive through distinct inhibitory subpopu-
lations (Pi et al. 2013; Kuchibhotla et al. 2016). These signals could
also arrive in different auditory brain areas. Engaging in a tone
detection task changes activity in the inferior colliculus (IC), an
area upstream from A1 (Slee and David 2015), but it is not known
if selective attention modulates IC activity. Studies comparing
the same tasks across brain areas are critical for determining
where behavior-mediated effects emerge in the auditory proces-
sing network. More generally, these results indicate that multiple
aspects of task structure can influence activity in sensory cortical
areas. Control and monitoring of behavioral state (arousal,
reward, motor contingencies, attention) is required to assess the
effects of a desired behavioral manipulation (David et al. 2012;
Baruni et al. 2015; Luo and Maunsell 2015; McGinley et al. 2015).

Impact of Behavioral State on Neural Coding

The changes in sound-evoked activity associated with selective
attention support enhanced neural discriminability of target
tone versus distractor noise in A1. The absence of significant
suppression in the target response alone does not imply a
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selective suppression of distractor responses. However, the
increase in neural discriminability when attention is directed
into the RF does indicate that any suppression is stronger for the
distractor, increasing the difference in neural response between
the 2 sound categories. Improvements in neural discriminability
with similar magnitude have been observed previously in A1 fol-
lowing engagement in auditory detection tasks (Ryan et al. 1984;
David et al. 2012; Niwa et al. 2012). Some early single-unit stud-
ies in monkey auditory cortex also support the view that
enhanced responses occur selectively for stimuli that carry task-
relevant information. In tasks that required discrimination
between spectral (Beaton and Miller 1975) or spatial sound fea-
tures (Benson and Hienz 1978), neural responses were enhanced
to the sound requiring a behavioral response. Moreover, activity
in auditory cortex can explicitly encode behavioral choice (Niwa
et al. 2012; Bizley et al. 2013; Tsunada et al. 2015). Thus, across
several studies, a model has emerged in which neural discrimi-
nability of task-relevant stimulus features increases, and that
emergent representation feeds directly into behavioral decisions.
The parallel between neural signaling and behavioral output
encourages a straightforward conclusion that changes in behav-
ioral state serve primarily to enhance coding of behaviorally rel-
evant categories. While a change in d’ in the range 0.05–0.1 is
not extremely large for a single neuron, this value represents
the average increase per A1 neuron. Effects of this size can be
substantial when compounded across an entire neural popula-
tion (Shadlen and Newsome 1998).

However, in the current study, the benefit of changes in
neural coding is not always so clear. The shift in spontaneous
rate associated with listening effort did not produce significant
enhancement in neural discriminability. Changes in spontane-
ous activity that do not enhance discriminability have been
reported previously, following switches between tasks that
vary in difficulty (Rodgers and DeWeese 2014). Studies involv-
ing switching targets between auditory and other sensory
modalities have also reported mixed results, sometimes finding
enhanced coding of the attended modality (O’Connell et al.
2014) and sometimes not (Hocherman et al. 1976; Otazu et al.
2009). The cortex contains a rich diversity of circuits for learn-
ing new behavioral associations and adapting to new contexts
(Fritz et al. 2010; David et al. 2012; Jaramillo et al. 2014). An
architecture that supports flexibility and multiplexing of beha-
viors likely imposes additional constraints on behavior-related
changes beyond enhanced sensory discriminability.

The analysis of behavior-dependent STRFs revealed task-
related effects consistent with the changes in PSTH response
gain between selective attention conditions and changes in
spontaneous activity between variable SNR conditions. The
STRF analysis also allowed us to identify any possible changes
in temporal filter properties between behavior conditions.
However, temporal response properties were largely stable.
Thus, while we do observe changes in spectral tuning, top-down
behavioral signals do not affect temporal tuning in the current
task. It should be noted that the current task did not require
attention to specific temporal features, and a task requiring dis-
crimination of temporal features, such as modulation detection
or discrimination, might have a different effect (Fritz et al. 2010;
Niwa et al. 2012).

Comparison to Studies of Visual Selective Attention

Noise suppression may be viewed as a mechanism to bias com-
petition between neural representations of the tone target and
masking noise. Analogous effects have been observed in the

primate visual system (Spitzer et al. 1985; Desimone and
Duncan 1995; Connor et al. 1996; Reynolds et al. 1999). When
macaques attend to one of 2 stimuli in the RF of a visual corti-
cal neuron, the neural response shifts to resemble the response
to the attended stimulus presented in isolation (Connor et al.
1996; Reynolds et al. 1999). Thus, when attention is directed
within a visual RF, the spatial RF effectively shrinks, and
responses to stimuli outside the locus of attention are attenu-
ated. Similar effects are observed across visual cortex, growing
progressively greater in magnitude across areas V1, V2, and V4
(Motter 1993; Luck et al. 1997). This narrowing of tuning has
been modeled as enhanced surround inhibition (Sundberg et al.
2009). In the auditory system, stimulus bandwidth can be
viewed as a dimension in sensory space (bandpass noise vs.
very narrowband tones), analogous to retinotopic space
(Schreiner and Winer 2007). By the logic of the current task,
attention within the A1 RF is directed to narrowband versus
broadband stimuli. A narrowing of spectral tuning bandwidth
that would produce the distractor suppression reported here
may be analogous to the shrinking of visual spatial RFs around
the locus of spatial attention. The average BMI of −0.12 for
noise responses in A1 falls between the magnitude of spatial
attention effects in areas V2 and V4 measured using a similar
statistic (Luck et al. 1997).

Simultaneous population recordings from V4 during selec-
tive attention behavior have revealed a decrease in noise corre-
lations between pairs of neurons that encode stimuli at the
locus of attention (Cohen and Maunsell 2009), and similar
effects were recently reported in A1 (Downer et al. 2017).
Because the current data were collected serially from single
neurons, it was not possible to measure interneuronal correla-
tions. The effect of auditory selective attention on neural popu-
lation activity in this sensory context remains an open
question for future studies.
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