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Abstract

Background: Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo
model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory
functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic
bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord
injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for
in vivo studies and the clinical setting.

The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs) transplantation on
the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the
relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF) and neurotrophin-3
(NT-3) and bladder and hindlimb functions.

Results: Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats
using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured
spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid
restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and
coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not
improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two
control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not
different among hMSC and two control groups regardless the experimental duration.

Conclusion: hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of
rats but not sufficient to recover locomotor and bladder dysfunction. BDNF and NT-3 levels in the spinal cord and

bladder were not increased 28 and 56 days after hMSC transplantation.

Background

Neurogenic bladder following spinal cord injury as well
as paralysis is a major medical problem that has social
implications due to quality of life issues [1]. Urogenital
diseases including urinary tract infection is a major
cause of morbidity and mortality although many compli-
cations are now decreasing with improved management

* Correspondence: jeongsp@dku.edu; rhhyun@dankook.ac.kr

t Contributed equally

'Department of Rehabilitation Medicine, College of Medicine, Dankook
University, Cheonan, Korea

5Department of Biochemistry, College of Medicine, Dankook University,
Cheonan, Korea

Full list of author information is available at the end of the article

( ) BiolVled Central

[2]. The present goals of the management of neurogenic
bladder in patients with spinal cord injury are the pre-
servation of the renal function and increasing the quality
of life for patients by minimizing complications [1], but
the restoration of bladder function after spinal cord
injury has proven to be difficult to achieve because tech-
niques in axonal regeneration and tissue repair remain
quite limited until now.

Recently research efforts have focused on attempts to
regenerate the injured spinal cord using neurotrophic
factors and drug delivery systems [3], biomaterials [4]
and cell transplantation [5]. Stem cell transplantation is
one of the most promising fields for spinal cord
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regeneration because stem cells can achieve fundamental
regeneration of injured spinal cord by replacing damaged
neuronal tissues [6] and it has the potential to be com-
bined with various biomaterials for co-transplantation
with neurotrophic factors [7-9]. Mesenchymal stem cells
have potential for various therapeutic applications and
are clinically attractive for spinal cord repair since they
can be obtained easily from adult bone marrow, blood or
adipose tissue cells. As well, autograft transplantation
does not induce immune rejection. Several in vivo studies
revealed that MSCs transplanted into the central nervous
system can be transdifferentiated into astrocytes and neu-
rons as well as tissues from mesodermal origin [10,11],
and are effective in the partial recovery of locomotor
function after damage to the central nervous system [12].
Clinical trials of autologous hMSC transplantation were
performed on acute and chronic patients with spinal
cord injury [13-16] and the safety and some clinical
improvements for human were reported but the exact
mechanism of hMSCs on the functional recovery are still
unclear [17].

Endogenous neurotrophic factors in the spinal cord
and bladder are considered to promote neuronal survi-
val and axonal growth after spinal cord injury [18,19]
and the administration of exogenous brain-derived neu-
rotrophic factor (BDNF) and neurotrophin-3 (NT-3) has
been reported to contribute to the regeneration of
damaged neuronal cells, improvement of paralyzed hin-
dlimb function as well as neurogenic bladder after spinal
cord injury [20,21].

Nevertheless there is no report revealing the relation-
ship between the recovery of locomotor function or
neurogenic bladder after hMSC transplantation and the
status of endogenous neurotrophic factors in the spinal
cord or bladder in spinal cord injury models. Therefore
the purpose of these experiments was to reveal the
effects of hMSC transplantation on the recovery of neu-
rogenic bladder and locomotor function in animal mod-
els of spinal cord injury and investigate the relationship
between these results and the level of endogenous neu-
rotrophic factors in the spinal cord and bladder.

Results
Hindlimb functions
Basso, Beattie, and Bresnahan (BBB) scale, coupling score
and ladder score showed gradual restoration in all h(MSC
and two control groups throughout the 56 days following
spinal cord injury. Repeated measure ANOVA revealed
that there was no difference between the time groups
sacrificed at 28 days and 56 days following transplantation
(PTD28 and PTD56) until 28 days following transplanta-
tion within the same transplantation group (p > 0.05).
BBB scale of hMSC group were higher than those of
two control groups which received phosphate-buffered
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saline (PBS) or human fibroblasts (hFbs) at post-trans-
plantation day (PTD) 21, 28 and 56 (Fig. 1A, p < 0.05),
and coupling score of hMSC group were higher than
those of two control groups only at PTD28 (Fig. 1B, p <
0.05). Ladder score in all experimental periods exceeding
PTD14 revealed that the erroneous step rate of hMSC
group was reduced more than those of two control
groups (Fig. 1C, p < 0.05).

Bladder volume and urodynamic study

Urodynamic study at PTD26 and PTD56 revealed that
all the bladder in hMSC and two control groups was
hyperreflexic type (67-83% within each case), and there
was no difference of micturition frequency and pressure,
the chance of detrusor contraction without micturition,
and bladder volume among hMSC group and two con-
trol groups (Table 1).

ELISA study

When comparing the protein levels of BDNF and NT-3
among two control groups and hMSC group, there was
no significant difference of the concentration of BDNF
and NT-3 in thoracic and lumbar spinal cords and blad-
der between hMSC and control groups at PTD28 and
PTD56 (Fig. 2).

RT-PCR

RT-PCR was performed to injured thoracic spinal cord
and lumbar spinal cord, and the levels of BDNF or NT-
3/B-actin were not different among two control groups
and hMSC group regardless of experimental periods
(PTD28 or PTD56) (Fig. 3).

Immunohistochemistry

We found that hMSCs were well stained with anti-
human nucleus antibody (HN) in vitro (Fig. 4A) and
HN-positive cells existed within the injured thoracic
spinal cord of hFb group at PTD28 (Fig. 4B) and hMSC
group at PTD28 (Fig. 4C) and PTD56 (Fig. 4D). But HN
and anti-GFAP antibody (Fig. 4D’) or anti-beta III tubu-
lin antibody at PTD28 (Fig. 4E) and PTD56 (Fig. 4F) in
hMSC group were not double-stained, thus transplanted
hMSCs into injured spinal cord did not differentiated
into neurons nor astrocytes 28 and 56 days after trans-
plantation. Fifty six days after transplantation, total
number of HN-positive cells per section was higher in
hMSC group than in hFb group at PTD56 (Fig. 4G).

We checked the boundary of host tissue surrounding
the injured area indirectly by GFAP staining showing
host astrocytes and macrophages by ED1 staining in the
sagittal section of epicenter area (Fig. 5). PBS and hFb
groups showed larger cavities and fewer GFAP-positive
areas than hMSC group in the injured area at PTD28
and PTD56 (Fig. 5A-F). ED1 positive macrophages were
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Figure 1 Locomotor function in experimental (hMSC) and two control (PBS and hFb) groups. (A) BBB (Basso, Beattie, Bresnahan) scores,
(B) coupling scores and (C) ladder scores showed gradual restoration in experimental and control groups, but all three scales of experimental
group (hMSQ) at some periods (asterisks) were restored more than those of control group (hFb). PTD: post-transplantation day, PBS: control
group received phosphate-buffered saline, hFb: control group received human fibroblast, hMSC: experimental group received human
mesenchymal stem cell, *p < 0.05 by one-way ANOVA with Bonferroni post hoc test.

Table 1 Urodynamic Study and Bladder Volume of Experimental and Control Groups at 28 and 56 Days after

Transplantation
PTD28 PTD56 p-
value
PBS(n=7) hFb(n=11) hMSC(n=9) PBS(n=7) hFb (n=9) hMSC (n = 6)

Voiding frequency (time/min) 0.80 = 0.09 082 +0.16 0.76 + 0.32 0.79 £ 0.1 082 +£0.19 092 + 0.07 >0.05%
Maximal pressure (cmH,0) 921 +£530 9.60 + 4.2 9.70 £ 411 9.00 £ 577 811 £ 739 1033 £ 450 >0.05*
Pattern of regularity (%)t 43 45 44 43 22 >0.05**
Detrusor contraction without 43 36 44 43 44 >0.05**
voiding (%)t
Gross pattern of voiding (%)t >0.05%*

Flaccid 29 27 13 29 33

Hyperreflexia 71 73 87 71 67

Normal 0 0 0 0 0
Bladder volume (mm?®) 134525 + 1263.75 + 127957 + 187447 + 192599 + 159445 + >0.05*

1206.27 83805 1310.69 1452.13 159144 703.36

PTD: post-transplantation day, PBS: control group received phosphate-buffered saline, hFb: control group received human fibroblast, hMSC: experimental group
received human mesenchymal stem cell * by one-way AVOVA, ** by Fisher’s exact test, T No. of detectable cases (%)
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Figure 2 mRNA levels of neurotrophic factors by ELISA in experimental (hMSC) and two control (PBS and hFb) groups at 28 and
56 days after transplantation. (A) BDNF level and (B) NT-3 level in the thoracic and lumbar spinal cords and bladder showed no statistical
difference among experimental and two control groups at PTD28 and PTD56. hMSC: experimental group received human mesenchymal stem
cell, PBS: control group received phosphate-buffered saline, hFb: control group received human fibroblast, PTD: post-transplantation day.

significantly fewer near the center of injured spinal cord
in hMSC group (Fig. 5G) than in PBS and hFb groups.

Discussion

Neuronal cells within the injured area are directly
damaged just after trauma in the spinal cord and the
secondary injury, caused by the inflammatory process

through activations of macrophages, neutrophils and
lymphocytes, leads to cavity and scar formation which
usually exaggerates the damage [22]. Clinical manage-
ment for reducing the amount of cellular damage from
secondary injury consists of steroid application within 8
hours after spinal cord injury. Steroids are the only class
of drug which has been tested for clinical use in spinal
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Figure 3 Protein levels of neurotrophic factors by RT-PCR in experimental (hMSC) and two control (PBS and hFb) groups at 28 and 56
days after transplantation. (A) BDNF level and (B) NT-3 level in the thoracic and lumbar spinal cords also showed no statistical difference
among experimental and two control groups at PTD28 and PTD56. hMSC: experimental group received human mesenchymal stem cell, PBS:
control group received phosphate-buffered saline, hFb: control group received human fibroblast, PTD: post-transplantation day.
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Figure 4 Immunohistochemistry of human mesenchymal stem cells (hMSCs) in vitro and in vivo studies. (A) hMSCs were well stained by
anti-human nucleus antibody (HN) in vitro (A"), and injured area of thoracic spinal cord after transplantation of human fibroblasts (hFbs) at
PTD28 (B) and after transplantation of hMSCs at PTD28 (C) and PTD56 (D) was stained with HN. B and D' images are magnified images of B and
D white-lined boxes respectively. Double staining with HN (green color) and anti-GFAP antibody (red color) (B" and D), and HN (green color) and
anti-beta Ill tubulin antibody (red color) after h(MSC transplantation at PTD28 (E) and PTD56 (F) indicated that transplanted hMSCs into injured
spinal cord did not differentiated into neurons nor astrocytes 28 and 56 days after transplantation. (G) Total number of HN-positive cells per
section was higher in hMSC group than in hFb group (asterisk) at PTD56. White scale bar in B = 500 pym, yellow scale bar in B" = 20 um.
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cord injury and widely used in treatment of such cases
[23], but it also has some detrimental effects including
the risk for infections and gastrointestinal complications
[24]. Inflammation process following spinal cord injury
has both beneficial and detrimental effects [25] but sev-
eral in vivo studies revealed that the inhibition of
inflammation promoted improvements in motor and
sensory functions [26,27]. We found that macrophages
in the injured spinal cord area were significantly less in
hMSC group than in control group, therefore trans-
planted mesenchymal stem cells may act to control the
inflammatory process following spinal cord injury.

Stem cells such as embryonic stem cells, neural stem
cells and MSCs were investigated in injured spinal cord
regeneration [22]. MSCs were the first type of stem cells
used to treat patients [28] and the only one stem cells
whose safety has been established until recently [17]. The

mechanism of MSC for the functional improvement fol-
lowing spinal cord injury is not clear but several possible
explanations have suggested. MSCs can be transdifferen-
tiated into neurons and glial cells [10], and they are able to
act as a physical guidance for neurofilament outgrowth in
the injured spinal cord [29]. But the functional properties
of transdifferentiated neurons are still controversial in
vitro [30,31] and in vivo studies [32]. We could not
observe that any neurons or glial cells differentiated from
hMSCs existed within the injured area of the spinal cord
in our study. The reduction of inflammatory process
within the injured spinal cord resulting in the consequen-
tial decrement of secondary injury upon hMSCs transplan-
tation may be related with functional restoration following
spinal cord injury, but we did not observe any significant
improvement of locomotor and bladder function. The
exact mechanism of how transplanted hMSCs affect
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Figure 5 Injured spinal cords of PBS, hFB and hMSC groups at PTD28 and PTD56 stained with anti-macrophages/monocytes (ED1)
antibody (green color) and anti-GFAP antibody (red color; A-F). PBS group at PTD28 (A) and PTD56 (B), and hFB group at PTD28 (C) and
PTD56 (D) showed many macropahges and monocytes were existed within the injured spinal cords compared with hMSC group at PTD28 (E)
and PTD56 (F). B, D" and F' images are magnified images of B, D and F white-lined boxes respectively. The number of macrophages and
monocytes was lower in hMSC group than in PBS and hFb groups at PTD28 and PTD56 (asterisk, G). White scale bar in A = 1 mm, yellow scale
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inflammatory reaction following spinal cord injury is not
clear however it is known that MSCs could reduce the
inflammatory process in animal lung [33].

Wilkins et al. [34] found that hMSCs from bone mar-
row secreted BDNF and these cells also promoted neu-
ronal survival in vitro, where similarly Crigler et al. [35]
revealed hMSCs could express transcripts encoding
BDNF and B-NGF but not NT-3 and NT-4 in vitro and
promoted neurite outgrowth within dorsal root ganglion
explants. Mahmood et al.[36] and Kim et al. [37] trans-
planted rat or human MSCs into an in vivo model of
traumatic brain injury and found that expression of
BDNF, NT-3 and/or nerve growth factor were increased.
Kim et al. also found some functional improvements in
the hMSCs transplanted group [37]. In our study, we
checked the amount of BDNF and NT-3 mRNAs and
proteins at 28 days and 56 days following hMSCs

transplantation in the spinal cord and bladder and no
change was observed following transplantation regard-
less of the experimental periods. We performed ELISA
and RT-PCR at chronic stage of spinal cord injury
(PTD28 and 56) but we were not able to ascertain
whether the level changes occurred in acute or subacute
stages. The level of BDNF and NT-3 in hMSC trans-
planted group did not differ from those in control
group 29 days after transplantation in a previous study
[37], and the increments of the amount of neurotrophic
factors including BDNF within the injured spinal cord
occurred within 2 to 5 days following transplantation
[25]. The application of exogenous BDNF following
spinal cord injury could enhance locomotor recovery in
some studies [20,38], therefore limited recovery of loco-
motor function after hMSC transplantation may be
related with unchanged level of BDNF in our study.
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Previous in vivo studies evaluating the effect of hMSC
transplantation into injured spinal cord have focused on
the functional changes in motor and sensory impair-
ments following transplantation [39,40], but they did
not evaluate autonomic function including neurogenic
bladder. Mitsui et al. found some improvements in the
neurogenic bladder of rats following spinal cord injury
after transplantation of neural stem cells or precursor
cells [41,42], and Temeltas et al. also reported some
improvements of lower urinary function after rat MSCs
transplantation [43].

In our study, neurogenic bladder was not recovered in
the hMSC group compared with control group until 56
days after transplantation. Bladder dysfunction following
spinal cord injury was severe enough not to recover
spontaneously in control group which hindlimb function
however showed gradual spontaneous recovery through-
out the 56 days following spinal cord injury. Therefore
hMSCs alone were likely insufficient to restore bladder
function in this study.

The level of neurotrophic factors may also have the
possibility of affecting bladder function. Mitsui et al.
[21] has made a modified moderate contusion model,
the same model in our study, where BDNF and NT-3
secreting fibroblasts were transplanted into the spinal
cord and found that the neurogenic bladder was par-
tially improved showing decrement of detrusor pressure
and hyperreflexia 56 days following transplantation.
They revealed that exogenous BDNF and NT-3 play an
important role in repairing neurogenic bladder following
spinal cord injury of rats [21]. In our study, endogenous
BDNF and NT-3 levels in the spinal cord and bladder
were unchanged after hMSCs transplantation and these
results may explain unrecovered neurogenic bladder.

Limitation of our experiment was that we did not
check the BDNF and NT-3 mRNA and protein levels at
acute or subacute stages as mentioned earlier. We found
that stem cell transplantation was not sufficient to
restore adequate function of motor, sensory and auto-
nomic systems following spinal cord injury in this study,
therefore other methods including biomaterials for con-
trol and differentiation of transplanted stem cells and
directionality of regenerating axons, neurotrophic factors
for the growth of neurons and glial cells, in addition to
drug delivery system for effective transport of stem cells
or neurotrophic factors, should be developed and uti-
lized in combination for successful regeneration of the
injured spinal cord.

Conclusions

Our study showed that the transplantation of hMSCs
into the injured spinal cord of the modified moderate
contusion model could reduce inflammation following
spinal cord injury. But locomotor improvement was not
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obvious and neurogenic bladder and mRNA and protein
levels of BDNF and NT-3 were unchanged after stem
cell transplantation.

Methods

Surgical procedures for a modified moderate contusion
model of rats

All procedures were approved by Dankook University’s
Institutional Animal Care and Use Committee (DKU-
10-013). Adult female Sprague-Dawley rats (n = 60,
weight 230-250 g) aged 12 weeks received modified
moderate contusion injuries to the thoracic spinal cord.
All rats were housed individually in a thermo-hygrostat
(23°C, 50% humidity) with food and water available ad
libitum. Animals were anesthetized with isoflurane
(Forane™, Choongwae Pharma, Seoul, Korea). The skin
layer, subcutaneous layer, and muscle layer were incised,
laminectomy was performed, and the T8-9 level of the
spinal cord was exposed without any damage or com-
pression to the surrounding dura mater.

Using a Multicenter Animal Spinal Cord Injury Study
(MASCIS) impactor (Rutgers, the State University of
New Jersey, Newark, NJ), a 10-gram rod was dropped
from a vertical distance of 25 mm onto the T9 level of
the exposed spinal cords, and was allowed to rest for 5
seconds before it was lifted, thus resulting in a modified
moderate contusion model that is the equivalent of Mit-
sui’s method [41]. This model results in more motor
deficits than a standard moderate contusion model.
After contusion the muscle, subcutaneous, and skin
were sutured in anatomical layers.

All animals received intramuscular injection of 40 mg/
kg cefotiam hydrochloride (Fontiam™, Hanmi Pharma,
Seoul, Korea) for 3 days and intraperitoneal injection of
normal saline (3 ml) just after surgery. Animals also
received oral administration of 10 mg/kg acetaminophen
syrup (Tylenol™, Janssen Pharmaceutica, Titusville, NJ)
for 3 days in order to reduce neuropathic and post-
operative pain. Bladder expression was performed two
times per day, and was continued until the amount of
expressed urine was less than 0.5 ml/day.

Transplantation of human mesenchymal stem cells and
human fibroblasts

Spinal cord injured rats divided into one experimental
group and two control groups by the type of trans-
planted cells or solutions; hMSC, hFb and PBS groups.
At 9 days after injury, hMSC group (n = 22) received
human mesenchymal stem cells, and hFb group (n = 22)
and PBS group (n = 16) received human fibroblasts or
phosphate-buffered saline respectively. hMSCs (Lonza
Walkersville, Inc., Walkersville, MD) were cultured in
MSCGM™ BulleKit™ (PT-3001; MSCBM™, MSCGM™
SingleQuots™ Kit, Lonza Walkersville, Inc., Walkersville,
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MD), and human fibroblasts (hFbs) were originated
from 9-year old male foreskin (Biochemistry Lab. in
Dankook University, Cheonan, Korea) and cultured in
DMEM (Dulbecco’s Modified Eagle’s Medium, Welgene,
Daegu, Korea) with high glucose. Ten percent
fetal bovine serum (Invitrogen Corp., Carlsbad, CA)
was added to DMEM and antibiotics (penicillin-
streptomycin, Invitrogen Corp., Carlsbad, CA) were
used for the prevention of bacterial infection.

After inhalation anesthesia and re-exposure of the
contusion site, rats were placed in the stereotaxic frame
(Jungdo B&P Inc., Seoul, Korea). For hMSC and hFb
groups, 5 pL of hMSCs or hFbs (3 x 10* cells) were
transplanted into the injured spinal cord respectively via
Hamilton syringe (Hamilton company, Reno, NV) con-
nected to a syringe pump (KD Scientific Inc., Holliston,
MA) for 5 minutes. PBS group received 5 pL of
phosphate-buffered saline (Dulbecco’s phosphate-
buffered saline, Welgene, Daegu, Korea) at the injured
spinal cord with the same method. The needle was
removed 10 minutes after finishing transplantation and
muscle, subcutaneous, and skin layers were closed in
layers and bladder expression continued.

Cyclosporin A (Cipol Inj™, Chongkundang Pharmaceu-
tical Corp, Seoul, Korea) was administered at 10 mg/kg/
d subcutaneously beginning one day before transplanta-
tion and continuing daily for 2 weeks after transplanta-
tion to all experimental and control groups. After that,
the oral formula (Cipol Soln™, Chongkundang Pharma-
ceutical Corp, Seoul, Korea) with the same quantity and
concentration was administered daily for the duration of
the study.

Rats in hMSC and two control groups were also
divided into two groups according to the amount of
time since the operation; PTD28 and PTD56.

Hindlimb functions

We used three scales for the evaluation of locomotor
function of paralyzed hindlimb after spinal cord injury;
Basso, Beattie, and Bresnahan (BBB) scale, coupling
score and horizontal ladder test.

The Basso, Beattie, and Bresnahan (BBB) scale of no
hindlimb movement is 0, and that of normal hindlimb
movement is 21 [44]. Rats were analyzed by two obser-
vers who were blinded to the treatment received by
each rat and positioned across from each other to
observe both sides of the rats during 4- minute walking
in the open field (cylindrical-shaped acrylic box; 90 cm
diameter, 15 cm high) with a smooth floor. In case of
rats with incomplete coordination of the forelimb and
hindlimb for which BBB score is between 10 and 14, we
used the forelimb/hindlimb coupling score to add more
detailed information about gait coordination [45]. The
coupling score was calculated as the percent of the
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number of corrected couplings (the number of ipsilat-
eral forelimb steps which was followed by hindlimb
steps) divided by the total number of couplings in the
context of a continuous gait (the number of steps in the
sequence minus one) for at least six steps and five
scenes. A coupling score below 10 was regarded as 0%
for the BBB score, and a coupling score above 14 was
regarded as a BBB score of 100%. These locomotor
scales were examined within a transparent, cylindrical-
shaped (90 cm diameter, 15 cm high) acrylic box with a
smooth floor.

Horizontal ladder test was performed on a runway
made of acryl walls (10 cm tall, 127 c¢cm long, 8 cm wide
between walls, 1 cm between rungs) [46]. All rats were
trained to walk from left to right on a runway several
times for adaptation before testing and then captured
with a digital camcorder. The ladder score was calcu-
lated as below.

Ladder score = Erroneous steps of hind limb / total steps of hind limb x 100( %)

The locomotor function of each group was examined
every 7 days until sacrifice. All locomotor tests were
recorded for at least 4 minutes with a digital camcorder
for coupling score and ladder score and were inter-
preted by two observers who were blinded to the iden-
tity of the rats.

Bladder volume and urodynamic study

Bladder volume measurement and urodynamic study
were performed as previously described [47]. Briefly,
rats were anesthetized and the bladder was exposed.
The diameter of the bladder dome was measured for
indirect evaluation of bladder volume. The bladder
volume was calculated as an imaginary sphere as fol-
lows:

Bladder volume = (Diameter of bladder dome / 2)* x 7 x4 / 3.

After checking the diameter, a double lumen polyethy-
lene catheter (PE-160 and PE-50, Clay-Adams, Parsip-
pany, NJ) was inserted into the bladder dome and fixed
with sutures. One lumen (PE50) was connected to the
pressure transducer and amplified and recorded by poly-
graph (Grass polygraph model 7E, Quincy, MA), and
another lumen (PE160) was connected to a syringe filled
with normal saline and loaded in an infusion pump
(Baxter, Deerfield, IL). The room temperature normal
saline was infused to the bladder at a rate of 10 ml/hour
at first, and the speed was modified to 5 ml/hour after
the first void and concomitant stop for 30 minutes to
stabilize micturition cycles. We recorded the detrusor
pressure just after saline filling, and checked the timing
and numbers of drops of voiding to reveal the coordina-
tion of the detrusor and the external urethral sphincter.
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During the recording procedure, the anesthetic vapor
level was gradually reduced to 0.5% equally to all con-
trols and experimental groups in order to minimize the
effect of anesthesia on micturition behavior.

Through the urodynamic study, we checked the maxi-
mal micturition pressure (cmH,O) and frequency (time/
minute), gross voiding patterns and regularity of mic-
turition frequency and pressure. Gross voiding patterns
were described as normal, flaccid, and hyperreflexia
according to the micturition frequency. A flaccid pattern
was defined as no visible detrusor contraction, and a
hyperreflexic pattern showed a higher frequency of
detrusor contraction than the mean of the controls plus
two standard deviations. An irregular micturition pat-
tern was defined as a pattern of frequency or maximal
pressure that was too variable to count or calculate.

ELISA Measurements

Following urodynamic study, rats (n = 6 in hMSC and
hFb group and n = 4 in PBS group at each experimental
period) were deeply anesthetized and the thoracic and
lumbar spinal cords and bladder were removed. All tis-
sues were frozen using liquid nitrogen and stored in a
deep freezer at -70°C.

Extracted thoracic and lumbar spinal cords were
hemisected in the midline of sagittal plane and divided
into two pieces for the analysis of ELISA and RT-PCR.
All tissues were homogenized in 100 mM Tris/HCI (PH
7.0) lysis buffer containing 1 M NaCl, 4 mM EDTA, 2%
Triton X-100, 2% bovine serum albumin, 0.1% sodium
azide, and protease inhibitor (P8340, Sigma, St. Louis,
MO). Protein concentrations were calculated using the
BCA protein assay (Pierce, Rockford, IL). Expression of
BDNF and NT-3 was examined by ELISA Kit (Chemi-
Kine™ Sandwich ELISA Kit, Chemicon International
Inc., Temecula, CA), and the results were obtained
using a microplate reader (Model 680, Bio-Rad, Her-
cules, CA) at a wavelength of 450 nm.

RNA extraction and RT-PCR

Spinal cord tissues (n = 6 in hMSC and hFb group and
n = 4 in PBS group at each experimental period) were
dissected and stored with the same method as in the
ELISA study. RNA was extracted from dissected thor-
acic and lumbar spinal cords using Trizol reagent (Invi-
trogen Corp., Carlsbad, CA). The concentration of
extracted RNA was measured with Nanodrop (Thermo
Fisher Scientific Inc., Waltham, MA), and 5 ug of RNA
was used for the process of reverse transcription. Total
RNA was reverse transcribed using oligo-dT primer and
SuperScript II transcriptase (Invitrogen Corp., Carlsbad,
CA), and cDNA sequences for rat BDNF and NT-3
were obtained and PCR amplification of cDNA was per-
formed. B-actin was used as control to estimate the
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amount of RNA analyzed. Primer sequence for rat BDNF,
NT-3 and B-actin were as follows: BDNF (forward: 5’-
CAGTGGACATGTCCGGTGGGACGGTC-3, reverse:
5-GTTGTGGTTTGTTGCCGTTGCCAAGAA-3), NT-3
(forward 5-GCAACAGACACAGAACTACTA-3, reverse
5-GCCTGTGGGTGACCGACAAGT-3’) and B-actin
(forward 5-AGCGTGGCTACAGCTTCACC-3, reverse
5-AAGTCTAGGGCAACATAGCACAGC-3). PCR was
carried out using Thermal Cycler 9600 (Perkin Elmer,
Waltham, MA), annealing temperatures for BDNF and
NT-3 primers were 60°C and 62°C and PCR cycle num-
bers were 32 and 35 cycles, respectively. All PCR products
were separated on 1.2% agarose gels and the resulting
bands for each sample were photographed by Lumibis Gel
documentation (BioAmerica Inc., Miami, FL). All results
were analyzed using Image | software (1.37 v, National
Institutes of Health, Bethesda, MD), and the amounts of
BDNF and NT-3 mRNA were corrected with f-actin. The
results were shown as mean + standard deviation of arbi-
trary unit.

Immunohistochemistry

Upon completion of the urodynamic study, rats (n = 3
in each group and each experimental period) were dee-
ply anesthetized and transcardially perfused with 150 ml
of saline, followed by 500 ml of 4% paraformaldehyde in
0.12 M Phosphate Buffered Saline (PBS) via peristaltic
pump. The thoracic spinal cord was removed, postfixed
in 4% PBS for 4 hours and cryoprotected in 30% sucrose
solution at 4°C for 5 days. Extracted tissues were identi-
fied and embedded in M1 embedding matrix (Thermo
Fisher Scientific Inc., Waltham, MA) and kept at -80°C.
Embedded spinal cords were cut sagittally at 20 pm
using a cryocut microtome and then mounted on glass
slides (Superfrost™, Thermo Fisher Scientific Inc., Wal-
tham, MA). Previously mounted sections were treated
with 0.2% Triton in 2% BSA/PBS solution for 5 minutes,
washed and blocked with 10% normal serum for 1 hour.
Primary antibodies diluted in 2% BSA/PBS solution
were incubated for a day at 4°C and washed three times
in 0.1 M PBS. Primary antibodies for immunohisto-
chemistry were as follows: mouse anti-human nucleus
(HN) antibody (1:200, Millipore Corp., Billerica, MA)
for the detection of transplanted human cells, rabbit
anti-glial fibrillary acidic protein (GFAP) polyclonal anti-
body (1:1000, Millipore Corp., Billerica, MA) for astro-
cytes, rabbit anti-beta III tubulin polyclonal antibody
(1:1000, Covance, Emeryville, CA) for neurons and
mouse ED1 monoclonal antibody (1:400, Millipore
Corp., Billerica, MA) for macrophages and monocytes.
Then secondary antibodies diluted in 2% BSA/PBS solu-
tion were incubated for 1 hour at room temperature
and washed for three times. Secondary antibodies
included FITC-conjugated goat anti-mouse IgG (1:200,
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Jackson Immunoresearch Labs, Inc., West Grove, PA)
for monoclonal primary antibodies, and Rhodamine-
conjugated goat anti-rabbit IgG (1:200, ICN Pharmaceu-
ticals, Aurora, OH) for polyclonal primary antibodies.
The sections were coverslipped using Vectashield™ (Vec-
tor Laboratories, Inc., Burlingame, CA) and observed
using fluoromicroscopy (Olympus, Tokyo, Japan).

For quantitation of HN and ED1 positive cells, digital
image analysis using Image ] software (1.37 v, National
Institutes of Health, Bethesda, MD) was performed to
count the number of HN and ED1 positive cells in the
midline of sagittal section of injured spinal cord (n = 3)
of all three groups at PTD28 and PTD56.

Statistical analysis

Statistical analyses were performed using SPSS 15.0 (SPSS
Inc, Chicago, IL). Differences in locomotor functions
including BBB scale and coupling and ladder scores
between experimental and control groups were examined
for statistical significance using one-way analysis of var-
iance (ANOVA) and Bonferroni’s method for post-hoc
comparison at each experimental period, and repeated
measures ANOVA was performed to check whether the
locomotor parameters were different between PTD28 and
PTD56 groups in each hMSC and two control groups.

Differences of bladder volume and numeric para-
meters of urodynamic study between hMSC and control
groups at PTD28 and PTD56 were analyzed using one-
way ANOVA and Bonferroni’s method for post-hoc
comparison, and nominal data of urodynamic study
between hMSC and control groups at PTD28 and
PTD56 were compared using Fisher’s exact test. Krus-
kal-Wallis test was performed to delineate any differ-
ences of BDNF and NT-3 levels between hMSC and
control groups at PTD28 and PTD56.

For comparison of quantitative data of HN positive cells
in hMSC and hFb groups and ED1 positive cells in hMSC
and two control groups, Mann-Whitney U test and one-
way ANOVA with Bonferroni post hoc test were used
respectively. A value of p < 0.05 was considered significant.
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