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ABSTRACT

A gene regulatory network (GRN) is a collection of
regulatory interactions between transcription factors
(TFs) and their target genes. GRNs control differ-
ent biological processes and have been instrumen-
tal to understand the organization and complexity
of gene regulation. Although various experimental
methods have been used to map GRNs in Arabidop-
sis thaliana, their limited throughput combined with
the large number of TFs makes that for many genes
our knowledge about regulating TFs is incomplete.
We introduce TF2Network, a tool that exploits the
vast amount of TF binding site information and en-
ables the delineation of GRNs by detecting poten-
tial regulators for a set of co-expressed or function-
ally related genes. Validation using two experimen-
tal benchmarks reveals that TF2Network predicts the
correct regulator in 75–92% of the test sets. Further-
more, our tool is robust to noise in the input gene
sets, has a low false discovery rate, and shows a bet-
ter performance to recover correct regulators com-
pared to other plant tools. TF2Network is accessible
through a web interface where GRNs are interactively
visualized and annotated with various types of ex-
perimental functional information. TF2Network was
used to perform systematic functional and regula-
tory gene annotations, identifying new TFs involved
in circadian rhythm and stress response.

INTRODUCTION

Transcriptional regulation is one of the fundamental pro-
cesses controlling gene expression and orchestrating gene
activity resulting in phenotypic diversity. Key factors that
drive this process are transcription factors (TFs) which reg-

ulate their target genes by recognizing short sequences on
the DNA called TF binding sites (TFBSs). The full set of
regulatory interactions between a TF and its target genes
forms a gene regulatory network (GRN). GRNs are of ma-
jor interest as they give an overview of how transcriptional
regulation is organized at the genome-wide level. Although
TFs are frequently classified as activators or repressors,
gene regulation is typically controlled through the combi-
natorial control of different TFs, where context-dependency
specifies how TFs modulate the expression of target genes
(1,2). Based on the systematic analysis of TF chromatin
immunoprecipitation (ChIP) experiments it has been esti-
mated that in Arabidopsis a single gene can be regulated by
up to 75 different TFs, highlighting the underlying network
complexity (3,4).

Reliably identifying which TFs regulate which target
genes is pivotal to understand how different biological pro-
cesses like growth, development or stress response are tran-
scriptionally controlled. Previous studies have started to
study GRNs in specific cellular conditions using different
experimental techniques. Whereas Brady et al. used a gene-
centric yeast one hybrid (Y1H) approach to unravel the
first tissue-specific GRN in Arabidopsis roots (5), Taylor-
Teeples et al. used Y1H to unravel the GRN underlying sec-
ondary cell wall synthesis (6). Similarly, Y1H assays were
used to generate a transcriptional network for root ground
tissue and to identify new regulators for SHORTROOT-
SCARECROW (7). In contrast to the in vitro Y1H method,
ChIP-chip or ChIP-Seq are in vivo TF-centric techniques
that determine TF binding and map the potential targets of
an individual TF (3). Besides Y1H and ChIP, open chro-
matin profiling combines the TF footprint information ob-
tained from DNAse I hypersensitivity (DH) assays with
known TFBSs to build GRNs (8–10). This in vivo genome-
wide approach is unbiased because it doesn’t need prior
knowledge about potential TFs or target genes involved in
the biological process under investigation. However, having

*To whom correspondence should be addressed. Tel: +32 9 3313822; Fax: +32 9 3313809; Email: klaas.vandepoele@psb.vib-ugent.be

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



e31 Nucleic Acids Research, 2018, Vol. 46, No. 6 PAGE 2 OF 15

access to detailed TFBS information is essential to link a
DH site or footprint to a specific TF binding event at the
DNA level. Although these experimental methods have sub-
stantially increased our knowledge of GRNs in Arabidopsis,
a systematic profiling of all Arabidopsis TFs using ChIP-Seq
is currently not feasible (11). Similarly, DH assays still have
limitations, as they depend on prior knowledge of TFBSs,
the identification of TF footprints requires a good sequenc-
ing depth, and DH sites can be condition-specific. Also for
TF ChIP condition-specificity is an important factor, as de-
termining protein–DNA binding at different time points
can offer new insights in network dynamics or transient reg-
ulatory interactions (12,13). New initiatives are being devel-
oped that are aimed to profile pools of TFs in a single exper-
iment or study. Two studies used high-throughput in vitro
assays to identify TFBSs for a large collection of TFs us-
ing protein binding microarrays (PBMs) (14,15). Weirauch
et al. used PBMs to determine the DNA sequence prefer-
ences for >1000 TFs from 131 species. Although PBM as-
says can profile TFBSs for different TFs, the detection of
BSs is limited to 10–12 nucleotides. The DNA affinity pu-
rification (DAP) assay is another in vitro method that al-
lowed profiling TFBSs in Arabidopsis (16). Out of 1812 TFs
tested, the BSs of 529 TFs were successfully determined, as
DAP-seq experiments are affected by different factors like
primary sequence, DNA methylation and chromatin acces-
sibility.

Currently there are different databases available which
centralize information about plant promoters and TF bind-
ing in the promoter regions of target genes. AGRIS, PLACE
and PlantCARE integrate collections of consensus BS for
TFs from literature (17–19). AthaMAP contains more de-
tailed TF binding specificities modeled as position weight
matrices (20). Several tools have been developed that query
these databases and identify the TFBSs for a promoter of
interest. For example, Athena utilizes the consensus TFBSs
for 150 TFs to allow rapid identification and visualization
of regulatory elements for a promoter of interest (21). Plant-
PAN extends this straightforward promoter analysis by per-
forming gene group analysis and predicts the co-occurrence
of TFBSs in the promoter (22). CressInt is a web resource
which integrates a wide range of gene regulation datasets,
including TFBSs, genome-wide histone modifications and
open chromatin information (23). As such it does not only
identify TFBSs for a promoter of interest but is also able to
predict which genetic variants impact the binding ability of
a specific TF. Although the aforementioned tools generate
a map of TFBSs for plant promoter sequences of interest,
many of them use simple mapping of TFBSs to promoters.
This approach is highly prone to false positives since TFBSs
are often short and typically contain some level of degener-
acy (24,25). Furthermore, most tools only integrate a subset
of the available TFBS information or restrict their analysis
to an arbitrarily defined 500 or 1000 bp proximal promoter.

To overcome some of the limitations inherent to experi-
mental techniques, computational approaches making use
of publicly available TFBS information can also be used to
delineate GRNs. AtRegNet is a tool that allows users to
visualize complex networks formed by TFs and their tar-
get genes by integrating regulatory interactions from pub-
lished data (19). Given the limitations associated to sim-

ply mapping TFBS to promoters, more advanced filtering
schemes have been implemented which increase the speci-
ficity to computationally map functional TFBS and con-
struct GRNs. Examples of such filtering steps comprise ex-
ploiting conservation of non-coding DNA or the integrat-
ing co-regulatory gene information with TFBSs (23,25–31).
These filtering approaches, however, do not fully resolve
the problem of false positives and might also suffer from
false negatives, where functional binding events remain un-
detected. To tackle some of these challenges, we present
TF2Network, a tool that identifies candidate TF regulators
for set of co-expressed or functionally related genes based
on enriched TFBS. Apart from validating TF2Network us-
ing different gold standard datasets, we demonstrate how
it can be used to predict new regulators for different bio-
logical processes, offering a versatile tool for the improved
functional and regulatory annotation of Arabidopsis genes.

MATERIALS AND METHODS

Collection of position weight matrices

The motif collection used for TF2Network consists of 1793
Arabidopsis position weight matrices (PWMs), represent-
ing 916 TFs from different sources including CisBP (14),
Franco-Zorrilla et al. (15), Plant Cistrome Database (16),
JASPAR 2016 (32), UNIPROBE (33), AGRIS (19) and
AthaMAP (20). The collected BSs were either in the form of
PWMs or consensus sequences and all were converted into
position count matrices scaled to 100. TFs were assigned to
gene families based on the PlnTFDB 3.0 database (34).

Extraction of gene regions and PWM mapping

Starting from the TAIR10 Arabidopsis gene annotation, we
added a set of 5711 non-coding RNAs (ncRNAs) described
in Liu et al. resulting in a dataset covering 38,966 genes
(35). For all protein-coding genes, RNA genes, pseudo-
genes, transposable elements and ncRNAs, we defined three
gene region types relative to the translation start (TrSS) and
end site (TrES) of the gene (36). Long (5000 bp upstream
from TrSS and 1000 bp downstream from TrES), interme-
diate (1000 bp upstream and 500 bp downstream) and short
(500 bp upstream, i.e. core promoter). For long and inter-
mediate, introns were retained while extracting the regions.
If another gene is present upstream of the gene, the region is
cut where this upstream gene starts or ends. Here, upstream
and downstream are used relative to the TrSS and TrES, re-
spectively, because it has been shown that the regulatory el-
ements can be found in the 5′ and 3′ untranslated region
(UTR) (4,37–39). Coding regions were not included as it has
been shown that the TF binding in coding regions is mostly
passive and could also be nonfunctional in the regulation of
gene expression (40). The second reason to include UTRs is
that not all genes have information about their UTRs.

All PWMs were mapped to the three extracted gene re-
gions using Cluster-Buster (’–c’ parameter set to zero and
’–m’ set to the default value of 6) to allow a score for every
region without trimming to retain the family specific infor-
mation within the BS (41). PWM matches mapping inside
exons were discarded. If a gene region has more than one
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match for a specific PWM, only the match with the maxi-
mum score was considered for ranking. Ranking of the dif-
ferent gene regions was done based on the mapping score.
The PWM gene feature file was created by selecting the top
1000, 2000 or 5000, 7000 and 10000 scoring genes for every
PWM. By default the top 5000 scoring genes are used.

Enrichment statistics calculations

Motif enrichment for given input gene set is calculated us-
ing the hypergeometric distribution based on the set of mo-
tifs mapped on the gene regions using the probability mass
function:

P (x = i ) =
[(

n
i

) (
m

N − i

)]/(
m + n

N

)

where,
n = #genes with a match for the tested PWM
m = #genes without the PWM match in the genome (hav-

ing at least one match with the motif collection)
N = #genes in the input set
i = #genes in the input set with the PWM match.
For each enriched motif, the q-value of enrichment is de-

termined using the Benjamini–Hochberg (B&H) correction
for multiple hypotheses testing. To empirically evaluate the
false discovery rate (FDR), control datasets were generated
for every TF by randomly selecting 500 genes from the pool
of non-bound ChIP genes. The default q-value is set to 0.05
which, based on 24 000 control datasets corresponds to a
FDR of 0.34% (0.17 false positive TFs per run/50 predicted
TFs per run), indicating that the B&H correction effectively
controls for false positives.

ChIP-Seq and TF perturbation gene set benchmarks

In total, 24 TFs were selected to build a benchmark contain-
ing TF ChIP bound regions (details given in Supplemen-
tary Table S1). For 20 TFs, peaks were collected from (4)
where peaks were annotated to the closest gene in TAIR10
(36). For E2Fa, KAN1 and CCA1 the annotated peaks
were downloaded from the original paper (see Supplemen-
tary Table S1). For ABI5, the narrow peaks were collected
from the Plant Cistrome Database and these peaks were
also annotated to the closest gene in the TAIR10 release
(16). For WRKY33, as the peaks were not reported in the
paper, the raw data was processed. Raw reads for 2 repli-
cates were downloaded from the Sequence Read Archive
(SRA) (see Supplementary Table S1) and mapped to the
Arabidopsis genome using Bowtie2 and only the reads that
map uniquely to the genome were considered for peak call-
ing (42). MACS2 was used to identify the peaks for both the
replicates and only peaks that had 50% intersection in both
of the replicates were considered for the annotation, as only
retaining the intersecting region of replicates might miss the
actual binding event (43). The reference sample for the in-
tersection analysis was determined as the replicate that had
maximum number of peaks. For all TFs, the genes associ-
ated with the 500 top scoring peaks were considered for the
benchmark gene sets (called ‘ChIP genes’). For all evalua-
tion experiments using the ‘ChIP genes’ benchmark, PWMs

derived from the ChIP-Seq experiments were not included
in order to avoid circular reasoning.

TF perturbation differential gene expression datasets
were obtained for 23 TFs from different publications listed
in Supplementary Table S2. Genes were sorted based on the
p-value/Fold change (FC)/log(FC) and the top 500 genes
were selected for validation. Note that for some TFs less
than 500 DE genes were available. If for one TF more than
one condition or time point was profiled, each gene set was
considered independently for running the TF ‘DE genes’
benchmark. For TFs with multiple DE gene sets, the TF was
scored as a true positive prediction when for at least one DE
gene set the correct regulator was found. The ‘ChIP genes’
and ‘DE genes’ gold standards are available in Supplemen-
tary Datasets S1 and S2, respectively.

Tool comparison

The ‘ChIP genes’ were used to compare the performance
of TF2Network with Cistome and PlantRegMap (44,45).
For the Cistome tool, the FIMO-mapped Weirauch Set was
used to predict motifs using the option ‘only significantly
enriched motifs’ in 1000 bp upstream region from the trans-
lation start site (no larger promoter sizes can be selected).
For calculating ranks, the predicted motifs were sorted by
decreasing z-score. Due to the limitation of this tool to take
only 50 genes at a time as input, top scoring 50 genes for
each TF were submitted (running time ∼5 min). To control
the False Discovery Rate (FDR) of PlantRegMap, we used a
P-value cutoff of 0.007 as this setting yielded no significant
results on the control datasets. This threshold was used to
have a fair comparison with TF2Network considering sim-
ilar levels of FDR.

Experimental interactions

Experimental interactions included in the web interface
were derived from different experimental data sources. For
protein–DNA interactions, peaks of all TFs used in the
ChIP benchmark along with other TFs from Heyndrickx
et al. and 21 TF mock samples from Song et al. were col-
lected (4,46). These peaks were annotated to the closest
gene in TAIR10 (36). The Y1H derived interactions were di-
rectly downloaded from the original publications (5–7,47–
50). Protein-protein interaction data were retrieved from the
studies listed in Table 3 and Gene Ontology (GO) annota-
tions were downloaded from TAIR on 9 May 2017 (36).

Co-expression edges were calculated based on a com-
pendium containing all samples from (51). For each sam-
ple accession, all available runs were downloaded as FASTQ
files from the SRA (52) and concatenated. Expression quan-
tification was performed with Kallisto (v0.43.0) (53), which
produced TPM values for each transcript in the AtRTD2
reference transcriptome (54). Gene-level expression was ob-
tained by summing the TPM values for each gene. Co-
expression between gene pairs was calculated as Pearson’s
correlation coefficients that were transformed to z-scores
for each gene. Only co-expression edges that have a z-score
with an absolute value >3 were retained. Co-expression
scores for predicted regulators in the webtool are based on
these edges with the z-score cutoff.
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To evaluate of TF2Network is capable of predicting co-
operative TFs, we determined, per input gene set, how many
of the top 50 predicted TFs have a known PPI. This pro-
cedure was applied for each gene set present in the ‘ChIP
genes’ benchmark (n = 24). To assess the significance of the
observed number of interacting TFs for these real gene sets,
controls were generated. For controls, the same procedure
was followed as for the real top 50 predicted TFs except that
50 TFs were randomly selected from the database of 916
TFs (10 000 times). The rationale of this approach is that
these random TF pairs will be enriched for negatives (non-
interacting TFs) and thus can be used to identify putative
cooperative TFs. The PPI count was defined as the num-
ber of TF interactions that were experimentally confirmed
by PPIs (source data reported in Table 3). The final p-value
was calculated as the number of times the PPI count of a
control dataset was greater than that of the real dataset, di-
vided by 10 000.

Construction and analysis of functional regulons

To construct the functional regulons, only experimental GO
annotations were considered (evidence codes EXP, IMP,
IDA, IPI, IGI and IEP). For each gene the top 300 most
co-expressed genes were retained and used as input for GO
enrichment analysis, in each of the 13 expression atlases
present in CORNET (55). GO enrichment analysis was per-
formed using the hypergeometric distribution with q-value
cutoff of 1e-5. If a gene was annotated with a certain GO
term that was also significantly enriched in its co-expressed
genes, this gene set was retained as a valid functional reg-
ulon which was subsequently submitted to TF2Network.
Out of all predictions for all functional regulons annotated
with a specific GO biological process (BP) term, the top 50
regulators were retained. These top regulators were further
sorted based on number of times they are predicted in the
functional regulons. The most frequently occurring top 50
regulators from this sorted list were annotated as TFs regu-
lating that particular GO biological process. Like this, TFs
were identified for functional regulons for all GO BPs con-
sidering all 13 expression atlases.

For the unknown Brassicaceae genes, detailed expres-
sion information was obtained from Vaneechoutte et.al.
2017 (56). Gene family and phylostrata data was re-
trieved from the PLAZA 3.0 Dicots comparative genomics
database (57). PLAZA 3.0 gene homology data was also
used to divide genes into five phylostrata (Viridiplantae,
Embryophyta, Angiosperms, Eudicots, and Brassicaceae).
GO BP terms used to identify new stress-related TFs are
GO:0009408 response to heat, GO:0009409 response to
cold, GO:0009651 response to salt stress, GO:0009644 re-
sponse to high light intensity and GO:0009607 response to
biotic stimulus. Expression profiles of genes predicted to
control circadian rhythm were evaluated using the Diurnal
Tool (http://diurnal.mocklerlab.org/) (58).

RESULTS

Basic features of TF2Network

TF2Network takes as input a set of co-regulated, co-
expressed or functionally related Arabidopsis genes and pre-

dicts TF regulators based on enrichment analysis using
known TFBSs. In contrast to simple mapping tools that re-
port all TFBS matching to a given set of promoters, effi-
cient enrichment statistics are applied to only return pre-
dicted TFBS and regulators for which the corresponding
TFBS occurs much more than expected by chance in the in-
put gene set. In total, 1793 motifs corresponding to TFBS
for 916 Arabidopsis TFs have been integrated from different
databases and literature sources (see Material and Meth-
ods). The length of TFBSs varied from 4 to 30 nucleotides
(nt) with a median length of 10nt (Supplementary Figure S1
panel A). The length variation was mainly due to the pres-
ence or absence of flanking bases surrounding the core BS.
For example, for TF AT4G25490 (CBF1, which has bind-
ing specificity for CCGAC), the BS from CisBP was 10nt
long containing the core CCGAC and flanking nucleotides
(yrCCGACata). The core of CBF1 BS from DAP-seq was
more conserved compared to the BS from CisBP and the
length was 15nt (kyyrCCGACatm). All integrated TFBSs
cover TFs from 62 different TF families and the number of
TFs for each family is shown in Supplementary Figure S1,
panel B, along with the distribution of lengths of BSs within
each family.

For predicted regulators selected by the user, an interac-
tive GRN visualization was developed that makes it pos-
sible to explore in more detail the regulatory interactions
for a specific TF or a set of target genes. Furthermore, ex-
perimental protein–protein and protein–DNA interaction
data, co-expression information as well as gene function in-
formation were integrated in order to improve the extrac-
tion of biological information from the predicted networks.
For every gene, a pre-defined non-coding DNA region is
defined which covers the exon-masked gene body, the full
upstream (up to 5 kb) and the 1 kb downstream sequence,
which is used to first map the motif collection and subse-
quently to calculate the TF enrichment for a given input
gene set. The primary output of TF2Network comprises a
list of regulators and the associated target genes, together
with the enrichment statistics for each motif and informa-
tion about co-expression between the input genes and the
predicted regulator.

Evaluation of TF2Network using different benchmarks

To evaluate the performance of TF2Network, two exper-
imental benchmark datasets were constructed. The first
benchmark is based on TF ChIP bound genes (called ‘ChIP
genes’) for 24 different TFs while the second dataset con-
tains differentially expressed genes after TF perturbation
(called ‘DE genes’) for 23 TFs. These datasets were col-
lected from different studies that performed TF ChIP bind-
ing assays and TF perturbation experiments (more details
in Materials and Methods; Supplementary Table S1 and
S2). We evaluated TF2Network on three gene region types,
long, intermediate and short, extracted from the Arabidop-
sis genome (5 kb upstream + exon-masked gene body + 1 kb
downstream, 1kb upstream + exon-masked gene body +
500 bp downstream, and 500 bp upstream core promoter,
respectively). The performance of TF2Network was evalu-
ated by measuring how many times it correctly recovered
the TF from the ChIP or DE gene sets and scoring at which

http://diurnal.mocklerlab.org/
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rank the correct TF was reported. A correct TF refers to a
significantly enriched PWM for the TF that was analyzed in
the ChIP experiment while low ranks indicate that the cor-
rect regulator was among the most significant predicted TFs
(lowest q-value). For the ‘ChIP genes’, the overall perfor-
mance of TF2Network varied between 75% and 92% (Fig-
ure 1A). Out of the three different gene regions, the best per-
formance was observed for the long region with 92% recov-
ery (22/24 TFs) compared to 83% and 75% for intermediate
and short, respectively. Despite the potential risk of having
a higher level of false positive TF predictions due to a larger
search space, the advantage of using the long region type is
that it captures TF binding events that are beyond the 1 kb
upstream promoter. For KAN1 and WUS, this type of dis-
tal TFBS covers 39% and 28% of all binding events, respec-
tively. Considering all 24 TF ChIP gene sets, on an average
31% of the TFBSs are missed by both the intermediate and
short gene regions. Furthermore, 4% of all binding events
that lie in the introns are missed by the short region. For
the 22 correctly predicted regulators using the long gene re-
gions, 62% of the TFs were correctly identified within the
top 5 predictions (called top 5 ranks). Apart from the TF
level recovery, the performance of TF2Network was also
evaluated at the TF family level (Figure 1A and B). To eval-
uate the family level performance, we counted how many
times TF2Network found a regulator from the same family
as the TF profiled in the benchmark datasets. Overall, the
family level performance ranged from 83% to 96% and was
again highest (23/24) for the long gene region type. The per-
formance of the tool was also evaluated for top 200 ‘ChIP
genes’, yielding very similar results as for the top 500 ‘ChIP
genes’ (Supplementary Figure S2). Based on these results,
the long gene region is used by default in the TF2Network
tool.

‘DE genes’ collected from different TF perturbation ex-
periments are genes that transcriptionally respond to either
overexpression or knockdown of a specific TF (Supplemen-
tary Table S2). In these benchmark datasets, there is no in-
formation if the perturbed TF is binding to and directly reg-
ulates the DE genes or not. Figure 1B shows the overall per-
formance of TF2Network for the ‘DE genes’. Although the
overall performance is identical for long and intermediate
regions (56%), the long region has better TF level recov-
ery within top five ranks for both TF level (30%) and at the
TF family level (60%) recovery compared to the other two
regions (48% and 52% for short and intermediate region,
respectively). This shows that TF2Network is also able to
predict the correct regulator for gene sets regulated by a spe-
cific TF including both direct and indirect target genes. At
the TF family level, the performance ranges between 75 and
87% for the short and long gene regions, respectively.

Assessing the robustness of TF2Network

Apart from analyzing the performance of TF2Network on
the two gold standard benchmarks, we also assessed the
specificity of the method using control gene sets (Figure
1C). To measure false positive predictions, for each TF in
the ChIP benchmark dataset a control gene set was con-
structed by randomly selecting 500 genes from the pool
of non-bound ChIP genes. When running TF2Network on

these control gene sets with the default q-value threshold of
0.05, on an average 0.17 TFs were predicted per control gene
set (long gene regions), corresponding to an FDR of 0.34%
(see Materials and Methods). The FDR for predicting the
TFs for the other gene regions was highly similar.

As TF2Network performs motif enrichment analysis us-
ing a PWM gene feature file, we also verified if the number
of selected top-scoring PWM gene matches has an influ-
ence on the overall performance (see Material and Meth-
ods). In total, we selected seven PWM gene feature files,
which contain the best 1000, 2000, 5000, 7000 and 10 000
gene matches, respectively. The performance at the TF level
for the different PWM feature files is shown in Figure 1D.
Feature 5000 had an overall recovery of 22/24 correct TFs
which was better than using the 1000 and 2000 PWM gene
feature files. Although the PWM gene feature files contain-
ing 7000 matches had same overall recovery, the 5000 fea-
ture file shows the best performance when considering the
top 5 and top 10 ranks. Therefore, the PWM gene feature
file containing the best 5000 matches per PWM is used as
the default.

Although the two benchmarks used to evaluate
TF2Network are strongly enriched for true target genes
for a specific TF, it is important to verify how robust
the TF predictions are for input gene sets with lower
signal-to-noise ratios. Therefore, we generated additional
datasets where starting from the ‘ChIP genes’ benchmark
containing 500 bound regions per TF, increasing fractions
of non-bound targets were included (denoted as percentage
of noise in Supplementary Figure S3). Whereas the original
recovery of 92% (22/24) correct TF predictions drops to
79% and 63% when adding 30% and 50% noise, respec-
tively, the fraction of correct predictions in the top 5 ranks
only drops from 62% to 54% when adding 50% noise. These
results indicate that the performance of TF2Network is
robust even in the case where the TF signal in the input
gene set is low.

Comparison of TF2Network with existing plant TF analysis
tools

The performance of TF2Network was compared with pre-
viously published tools that also aim to predict BSs or TFs
for a set of input genes. Although many tools offer PWM
mapping on a set of input genes, only Cistome and the TF
enrichment tool of PlantRegMap return overrepresented
BSs or TFs in their output and thus were selected to com-
pare with TF2Network (44,45). Like TF2Network, both
tools take as an input a set of genes for which the users
wants to predict regulators. Here we used the ‘ChIP genes’
to compare the performance of the different tools. The over-
all recovery for Cistome was 21% for these 24 TFs and this
tool does not allow to directly link the enriched PWM to
the associated TF. Cistome incorporates a small collection
of TFBSs and also runs slow for the settings used for this
comparison (see Tool comparison in Materials and Meth-
ods).

PlantRegMap uses a Fisher’s exact test to calculate TF
enrichment using TF binding site data combined with
DNase I hypersensitive sites, TF footprints and histone
modifications. PlantRegMap shows an overall performance



e31 Nucleic Acids Research, 2018, Vol. 46, No. 6 PAGE 6 OF 15

Figure 1. TF2Network benchmarking for ChIP bound, DE and Control gene sets. Recovery on Y-axis corresponds to the fraction of TFs correctly predicted
within the benchmark. (A) The performance of TF2Network for ‘ChIP genes’ (N = 24 TFs). The colors of stacked bars represent the rank bins with colors
from cyan to magenta indicating rank 1, rank 2–5, rank 6–10, rank 11–15 and rank 15 onward. (B) The performance for ‘DE genes’ consisting of 23 TFs.
(C) The performance of TF2Network for control gene sets based on genes that were not bound in a ChIP experiment. (D) Feature comparison for the
‘ChIP genes’ benchmark. Top 1000, 2000, 5000, 7000 and 10 000 ranked genes per TF were evaluated.

of 67% (16/24, detailed ranks in Table 1), which is lower
than TF2Network. As PlantRegMap uses 500bp upstream
and 100bp downstream from the transcription start site, it
will miss the target genes where the TF binding is more up-
stream or downstream. Considering all tested TFs present
in the ‘ChIP genes’ benchmark, no cases were observed
where PlantRegMap or Cistome predicted the correct TF
but TF2Network failed to do so. However, there is some
complementarity in the predicted ranks, as for TFs like
BES1, EIN3, FLC, the ranks of PlantRegMap are better
than the ranks predicted by TF2Network.

Validation of target genes of TF regulators predicted by
TF2Network

Apart from evaluating the performance of TF2Network
to correctly predict regulators for the different benchmark
gene sets, we also assessed if the predicted target genes for
a given regulator would correspond with functional tar-
gets. Through the combination of TF perturbation gene
expression information and ChIP-Seq data, we quantified
how well predicted target genes based on DE input genes
overlapped with ChIP-bound genes. Selecting four TFs for
which a correct regulator was predicted within the top five
predictions (PIF4, FHY3, EIN3 and PIF3; see Table 2), the
average recovery of target genes by TF2Network confirmed
by ChIP was 69%. An overview of validated target genes
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Table 1. Performance comparison different tools

TF Gene ID Rank TF2Network Rank PlantRegMap Rank Cistome

ABI5 AT2G36270 1 3 ––
AGL15 AT5G13790 2 5 4
AP3 AT3G54340 1 1 ––
ERF115 AT5G07310 3 –– ––
BES1 AT1G19350 10 6 ––
CCA1 AT2G46830 6 –– ––
E2FA AT2G36010 3 –– ––
EIN3 AT3G20770 46 5 ––
FHY3 AT3G22170 1 1 ––
FLC AT5G10140 28 2 ––
FLM AT1G77080 4 1 1
FUS3 AT3G26790 2 3 ––
KAN1 AT5G16560 –– –– ––
LFY AT5G61850 1 1 ––
PIF4 AT2G43010 37 4 8
PIF5 AT3G59060 4 2 ––
PI AT5G20240 3 15 ––
PIF3 AT1G09530 1 2 2
SEP3 AT1G24260 3 –– ––
SMZ AT3G54990 4 1 ––
SVP AT2G22540 37 –– 3
WRKY33 AT2G38470 1 4 ––
GTL1 AT1G33240 –– –– ––
WUS AT2G17950 45 –– ––
Total recovery 22 16 5
Percentage recovery 91.67% 66.67% 20.83%

For every tool, only the top 50 regulators were considered.

for PIF3, FHY3 and PIF4 are shown in Figure 2. In case
the correct TF was not predicted in the top 10 predictions,
the recovery was lower, ranging from 25% to 52%. Overall,
these results show that TF2Network is not only predicting
a correct regulator in many cases, but also succeeds to link
a regulator to its downstream target genes with good sensi-
tivity.

Protein-protein Interactions between predicted TFs reveal co-
operative TFs

Co-binding TFs achieve increased DNA-binding specificity
through the formation of higher-order protein complexes,
which can modify the DNA-binding affinity of the individ-
ual TFs in the complex. Depending on whether the coop-
erative TFs are from the same or from different TF fam-
ilies, we here call these interactions intra-family or inter-
family, respectively. To evaluate if TF2Network can shed
light on putative cooperative TFs, we used the regulator pre-
diction results of the 24 ‘ChIP genes’ benchmark datasets to
identify TFs physically interacting with each other through
a known protein-protein interaction (PPI). Specifically, for
the top 50 predicted regulators per TF gene set, the number
of interacting TFs was counted and compared with control
datasets to assess the significance of the observed overlap
between the predicted TFs and the PPI data (see Material
and Methods). The distribution of PPI counts for real and
control gene sets is shown in Figure 3A and reveals that for
13/24 TF gene sets a significant number of interacting TFs
can be found (based on a P-value< 0.01 threshold, dashed
line Figure 3A). We further verified if these combinations
of predicted TFs offer new insights on intra-family versus
inter-family TF interactions. Figure 3B shows the number
of intra- and inter-family interactions for the 13 TF sets

deemed significant in panel 3A. Overall, these results indi-
cate that TF2Network can detect both type of interactions
(63% and 37% intra- and inter-family interactions, respec-
tively). For the FLM ‘ChIP genes’ genes, 147 experimentally
validated PPIs were found, of which 98 and 49 were intra-
and inter-family interactions, respectively. Among the inter-
family interactions detected for these 24 TF gene sets, many
of them have previously been described including inter-
actions between MYB-bHLH, TCP–MYB–bHLH, BES1–
bHLH, bHLH–bZIP, AP2/EREBP–HB etc. (59). The av-
erage rank of TFs having an interaction with FLM is 11
while for those not interacting with FLM the average rank
is 27. A similar trend was observed for other ChIP gene sets
for which the correct regulator was present and the bench-
marked TF shares a PPI with other predicted TFs (average
ranks CCA1: 11, 29 and ABI5:16, 26 for interacting and
non-interacting TFs with benchmarked TF, respectively).
This result suggests that interacting TFs are ranked at the
top in the regulator predictions returned by TF2Network.
Figure 3C shows a detailed overview of the predicted TFs
and associated PPIs for the FLM ChIP gene set. This net-
work view offers a better understanding of predicted TFs,
which were clustered based on family information, and their
interactions with different TFs from the same or a different
TF family, such as MADS, TCP, BBR/BPC, bHLH, C2H2
and Pseudo ARR-B. Known interaction for FLM comprise
PPIs with AG, AGL31, AGL68–70 (MADS family) and
TCP14 (TEOSINTE BRANCHED, cycloidea and PCF
family). In conclusion, these results indicate that among the
predicted regulators returned by TF2Network frequently
cooperative TFs can be found, facilitating the generation
of new hypothesis about TFs operating through protein
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Figure 2. Validation of TF2Network target gene prediction. The network figure shows the results for a set of PIF3, PIF4 and FHY DE input genes. Green
nodes denote target genes predicted by TF2Network that are confirmed by ChIP experiments while red genes were non-confirmed target genes.

Table 2. Validation of target genes predicted by TF2Network

TF symbol Gene ID
Rank from
TF2Network #Target genes

#Target genes
confirmed by ChIP Percentage recovery

PIF4 AT2G43010 1 45 25 55.56%
FHY3 AT3G22170 1 84 79 94.05%
EIN3 AT3G20770 1 106 65 61.32%
PIF3 AT1G09530 5 43 29 67.44%
PIF5 AT3G59060 13 43 15 34.88%
AP3 AT3G54340 23 102 53 51.96%
PI AT5G20240 32 103 50 48.54%
BES1 AT1G19350 36 40 10 25.00%

Table 3. Overview experimental regulatory interactions included in TF2Network

Interaction type Number of interactions Commenta

Protein–DNA interactions 167 636 ChIP-Seq: 53 TFs
3247 Y1H: 652 TFs

Protein–protein interactions 76 236
Co-expression 13 139 852 Correlation transformed into z-score and cutoff of

z-score>3 or z-score <3 was used

aFor a full overview of all included published studies, see Supplementary Table S5.

complexes to control specific sets of spatial-temporal co-
regulated genes.

TF2Network web interface

To make the TF2Network algorithm easily accessible and
to allow intuitive exploration of the predicted GRN, an on-

line interface was created (see Availability for URL). On the
start page, the user can provide a set of genes as a list of
gene identifiers or aliases. Submitting the gene set will start
the retrieval of PWM motif mappings, gene co-expression
data, protein–DNA interactions and protein-protein inter-
actions (PPI), and Gene Ontology (GO) annotations from
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Figure 3. Significance testing of PPI interactions in TF2Network output. (A) Density distribution of experimental PPIs within sets of 50 randomly selected
TFs are shown in white (n = 10 000 control sets). Black dots represent real counts for PPIs within top 50 regulators predicted by TF2Network for 24 ‘ChIP
genes’ sets. (B) Distribution of intra-family and inter-family PPIs for sets with P-value < 0.01 in panel A are shown in green and purple, respectively. (C)
PPI network view for regulators of FLM showing intra-family and inter-family interactions within TFs covering different TF families.

the server (see Material and Methods), after which the
TF2Network algorithm is run client-side. TF2Network per-
forms hypergeometric tests on motifs in the input genes and
ranks these according to the resulting q-values. These ranks
are used to order TFs in the regulator panel (Figure 4A).
This panel shows all predicted TFs, the percentage of in-
put genes with which they show z-score co-expression (CO),
the percentage of input genes for which the predicted reg-
ulator has known experimental protein–DNA interactions
(PD) and a list of their PWMs that are significantly enriched
in the input gene set. z-score co-expression reports the frac-
tion of target genes that are strongly positive or negatively
correlated with the predicted TF (see Material and Meth-
ods). As shown for the ‘ChIP genes’ benchmark in Supple-
mentary Figure S4, high Z-score co-expression frequently
coincides with correct TF predictions.

For each PWM the rank, q-value and number of input
genes that contain the PWM are shown. Hovering over the
PWM in the table shows the source of this PWM along with

its consensus sequence information displayed as a sequence
logo. All prediction results can be exported to CSV format
by clicking the ‘Export predictions’ button at the bottom of
the regulator panel.

Selecting PWMs in the regulator table starts a network
visualization of the corresponding TFs and the input genes
that contain the selected PWMs in the Cytoscape panel
(Figure 4B). Multiple TFs can be active in the visualization
at a time. The positions of the gene nodes in the visualiza-
tion reflects the number of active TFs they are predicted to
be regulated by: genes that contain selected PWMs for all
active TFs are placed centrally in a compact circle. The re-
maining genes with PWMs for more than one active TFs
are then placed in concentric circles around the center so
that genes with more TFs are closer to the center. Next, the
active TFs are spaced out evenly outside these concentric
circles. Finally, genes with selected PWMs for only one of
the active TFs are placed in a compact circle near the TF,
distal to the center (Supplementary Figure S5, panel A).
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Figure 4. Screenshot of the TF2Network user interface. (A) The regulator panel listing predicted regulators. (B) Cytoscape panel showing GRN where
blue diamonds represent TFs and green nodes refer to non-TF genes. (C) Gene info panel that shows gene ontology enrichments on gene sets

PWM mappings, co-expression, PPIs, and protein–DNA
interactions are shown as grey, red, blue and black edges
between genes in the network, respectively (Supplementary
Figure S5, panel B and C). How and when each edge type is
shown can be adjusted in the Edge manipulation boxes on
the left in the Cytoscape panel. For each edge type, the box
contains one large slider to change the thickness of the edges
and another small slider to toggle between hiding all edges,
showing only edges between selected genes, and showing all
edges of this type. A button is also provided to enable the
display of all edges for a gene when hovering the mouse over
it. For PWM Mappings, only edges for currently selected
PWMs in the regulator panel are shown. A full overview of
all edge types and how to manipulate the different edges is
explained in a Tutorial present on the TF2Network website.

When a single gene is selected in the Cytoscape panel, ad-
ditional information will be displayed in the gene info panel
below (Figure 4C). The Gene Ontology tab will contain all
GO terms associated to the selected gene. Three additional
tabs are provided that contain tables of genes with which the
selected gene has a protein–DNA, protein–protein or co-
expression interaction. Hovering over or clicking the head-
ers of these tables will highlight or select all interacting
genes for this edge type. The PWM mapping tab shows a vi-
sualization of the selected gene’s structure and the positions
of the active PWMs on the genes introns, upstream and
downstream regions. The visualization can be dragged to
pan horizontally and zoomed in or out by scrolling. Zoom-
ing in closely also shows the genomic DNA sequence (Sup-
plementary Figure S5, panels D and E). Multiple genes can
be selected by holding the SHIFT key while clicking genes
or dragging the mouse. The gene info panel will then show

a prompt to save the selection as a new gene set. When a
gene set is saved, the Gene Ontology tab will display all
GO terms for genes in the set, sorted by their enrichment
P-value. Hovering over or clicking a GO term will highlight
or select the associated genes in the set. The other three tabs
will provide a button to download the corresponding inter-
actions between genes in the set and a button to reposition
the genes in the Cytoscape panel so that the distance be-
tween interacting genes is minimized. Saved gene sets will be
shown at the top of the gene info panel. When TF2Network
is initialized, three gene sets will already be available: (i) the
input set provided by the user (‘input genes’), (ii) a gene set
containing all predicted regulators (‘predicted TFs’), and
(iii) a gene set containing the union of the first two sets
(‘all genes’). Within the web tool, hovering the mouse over
certain buttons, sliders, tabs, or panels will show a tooltip
describing its functionality. Tooltips can be disabled by
clicking the icon in the bottom left corner of the Cytoscape
panel.

Systematic regulatory annotation of biological processes

Based on the good performance of TF2Network in the dif-
ferent benchmark experiments, we next asked if the tool
can be used to perform systematic regulatory annotation
of TFs and target genes. Although in Arabidopsis 1,441
TFs have GO annotations based on experimental support,
still 751 TF lack experimental functional annotations. As
for >150 of these unknown TFs high-quality BS informa-
tion is available, TF2Network can be used to predict which
genes and biological processes they regulate. Furthermore,
based on the latest GO annotations, still 11 447 Arabidop-
sis protein-coding genes lack any functional data. Prior to
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generating functional annotations for unknown genes, we
first executed a large-scale analysis to measure how well
TF2Network can recover known TF functional annota-
tions.

To perform a systematic functional analysis of TFs in
Arabidopsis, we first combined GO Biological Process
(BP) annotations with co-expression information to iden-
tify functional regulons. A functional regulon is a set of co-
expressing genes which can be annotated to a specific bi-
ological process, using GO functional enrichment analysis
(here only considering experimental GO annotations, see
Materials and Methods). In order to make use of the large
number of transcript profiling studies performed for Ara-
bidopsis and to capture condition-specific co-regulatory in-
formation, functional regulons were delineated in 13 differ-
ent microarray expression atlases covering a general expres-
sion compendium, stress, biotic and abiotic stress, AtGen-
Express, development, flower, leaf, root, seed, whole plant,
genetic modifications and hormone covering thousands of
available Affymetrix arrays (55). Starting from experimen-
tal annotations for 1918 different GO BP terms and con-
sidering the general expression compendium, 20 548 genes
could be assigned to one or more functional regulon (in to-
tal 2367 regulons). For regulons annotated with a specific
GO term, we applied TF2Network to verify if known TF
regulators could be recovered. For example, starting from
the GO term circadian rhythm (GO:0007623), 36 functional
regulons could be identified. After running TF2Network
on these 36 regulons and retaining the top 50 predicted
TFs with the highest ranks, 9 regulators known to con-
trol circadian rhythm were successfully identified. Examples
of correctly predicted TFs are RVE2 (AT5G37260), HY5
(AT5G11260), RVE7 (AT5G52660), CCA1 (AT2G46830)
and LHY1 (AT1G01060). Examples of other processes
for which many known TFs were recovered are defense
response (15 TFs), plant organ development (12 TFs),
hormone-mediated signaling pathway (8 TFs) and cell dif-
ferentiation (8 TFs).

Considering all functional regulons in all 13 expression
atlases, we could identify known functional annotations for
471 TFs, from 34 different TF families, covering 500 differ-
ent GO BP terms. A known functional annotation refers to
a TF predicted to be a regulator for a functional regulon
annotated with specific BP term, and for which experimen-
tal GO data is available supporting the role of that TF in
that BP. Interestingly, we observed that for a given BP term,
the number of correct regulators sometimes varied strongly
depending on the expression atlases that was used to de-
fine the regulons (Supplementary Table S3). Regulation of
post-embryonic development (GO:0048580) is an example
where in the development and flower atlases 12 TFs were
correctly predicted, respectively, while in the other atlases
only 0–4 correct TFs were recovered. Examples of devel-
opment related TFs uniquely detected in the development
atlas include AT1G33240 (GTL1), AT2G22540 (AGL22),
AT5G10140 (AGL25) and AT3G15270 (SPL5). This result
confirms that using condition-specific expression data im-
proves the inference of gene functions (60,61). Apart from
recovering known TF functions in one specific expression
atlas, we also observed cases of strong complementarity. For
root system development (GO:0022622), per expression at-

las between 0–5 correct regulators were identified, while in
total 9 TFs known to be involved in root development were
recovered. A full overview of all correctly predicted TFs for
all GO BP terms is given in Supplementary Table S3.

All functional regulons with known TFs assigned to it
offer an interesting dataset to systematically characterize
unknown Arabidopsis genes, as these regulons contain ex-
perimentally characterized genes assigned to a specific GO
BP term as well as TFs known to regulate these processes.
For the 471 correct TFs identified in functional regulons
in one of the 13 expression atlases, regulatory and func-
tional interactions were found for 19,609 target genes. Con-
sidering the genes not annotated to any biological pro-
cess using experimental or computational GO annotations,
6498 of the 11 447 unknown protein-coding genes were suc-
cessfully annotated to one or more BP. As unknown Ara-
bidopsis genes are strongly enriched for young gene fam-
ilies (62), we focused on a set of genes uniquely found in
the genus Arabidopsis or the Brassicaceae family (called
Brassicaceae phylostratum). Based on gene family infor-
mation from the PLAZA 3.0 Dicots database, we iden-
tified 2253 unknown genes belonging to the Brassicaceae
phylostratum of which 591 were assigned to functional
regulons with known regulators. Interesting, 116 of these
genes were part of regulons annotated with flower devel-
opment, which formed a GRN of 288 regulatory interac-
tions including 29 known TFs involved in flower develop-
ment (such as AGL15, FLM, SEP3, FLC and PI). Forty-
three of these genes were predicted to be regulated by three
or more flowering TFs and were analyzed in more detail.
Overlapping these genes with detailed RNA-Seq based tis-
sue expression information revealed that 18 genes were ex-
pressed in specific stages of flower development. In ad-
dition, for four genes evidence for TF binding based on
experimental protein–DNA interactions was found (cov-
ering AGL15 and PISTILLATA TFs; see Supplementary
Table S4). For a gene family present in all Brassicaceae
species encoding proteins with a domain of unknown func-
tion DUF1216 (family HOM03D007139), three out of five
genes were part of flower development regulons and found
to be strongly expressed in anthers (Supplementary Table
S4). Two other genes, AT1G05540 and AT1G28375, part
of families HOM03D000799 and HOM03D012901 having
homologs in multiple Brassicaceae species, were each found
to be expressed in flowers and bound by the flowering TF
AGL15. A full overview of all known TFs, their associated
GO BP functional regulons and the predicted target genes
which are currently unknown can be found in Supplemen-
tary Dataset S3.

To validate some of the new predictions associating
TFs to specific BPs, we examined some specific expression
datasets which were not present in our atlases. A first study
performed detailed transcript profiling in multiple stress
conditions, covering cold, heat, high-light, salt and biotic
stress (63). To be consistent, we here only focused on 5
GO BP core stresses corresponding to the conditions an-
alyzed in this study (see Material and Methods). To vali-
date the TF2Network predictions for these stresses, the pre-
dicted TFs for these BPs were compared with the regulators
being differentially expressed in one of these five stresses.
For every stress, the overlap between predicted TFs and
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stress-responsive TFs was measured. Figure 5A shows the
TFs that are confirmed either by experimental GO anno-
tations or by the expression data of Barah et al. For salt
stress, 12 predicted TFs were confirmed of which eight are
new TFs showing differential expression in the salt stress
expression dataset. Examples of newly predicted TFs are
AT3G17609 (HYH) which is known to respond to UV
light, AT3G46640 (LUX) which is involved in regulation
of circadian rhythm, AT1G32640 (MYC2) which is respon-
sive to jasmonic acid and controls defense response, and
AT4G01120 (bZIP54) which responds to the blue light. The
WRKY TF family consists of a huge collection of TFs
that are regulators of plant immune response (64). Fig-
ure 5A shows that 16 of these known WRKY TFs were
correctly identified playing a role in biotic stress response.
TF2Network adds two more TFs, AT4G23550 (WRKY29)
and AT4G01250 (WRKY22), as being regulators of biotic
stress. AT1G46264 (HSFB4) and AT2G40350, which are
known to be involved in cell division and heat acclimation,
respectively, were predicted by TF2Network, and confirmed
by the differentially expressed dataset, to be involved in high
light stress. In total 22 new TFs predicted to control specific
stress responses were confirmed by the stress-specific differ-
entially expressed genes.

In a second evaluation, TFs predicted for circadian
rhythm were evaluated using the Diurnal Tool (58), which
describes the circadian genome-wide expression of genes
measured using microarrays. For the GO term circadian
rhythm, the top 50 TF predictions for general atlas were
submitted to the Diurnal tool to examine if they show a cir-
cadian expression pattern. Furthermore, known circadian
rhythm TFs based on experimental GO annotations were
also scored. For longday conditions, 29/50 TFs showed a
diurnal expression pattern, out of which nine were newly
predicted TFs and 20 were TFs previously described to be
involved in circadian rhythm (Figure 5B). In shortday con-
ditions 30/50 of the predicted TFs were confirmed to show
a diurnal pattern, 8 of which were known TFs involved in
circadian rhythm. The detailed circadian rhythm expression
patterns are shown in Supplementary Figure S6 for longday
and shortday, respectively.

DISCUSSION

In this study, we leveraged publicly available TFBS informa-
tion to computationally identify candidate TFs regulating
sets of co-expressing or functionally related genes. Valida-
tion of TF2Network using a gold standard dataset based
on experimental TF binding data revealed that it recovers
92% of the true regulators using the long region promoter
definition. In addition, processing negative control gene sets
and gene sets with a decreasing number of true TF-bound
target genes showed that TF2Network controls false posi-
tives well and is robust to noise in the input gene sets. These
results demonstrate that the combination of PWM map-
ping combined with applying a stringent enrichment test
offers a good trade-off between obtaining the correct reg-
ulators and controlling for false positives. The good per-
formance of TF2Network on the long region definition has
the advantage that potential TF binding events in introns
or downstream of the gene are also identified. In the ‘ChIP

genes’ benchmark covering in vitro binding data for 24 TFs,
on average 31% of all binding events were located outside
the proximal 1000 bp promoter. Thus, in contrast to a re-
cent analysis which concluded that a majority of TFBSs
(86%) lie in the region from −1000 bp to +200 bp with re-
spect to the transcription start site (65), our benchmark in-
dicates that many regulatory interactions are missed by pro-
moter analysis tools only considering a 1000 bp upstream
promoter. Although we also evaluated other filter schemes
based on open chromatin information or using conserved
non-coding sequences (9,10,25,26), these approaches had
a lower recovery of correct regulators in our benchmarks.
This finding is in agreement with a recent study that iden-
tified putative cis-regulatory elements in high salinity stress
conditions, where a reduced sensitivity was observed when
applying filtering using open chromatin or conserved non-
coding sequences (66). Possible reasons why the correct reg-
ulator was not found by TF2Network, or other tools, in-
clude low quality of the ChIP data used to define the tar-
get genes in the ‘ChIP genes’ gold standard, low quality of
the PWM used to predict the regulator, or the absence of a
specific PWM in some of the related tools that were eval-
uated. Alternative scenarios for the incongruity between
ChIP binding, the presence of a correct TFBS or TF reg-
ulation include incorrect annotation of a ChIP peak to its
target gene, TF tethering or incompatible chromatin states
(4).

In contrast to TF-bound genes measured by ChIP, ‘DE
genes’ offer a more realistic but also more challenging
dataset to evaluate TF2Network, as this benchmark also
contains genes that are indirectly regulated by the perturbed
TF (67). The overall recovery of 56% of the correct regula-
tors indicates that TF2Network also works well for input
gene sets where not all genes are directly regulated by a spe-
cific TF. The good performance of TF2Network at the TF
family level reveals that the tool can also be used to identify
candidate TF families controlling a specific biological pro-
cess. This family-based approach offers a practical means
to identify candidate regulators in cases where only one or
a few TFs of a specific TF family have detailed binding site
information.

By combining the TFs predicted by TF2Network on the
‘DE genes’ benchmark with the experimental TF binding
data from different ChIP experiments, the recovery of func-
tional target genes was evaluated. In case the correct regu-
lator was predicted in the top 5 predictions, on average 69%
of the predicted target genes were confirmed by TF binding
measured through ChIP. Obviously, as both ‘ChIP genes’
and ‘DE genes’ identified through transcript profiling after
TF perturbation are obtained from in vivo samples which
might cover different conditions, obtaining a perfect over-
lap between both profiling methods is unrealistic. In addi-
tion, very frequently ChIP binding events lack a consensus
TFBS, which could mark indirect or non-functional bind-
ing events. For example, for six TFs involved in flowering
the overlap between ‘DE genes’ and TF bound genes mea-
sured using ChIP varied between 7–22% (68). Therefore, the
good recovery of bound and regulated target genes through
the integration of co-expression information with detailed
BS information in TF2Network confirms that, even in the
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Figure 5. Validation of new TF functions. (A) Validation of TFs predicted in different stress conditions using expression data from Barah et al. (63) for five
stress conditions. Diamonds indicate GO BP terms while nodes denote TFs. Purple nodes represent TFs confirmed using experimental GO annotations
and green nodes represent TFs validated using the stress-specific expression data. (B) Validation of TFs predicted to be involved in circadian rhythm. Green
nodes had a correlation ≥0.8 reported by the diurnal tool for longday or shortday conditions. Dashed and dotted nodes correspond to the longday and
shortday condition, respectively. TFs confirmed in both the conditions are shown using solid lined nodes.

absence of DE genes after TF perturbation, functional tar-
get genes can successfully be recovered (4).

Compared with other publicly available tools to study TF
gene regulation in plants, TF2Network offers several ad-
vantages. Firstly, it integrates the largest number of TFBSs
currently available for Arabidopsis. Secondly, the perfor-
mance of TF2Network to predict correct regulators is better
compared to Cistome and PlantRegMap. For large input
gene sets covering hundreds of genes, the running time of
TF2Network is between 5 and 10 s while identifying signif-
icantly enriched motifs for 50 genes using Cistome requires
∼5 min. In contrast to TF2Network, both Cistome and the
TF enrichment tool in PlantRegMap lack a network view
where enriched BSs are connected to candidate target genes.
Thirdly, through a newly developed web interface the user
can interactively and efficiently delineate a GRN for a set of
input genes. Advanced network layout visualizations were
implemented making it possible to simultaneously study
multiple predicted TFs for an input gene set, generating new
insights on the complexity of TF control. In addition, exper-
imental regulatory datasets from >15 different studies were
included, making it possible to efficiently integrate >76 000
known protein-protein and >170 000 known protein–DNA
interactions while exploring the predicted GRNs. Several
download options are also available to study the predicted
regulators, target genes or the associated networks using
other tools. Fourthly, we demonstrated how combining the
predicted regulators with protein-protein interaction data
makes it possible to recover known co-binding TFs, both
for TFs from the same or different families, and to generate
new insights about cooperative TFs operating via protein
complexes.

Through the integration of experimental GO BP anno-
tations and co-expression information, functional regulons
were delineated as a starting point to perform a systematic
functional and regulatory analysis of Arabidopsis genes.
For 471 TFs, known functional annotations were correctly
predicted by TF2Network for a wide range of BPs, indicat-
ing that functional regulons based on experimental GO an-
notations offer an interesting dataset to link TFs to func-
tionally coherent sets of target genes covering both known
and unknown genes. Starting from 6498 unknown genes
part of functional regulons with correctly identified regu-
lators, we characterized a set of 43 genes only found in Ara-
bidopsis or Brassicaceae species involved in flower develop-
ment that were predicted to be complexly regulated by 3 or
more flowering TFs. Sixty-five percent of these genes were
confirmed to be expressed in specific flower developmen-
tal stages or to be bound by flower TFs measured in ChIP
experiments for well-studied flowering regulators. Further-
more, we identified 25 new TFs predicted to be involved
in circadian rhythm, which were confirmed by strong di-
urnal expression profiles. In addition, 22 newly predicted
TFs controlling various types of (a)biotic stress were con-
firmed using differential gene expression data from Barah
et al. (63).

In conclusion, we have shown that known TF functions
and functional regulatory interactions can successfully be
identified when using differentially expressed genes or func-
tional regulons as input for TF2Network. This result reveals
that context-specific expression data together with detailed
TFBS information has great potential to enlarge our under-
standing of gene regulation in Arabidopsis. Furthermore,
through the integration of protein-protein interactions as
well as co-expression information, it offers an invaluable re-
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source to study combinatorial TF control in more detail in
plants.

AVAILABILITY

The TF2Network tool is available at http://bioinformatics.
psb.ugent.be/webtools/TF2Network/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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